feat(api): chore: pydantic & fastapi upgrade

Upgrade pydantic and fastapi to latest.

- pydantic~=2.4.2
- fastapi~=103.2
- fastapi-events~=0.9.1

**Big Changes**

There are a number of logic changes needed to support pydantic v2. Most changes are very simple, like using the new methods to serialized and deserialize models, but there are a few more complex changes.

**Invocations**

The biggest change relates to invocation creation, instantiation and validation.

Because pydantic v2 moves all validation logic into the rust pydantic-core, we may no longer directly stick our fingers into the validation pie.

Previously, we (ab)used models and fields to allow invocation fields to be optional at instantiation, but required when `invoke()` is called. We directly manipulated the fields and invocation models when calling `invoke()`.

With pydantic v2, this is much more involved. Changes to the python wrapper do not propagate down to the rust validation logic - you have to rebuild the model. This causes problem with concurrent access to the invocation classes and is not a free operation.

This logic has been totally refactored and we do not need to change the model any more. The details are in `baseinvocation.py`, in the `InputField` function and `BaseInvocation.invoke_internal()` method.

In the end, this implementation is cleaner.

**Invocation Fields**

In pydantic v2, you can no longer directly add or remove fields from a model.

Previously, we did this to add the `type` field to invocations.

**Invocation Decorators**

With pydantic v2, we instead use the imperative `create_model()` API to create a new model with the additional field. This is done in `baseinvocation.py` in the `invocation()` wrapper.

A similar technique is used for `invocation_output()`.

**Minor Changes**

There are a number of minor changes around the pydantic v2 models API.

**Protected `model_` Namespace**

All models' pydantic-provided methods and attributes are prefixed with `model_` and this is considered a protected namespace. This causes some conflict, because "model" means something to us, and we have a ton of pydantic models with attributes starting with "model_".

Forunately, there are no direct conflicts. However, in any pydantic model where we define an attribute or method that starts with "model_", we must tell set the protected namespaces to an empty tuple.

```py
class IPAdapterModelField(BaseModel):
    model_name: str = Field(description="Name of the IP-Adapter model")
    base_model: BaseModelType = Field(description="Base model")

    model_config = ConfigDict(protected_namespaces=())
```

**Model Serialization**

Pydantic models no longer have `Model.dict()` or `Model.json()`.

Instead, we use `Model.model_dump()` or `Model.model_dump_json()`.

**Model Deserialization**

Pydantic models no longer have `Model.parse_obj()` or `Model.parse_raw()`, and there are no `parse_raw_as()` or `parse_obj_as()` functions.

Instead, you need to create a `TypeAdapter` object to parse python objects or JSON into a model.

```py
adapter_graph = TypeAdapter(Graph)
deserialized_graph_from_json = adapter_graph.validate_json(graph_json)
deserialized_graph_from_dict = adapter_graph.validate_python(graph_dict)
```

**Field Customisation**

Pydantic `Field`s no longer accept arbitrary args.

Now, you must put all additional arbitrary args in a `json_schema_extra` arg on the field.

**Schema Customisation**

FastAPI and pydantic schema generation now follows the OpenAPI version 3.1 spec.

This necessitates two changes:
- Our schema customization logic has been revised
- Schema parsing to build node templates has been revised

The specific aren't important, but this does present additional surface area for bugs.

**Performance Improvements**

Pydantic v2 is a full rewrite with a rust backend. This offers a substantial performance improvement (pydantic claims 5x to 50x depending on the task). We'll notice this the most during serialization and deserialization of sessions/graphs, which happens very very often - a couple times per node.

I haven't done any benchmarks, but anecdotally, graph execution is much faster. Also, very larges graphs - like with massive iterators - are much, much faster.
This commit is contained in:
psychedelicious
2023-09-24 18:11:07 +10:00
parent 19c5435332
commit c238a7f18b
74 changed files with 2788 additions and 3116 deletions

View File

@ -2,7 +2,7 @@ import inspect
from enum import Enum
from typing import Literal, get_origin
from pydantic import BaseModel
from pydantic import BaseModel, ConfigDict, create_model
from .base import ( # noqa: F401
BaseModelType,
@ -106,6 +106,8 @@ class OpenAPIModelInfoBase(BaseModel):
base_model: BaseModelType
model_type: ModelType
model_config = ConfigDict(protected_namespaces=())
for base_model, models in MODEL_CLASSES.items():
for model_type, model_class in models.items():
@ -121,17 +123,11 @@ for base_model, models in MODEL_CLASSES.items():
if openapi_cfg_name in vars():
continue
api_wrapper = type(
api_wrapper = create_model(
openapi_cfg_name,
(cfg, OpenAPIModelInfoBase),
dict(
__annotations__=dict(
model_type=Literal[model_type.value],
),
),
__base__=(cfg, OpenAPIModelInfoBase),
model_type=(Literal[model_type], model_type), # type: ignore
)
# globals()[openapi_cfg_name] = api_wrapper
vars()[openapi_cfg_name] = api_wrapper
OPENAPI_MODEL_CONFIGS.append(api_wrapper)

View File

@ -19,7 +19,7 @@ from diffusers import logging as diffusers_logging
from onnx import numpy_helper
from onnxruntime import InferenceSession, SessionOptions, get_available_providers
from picklescan.scanner import scan_file_path
from pydantic import BaseModel, Field
from pydantic import BaseModel, ConfigDict, Field
from transformers import logging as transformers_logging
@ -86,14 +86,21 @@ class ModelError(str, Enum):
NotFound = "not_found"
def model_config_json_schema_extra(schema: dict[str, Any]) -> None:
if "required" not in schema:
schema["required"] = []
schema["required"].append("model_type")
class ModelConfigBase(BaseModel):
path: str # or Path
description: Optional[str] = Field(None)
model_format: Optional[str] = Field(None)
error: Optional[ModelError] = Field(None)
class Config:
use_enum_values = True
model_config = ConfigDict(
use_enum_values=True, protected_namespaces=(), json_schema_extra=model_config_json_schema_extra
)
class EmptyConfigLoader(ConfigMixin):

View File

@ -58,14 +58,16 @@ class IPAdapterModel(ModelBase):
def get_model(
self,
torch_dtype: Optional[torch.dtype],
torch_dtype: torch.dtype,
child_type: Optional[SubModelType] = None,
) -> typing.Union[IPAdapter, IPAdapterPlus]:
if child_type is not None:
raise ValueError("There are no child models in an IP-Adapter model.")
model = build_ip_adapter(
ip_adapter_ckpt_path=os.path.join(self.model_path, "ip_adapter.bin"), device="cpu", dtype=torch_dtype
ip_adapter_ckpt_path=os.path.join(self.model_path, "ip_adapter.bin"),
device=torch.device("cpu"),
dtype=torch_dtype,
)
self.model_size = model.calc_size()