mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
feat(api): chore: pydantic & fastapi upgrade
Upgrade pydantic and fastapi to latest. - pydantic~=2.4.2 - fastapi~=103.2 - fastapi-events~=0.9.1 **Big Changes** There are a number of logic changes needed to support pydantic v2. Most changes are very simple, like using the new methods to serialized and deserialize models, but there are a few more complex changes. **Invocations** The biggest change relates to invocation creation, instantiation and validation. Because pydantic v2 moves all validation logic into the rust pydantic-core, we may no longer directly stick our fingers into the validation pie. Previously, we (ab)used models and fields to allow invocation fields to be optional at instantiation, but required when `invoke()` is called. We directly manipulated the fields and invocation models when calling `invoke()`. With pydantic v2, this is much more involved. Changes to the python wrapper do not propagate down to the rust validation logic - you have to rebuild the model. This causes problem with concurrent access to the invocation classes and is not a free operation. This logic has been totally refactored and we do not need to change the model any more. The details are in `baseinvocation.py`, in the `InputField` function and `BaseInvocation.invoke_internal()` method. In the end, this implementation is cleaner. **Invocation Fields** In pydantic v2, you can no longer directly add or remove fields from a model. Previously, we did this to add the `type` field to invocations. **Invocation Decorators** With pydantic v2, we instead use the imperative `create_model()` API to create a new model with the additional field. This is done in `baseinvocation.py` in the `invocation()` wrapper. A similar technique is used for `invocation_output()`. **Minor Changes** There are a number of minor changes around the pydantic v2 models API. **Protected `model_` Namespace** All models' pydantic-provided methods and attributes are prefixed with `model_` and this is considered a protected namespace. This causes some conflict, because "model" means something to us, and we have a ton of pydantic models with attributes starting with "model_". Forunately, there are no direct conflicts. However, in any pydantic model where we define an attribute or method that starts with "model_", we must tell set the protected namespaces to an empty tuple. ```py class IPAdapterModelField(BaseModel): model_name: str = Field(description="Name of the IP-Adapter model") base_model: BaseModelType = Field(description="Base model") model_config = ConfigDict(protected_namespaces=()) ``` **Model Serialization** Pydantic models no longer have `Model.dict()` or `Model.json()`. Instead, we use `Model.model_dump()` or `Model.model_dump_json()`. **Model Deserialization** Pydantic models no longer have `Model.parse_obj()` or `Model.parse_raw()`, and there are no `parse_raw_as()` or `parse_obj_as()` functions. Instead, you need to create a `TypeAdapter` object to parse python objects or JSON into a model. ```py adapter_graph = TypeAdapter(Graph) deserialized_graph_from_json = adapter_graph.validate_json(graph_json) deserialized_graph_from_dict = adapter_graph.validate_python(graph_dict) ``` **Field Customisation** Pydantic `Field`s no longer accept arbitrary args. Now, you must put all additional arbitrary args in a `json_schema_extra` arg on the field. **Schema Customisation** FastAPI and pydantic schema generation now follows the OpenAPI version 3.1 spec. This necessitates two changes: - Our schema customization logic has been revised - Schema parsing to build node templates has been revised The specific aren't important, but this does present additional surface area for bugs. **Performance Improvements** Pydantic v2 is a full rewrite with a rust backend. This offers a substantial performance improvement (pydantic claims 5x to 50x depending on the task). We'll notice this the most during serialization and deserialization of sessions/graphs, which happens very very often - a couple times per node. I haven't done any benchmarks, but anecdotally, graph execution is much faster. Also, very larges graphs - like with massive iterators - are much, much faster.
This commit is contained in:
@ -2,7 +2,7 @@ import inspect
|
||||
from enum import Enum
|
||||
from typing import Literal, get_origin
|
||||
|
||||
from pydantic import BaseModel
|
||||
from pydantic import BaseModel, ConfigDict, create_model
|
||||
|
||||
from .base import ( # noqa: F401
|
||||
BaseModelType,
|
||||
@ -106,6 +106,8 @@ class OpenAPIModelInfoBase(BaseModel):
|
||||
base_model: BaseModelType
|
||||
model_type: ModelType
|
||||
|
||||
model_config = ConfigDict(protected_namespaces=())
|
||||
|
||||
|
||||
for base_model, models in MODEL_CLASSES.items():
|
||||
for model_type, model_class in models.items():
|
||||
@ -121,17 +123,11 @@ for base_model, models in MODEL_CLASSES.items():
|
||||
if openapi_cfg_name in vars():
|
||||
continue
|
||||
|
||||
api_wrapper = type(
|
||||
api_wrapper = create_model(
|
||||
openapi_cfg_name,
|
||||
(cfg, OpenAPIModelInfoBase),
|
||||
dict(
|
||||
__annotations__=dict(
|
||||
model_type=Literal[model_type.value],
|
||||
),
|
||||
),
|
||||
__base__=(cfg, OpenAPIModelInfoBase),
|
||||
model_type=(Literal[model_type], model_type), # type: ignore
|
||||
)
|
||||
|
||||
# globals()[openapi_cfg_name] = api_wrapper
|
||||
vars()[openapi_cfg_name] = api_wrapper
|
||||
OPENAPI_MODEL_CONFIGS.append(api_wrapper)
|
||||
|
||||
|
@ -19,7 +19,7 @@ from diffusers import logging as diffusers_logging
|
||||
from onnx import numpy_helper
|
||||
from onnxruntime import InferenceSession, SessionOptions, get_available_providers
|
||||
from picklescan.scanner import scan_file_path
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic import BaseModel, ConfigDict, Field
|
||||
from transformers import logging as transformers_logging
|
||||
|
||||
|
||||
@ -86,14 +86,21 @@ class ModelError(str, Enum):
|
||||
NotFound = "not_found"
|
||||
|
||||
|
||||
def model_config_json_schema_extra(schema: dict[str, Any]) -> None:
|
||||
if "required" not in schema:
|
||||
schema["required"] = []
|
||||
schema["required"].append("model_type")
|
||||
|
||||
|
||||
class ModelConfigBase(BaseModel):
|
||||
path: str # or Path
|
||||
description: Optional[str] = Field(None)
|
||||
model_format: Optional[str] = Field(None)
|
||||
error: Optional[ModelError] = Field(None)
|
||||
|
||||
class Config:
|
||||
use_enum_values = True
|
||||
model_config = ConfigDict(
|
||||
use_enum_values=True, protected_namespaces=(), json_schema_extra=model_config_json_schema_extra
|
||||
)
|
||||
|
||||
|
||||
class EmptyConfigLoader(ConfigMixin):
|
||||
|
@ -58,14 +58,16 @@ class IPAdapterModel(ModelBase):
|
||||
|
||||
def get_model(
|
||||
self,
|
||||
torch_dtype: Optional[torch.dtype],
|
||||
torch_dtype: torch.dtype,
|
||||
child_type: Optional[SubModelType] = None,
|
||||
) -> typing.Union[IPAdapter, IPAdapterPlus]:
|
||||
if child_type is not None:
|
||||
raise ValueError("There are no child models in an IP-Adapter model.")
|
||||
|
||||
model = build_ip_adapter(
|
||||
ip_adapter_ckpt_path=os.path.join(self.model_path, "ip_adapter.bin"), device="cpu", dtype=torch_dtype
|
||||
ip_adapter_ckpt_path=os.path.join(self.model_path, "ip_adapter.bin"),
|
||||
device=torch.device("cpu"),
|
||||
dtype=torch_dtype,
|
||||
)
|
||||
|
||||
self.model_size = model.calc_size()
|
||||
|
Reference in New Issue
Block a user