mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
feat(api): chore: pydantic & fastapi upgrade
Upgrade pydantic and fastapi to latest. - pydantic~=2.4.2 - fastapi~=103.2 - fastapi-events~=0.9.1 **Big Changes** There are a number of logic changes needed to support pydantic v2. Most changes are very simple, like using the new methods to serialized and deserialize models, but there are a few more complex changes. **Invocations** The biggest change relates to invocation creation, instantiation and validation. Because pydantic v2 moves all validation logic into the rust pydantic-core, we may no longer directly stick our fingers into the validation pie. Previously, we (ab)used models and fields to allow invocation fields to be optional at instantiation, but required when `invoke()` is called. We directly manipulated the fields and invocation models when calling `invoke()`. With pydantic v2, this is much more involved. Changes to the python wrapper do not propagate down to the rust validation logic - you have to rebuild the model. This causes problem with concurrent access to the invocation classes and is not a free operation. This logic has been totally refactored and we do not need to change the model any more. The details are in `baseinvocation.py`, in the `InputField` function and `BaseInvocation.invoke_internal()` method. In the end, this implementation is cleaner. **Invocation Fields** In pydantic v2, you can no longer directly add or remove fields from a model. Previously, we did this to add the `type` field to invocations. **Invocation Decorators** With pydantic v2, we instead use the imperative `create_model()` API to create a new model with the additional field. This is done in `baseinvocation.py` in the `invocation()` wrapper. A similar technique is used for `invocation_output()`. **Minor Changes** There are a number of minor changes around the pydantic v2 models API. **Protected `model_` Namespace** All models' pydantic-provided methods and attributes are prefixed with `model_` and this is considered a protected namespace. This causes some conflict, because "model" means something to us, and we have a ton of pydantic models with attributes starting with "model_". Forunately, there are no direct conflicts. However, in any pydantic model where we define an attribute or method that starts with "model_", we must tell set the protected namespaces to an empty tuple. ```py class IPAdapterModelField(BaseModel): model_name: str = Field(description="Name of the IP-Adapter model") base_model: BaseModelType = Field(description="Base model") model_config = ConfigDict(protected_namespaces=()) ``` **Model Serialization** Pydantic models no longer have `Model.dict()` or `Model.json()`. Instead, we use `Model.model_dump()` or `Model.model_dump_json()`. **Model Deserialization** Pydantic models no longer have `Model.parse_obj()` or `Model.parse_raw()`, and there are no `parse_raw_as()` or `parse_obj_as()` functions. Instead, you need to create a `TypeAdapter` object to parse python objects or JSON into a model. ```py adapter_graph = TypeAdapter(Graph) deserialized_graph_from_json = adapter_graph.validate_json(graph_json) deserialized_graph_from_dict = adapter_graph.validate_python(graph_dict) ``` **Field Customisation** Pydantic `Field`s no longer accept arbitrary args. Now, you must put all additional arbitrary args in a `json_schema_extra` arg on the field. **Schema Customisation** FastAPI and pydantic schema generation now follows the OpenAPI version 3.1 spec. This necessitates two changes: - Our schema customization logic has been revised - Schema parsing to build node templates has been revised The specific aren't important, but this does present additional surface area for bugs. **Performance Improvements** Pydantic v2 is a full rewrite with a rust backend. This offers a substantial performance improvement (pydantic claims 5x to 50x depending on the task). We'll notice this the most during serialization and deserialization of sessions/graphs, which happens very very often - a couple times per node. I haven't done any benchmarks, but anecdotally, graph execution is much faster. Also, very larges graphs - like with massive iterators - are much, much faster.
This commit is contained in:
@ -1,4 +1,5 @@
|
||||
import pytest
|
||||
from pydantic import TypeAdapter
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import (
|
||||
BaseInvocation,
|
||||
@ -593,20 +594,21 @@ def test_graph_can_serialize():
|
||||
g.add_edge(e)
|
||||
|
||||
# Not throwing on this line is sufficient
|
||||
_ = g.json()
|
||||
_ = g.model_dump_json()
|
||||
|
||||
|
||||
def test_graph_can_deserialize():
|
||||
g = Graph()
|
||||
n1 = TextToImageTestInvocation(id="1", prompt="Banana sushi")
|
||||
n2 = ESRGANInvocation(id="2")
|
||||
n2 = ImageToImageTestInvocation(id="2")
|
||||
g.add_node(n1)
|
||||
g.add_node(n2)
|
||||
e = create_edge(n1.id, "image", n2.id, "image")
|
||||
g.add_edge(e)
|
||||
|
||||
json = g.json()
|
||||
g2 = Graph.parse_raw(json)
|
||||
json = g.model_dump_json()
|
||||
adapter_graph = TypeAdapter(Graph)
|
||||
g2 = adapter_graph.validate_json(json)
|
||||
|
||||
assert g2 is not None
|
||||
assert g2.nodes["1"] is not None
|
||||
@ -619,7 +621,7 @@ def test_graph_can_deserialize():
|
||||
|
||||
|
||||
def test_invocation_decorator():
|
||||
invocation_type = "test_invocation"
|
||||
invocation_type = "test_invocation_decorator"
|
||||
title = "Test Invocation"
|
||||
tags = ["first", "second", "third"]
|
||||
category = "category"
|
||||
@ -630,7 +632,7 @@ def test_invocation_decorator():
|
||||
def invoke(self):
|
||||
pass
|
||||
|
||||
schema = TestInvocation.schema()
|
||||
schema = TestInvocation.model_json_schema()
|
||||
|
||||
assert schema.get("title") == title
|
||||
assert schema.get("tags") == tags
|
||||
@ -640,18 +642,17 @@ def test_invocation_decorator():
|
||||
|
||||
|
||||
def test_invocation_version_must_be_semver():
|
||||
invocation_type = "test_invocation"
|
||||
valid_version = "1.0.0"
|
||||
invalid_version = "not_semver"
|
||||
|
||||
@invocation(invocation_type, version=valid_version)
|
||||
@invocation("test_invocation_version_valid", version=valid_version)
|
||||
class ValidVersionInvocation(BaseInvocation):
|
||||
def invoke(self):
|
||||
pass
|
||||
|
||||
with pytest.raises(InvalidVersionError):
|
||||
|
||||
@invocation(invocation_type, version=invalid_version)
|
||||
@invocation("test_invocation_version_invalid", version=invalid_version)
|
||||
class InvalidVersionInvocation(BaseInvocation):
|
||||
def invoke(self):
|
||||
pass
|
||||
@ -694,4 +695,4 @@ def test_ints_do_not_accept_floats():
|
||||
def test_graph_can_generate_schema():
|
||||
# Not throwing on this line is sufficient
|
||||
# NOTE: if this test fails, it's PROBABLY because a new invocation type is breaking schema generation
|
||||
_ = Graph.schema_json(indent=2)
|
||||
_ = Graph.model_json_schema()
|
||||
|
@ -1,5 +1,5 @@
|
||||
import pytest
|
||||
from pydantic import ValidationError, parse_raw_as
|
||||
from pydantic import TypeAdapter, ValidationError
|
||||
|
||||
from invokeai.app.services.session_queue.session_queue_common import (
|
||||
Batch,
|
||||
@ -150,8 +150,9 @@ def test_prepare_values_to_insert(batch_data_collection, batch_graph):
|
||||
values = prepare_values_to_insert(queue_id="default", batch=b, priority=0, max_new_queue_items=1000)
|
||||
assert len(values) == 8
|
||||
|
||||
session_adapter = TypeAdapter(GraphExecutionState)
|
||||
# graph should be serialized
|
||||
ges = parse_raw_as(GraphExecutionState, values[0].session)
|
||||
ges = session_adapter.validate_json(values[0].session)
|
||||
|
||||
# graph values should be populated
|
||||
assert ges.graph.get_node("1").prompt == "Banana sushi"
|
||||
@ -160,15 +161,16 @@ def test_prepare_values_to_insert(batch_data_collection, batch_graph):
|
||||
assert ges.graph.get_node("4").prompt == "Nissan"
|
||||
|
||||
# session ids should match deserialized graph
|
||||
assert [v.session_id for v in values] == [parse_raw_as(GraphExecutionState, v.session).id for v in values]
|
||||
assert [v.session_id for v in values] == [session_adapter.validate_json(v.session).id for v in values]
|
||||
|
||||
# should unique session ids
|
||||
sids = [v.session_id for v in values]
|
||||
assert len(sids) == len(set(sids))
|
||||
|
||||
nfv_list_adapter = TypeAdapter(list[NodeFieldValue])
|
||||
# should have 3 node field values
|
||||
assert type(values[0].field_values) is str
|
||||
assert len(parse_raw_as(list[NodeFieldValue], values[0].field_values)) == 3
|
||||
assert len(nfv_list_adapter.validate_json(values[0].field_values)) == 3
|
||||
|
||||
# should have batch id and priority
|
||||
assert all(v.batch_id == b.batch_id for v in values)
|
||||
|
@ -15,7 +15,8 @@ class TestModel(BaseModel):
|
||||
@pytest.fixture
|
||||
def db() -> SqliteItemStorage[TestModel]:
|
||||
sqlite_db = SqliteDatabase(InvokeAIAppConfig(use_memory_db=True), InvokeAILogger.get_logger())
|
||||
return SqliteItemStorage[TestModel](db=sqlite_db, table_name="test", id_field="id")
|
||||
sqlite_item_storage = SqliteItemStorage[TestModel](db=sqlite_db, table_name="test", id_field="id")
|
||||
return sqlite_item_storage
|
||||
|
||||
|
||||
def test_sqlite_service_can_create_and_get(db: SqliteItemStorage[TestModel]):
|
||||
|
Reference in New Issue
Block a user