feat(api): chore: pydantic & fastapi upgrade

Upgrade pydantic and fastapi to latest.

- pydantic~=2.4.2
- fastapi~=103.2
- fastapi-events~=0.9.1

**Big Changes**

There are a number of logic changes needed to support pydantic v2. Most changes are very simple, like using the new methods to serialized and deserialize models, but there are a few more complex changes.

**Invocations**

The biggest change relates to invocation creation, instantiation and validation.

Because pydantic v2 moves all validation logic into the rust pydantic-core, we may no longer directly stick our fingers into the validation pie.

Previously, we (ab)used models and fields to allow invocation fields to be optional at instantiation, but required when `invoke()` is called. We directly manipulated the fields and invocation models when calling `invoke()`.

With pydantic v2, this is much more involved. Changes to the python wrapper do not propagate down to the rust validation logic - you have to rebuild the model. This causes problem with concurrent access to the invocation classes and is not a free operation.

This logic has been totally refactored and we do not need to change the model any more. The details are in `baseinvocation.py`, in the `InputField` function and `BaseInvocation.invoke_internal()` method.

In the end, this implementation is cleaner.

**Invocation Fields**

In pydantic v2, you can no longer directly add or remove fields from a model.

Previously, we did this to add the `type` field to invocations.

**Invocation Decorators**

With pydantic v2, we instead use the imperative `create_model()` API to create a new model with the additional field. This is done in `baseinvocation.py` in the `invocation()` wrapper.

A similar technique is used for `invocation_output()`.

**Minor Changes**

There are a number of minor changes around the pydantic v2 models API.

**Protected `model_` Namespace**

All models' pydantic-provided methods and attributes are prefixed with `model_` and this is considered a protected namespace. This causes some conflict, because "model" means something to us, and we have a ton of pydantic models with attributes starting with "model_".

Forunately, there are no direct conflicts. However, in any pydantic model where we define an attribute or method that starts with "model_", we must tell set the protected namespaces to an empty tuple.

```py
class IPAdapterModelField(BaseModel):
    model_name: str = Field(description="Name of the IP-Adapter model")
    base_model: BaseModelType = Field(description="Base model")

    model_config = ConfigDict(protected_namespaces=())
```

**Model Serialization**

Pydantic models no longer have `Model.dict()` or `Model.json()`.

Instead, we use `Model.model_dump()` or `Model.model_dump_json()`.

**Model Deserialization**

Pydantic models no longer have `Model.parse_obj()` or `Model.parse_raw()`, and there are no `parse_raw_as()` or `parse_obj_as()` functions.

Instead, you need to create a `TypeAdapter` object to parse python objects or JSON into a model.

```py
adapter_graph = TypeAdapter(Graph)
deserialized_graph_from_json = adapter_graph.validate_json(graph_json)
deserialized_graph_from_dict = adapter_graph.validate_python(graph_dict)
```

**Field Customisation**

Pydantic `Field`s no longer accept arbitrary args.

Now, you must put all additional arbitrary args in a `json_schema_extra` arg on the field.

**Schema Customisation**

FastAPI and pydantic schema generation now follows the OpenAPI version 3.1 spec.

This necessitates two changes:
- Our schema customization logic has been revised
- Schema parsing to build node templates has been revised

The specific aren't important, but this does present additional surface area for bugs.

**Performance Improvements**

Pydantic v2 is a full rewrite with a rust backend. This offers a substantial performance improvement (pydantic claims 5x to 50x depending on the task). We'll notice this the most during serialization and deserialization of sessions/graphs, which happens very very often - a couple times per node.

I haven't done any benchmarks, but anecdotally, graph execution is much faster. Also, very larges graphs - like with massive iterators - are much, much faster.
This commit is contained in:
psychedelicious 2023-09-24 18:11:07 +10:00
parent 19c5435332
commit c238a7f18b
74 changed files with 2788 additions and 3116 deletions

View File

@ -42,7 +42,7 @@ async def upload_image(
crop_visible: Optional[bool] = Query(default=False, description="Whether to crop the image"), crop_visible: Optional[bool] = Query(default=False, description="Whether to crop the image"),
) -> ImageDTO: ) -> ImageDTO:
"""Uploads an image""" """Uploads an image"""
if not file.content_type.startswith("image"): if not file.content_type or not file.content_type.startswith("image"):
raise HTTPException(status_code=415, detail="Not an image") raise HTTPException(status_code=415, detail="Not an image")
contents = await file.read() contents = await file.read()

View File

@ -2,11 +2,11 @@
import pathlib import pathlib
from typing import List, Literal, Optional, Union from typing import Annotated, List, Literal, Optional, Union
from fastapi import Body, Path, Query, Response from fastapi import Body, Path, Query, Response
from fastapi.routing import APIRouter from fastapi.routing import APIRouter
from pydantic import BaseModel, parse_obj_as from pydantic import BaseModel, ConfigDict, Field, TypeAdapter
from starlette.exceptions import HTTPException from starlette.exceptions import HTTPException
from invokeai.backend import BaseModelType, ModelType from invokeai.backend import BaseModelType, ModelType
@ -23,8 +23,14 @@ from ..dependencies import ApiDependencies
models_router = APIRouter(prefix="/v1/models", tags=["models"]) models_router = APIRouter(prefix="/v1/models", tags=["models"])
UpdateModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)] UpdateModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)]
update_models_response_adapter = TypeAdapter(UpdateModelResponse)
ImportModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)] ImportModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)]
import_models_response_adapter = TypeAdapter(ImportModelResponse)
ConvertModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)] ConvertModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)]
convert_models_response_adapter = TypeAdapter(ConvertModelResponse)
MergeModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)] MergeModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)]
ImportModelAttributes = Union[tuple(OPENAPI_MODEL_CONFIGS)] ImportModelAttributes = Union[tuple(OPENAPI_MODEL_CONFIGS)]
@ -32,6 +38,11 @@ ImportModelAttributes = Union[tuple(OPENAPI_MODEL_CONFIGS)]
class ModelsList(BaseModel): class ModelsList(BaseModel):
models: list[Union[tuple(OPENAPI_MODEL_CONFIGS)]] models: list[Union[tuple(OPENAPI_MODEL_CONFIGS)]]
model_config = ConfigDict(use_enum_values=True)
models_list_adapter = TypeAdapter(ModelsList)
@models_router.get( @models_router.get(
"/", "/",
@ -49,7 +60,7 @@ async def list_models(
models_raw.extend(ApiDependencies.invoker.services.model_manager.list_models(base_model, model_type)) models_raw.extend(ApiDependencies.invoker.services.model_manager.list_models(base_model, model_type))
else: else:
models_raw = ApiDependencies.invoker.services.model_manager.list_models(None, model_type) models_raw = ApiDependencies.invoker.services.model_manager.list_models(None, model_type)
models = parse_obj_as(ModelsList, {"models": models_raw}) models = models_list_adapter.validate_python({"models": models_raw})
return models return models
@ -105,11 +116,14 @@ async def update_model(
info.path = new_info.get("path") info.path = new_info.get("path")
# replace empty string values with None/null to avoid phenomenon of vae: '' # replace empty string values with None/null to avoid phenomenon of vae: ''
info_dict = info.dict() info_dict = info.model_dump()
info_dict = {x: info_dict[x] if info_dict[x] else None for x in info_dict.keys()} info_dict = {x: info_dict[x] if info_dict[x] else None for x in info_dict.keys()}
ApiDependencies.invoker.services.model_manager.update_model( ApiDependencies.invoker.services.model_manager.update_model(
model_name=model_name, base_model=base_model, model_type=model_type, model_attributes=info_dict model_name=model_name,
base_model=base_model,
model_type=model_type,
model_attributes=info_dict,
) )
model_raw = ApiDependencies.invoker.services.model_manager.list_model( model_raw = ApiDependencies.invoker.services.model_manager.list_model(
@ -117,7 +131,7 @@ async def update_model(
base_model=base_model, base_model=base_model,
model_type=model_type, model_type=model_type,
) )
model_response = parse_obj_as(UpdateModelResponse, model_raw) model_response = update_models_response_adapter.validate_python(model_raw)
except ModelNotFoundException as e: except ModelNotFoundException as e:
raise HTTPException(status_code=404, detail=str(e)) raise HTTPException(status_code=404, detail=str(e))
except ValueError as e: except ValueError as e:
@ -159,7 +173,8 @@ async def import_model(
try: try:
installed_models = ApiDependencies.invoker.services.model_manager.heuristic_import( installed_models = ApiDependencies.invoker.services.model_manager.heuristic_import(
items_to_import=items_to_import, prediction_type_helper=lambda x: prediction_types.get(prediction_type) items_to_import=items_to_import,
prediction_type_helper=lambda x: prediction_types.get(prediction_type),
) )
info = installed_models.get(location) info = installed_models.get(location)
@ -171,7 +186,7 @@ async def import_model(
model_raw = ApiDependencies.invoker.services.model_manager.list_model( model_raw = ApiDependencies.invoker.services.model_manager.list_model(
model_name=info.name, base_model=info.base_model, model_type=info.model_type model_name=info.name, base_model=info.base_model, model_type=info.model_type
) )
return parse_obj_as(ImportModelResponse, model_raw) return import_models_response_adapter.validate_python(model_raw)
except ModelNotFoundException as e: except ModelNotFoundException as e:
logger.error(str(e)) logger.error(str(e))
@ -205,13 +220,18 @@ async def add_model(
try: try:
ApiDependencies.invoker.services.model_manager.add_model( ApiDependencies.invoker.services.model_manager.add_model(
info.model_name, info.base_model, info.model_type, model_attributes=info.dict() info.model_name,
info.base_model,
info.model_type,
model_attributes=info.model_dump(),
) )
logger.info(f"Successfully added {info.model_name}") logger.info(f"Successfully added {info.model_name}")
model_raw = ApiDependencies.invoker.services.model_manager.list_model( model_raw = ApiDependencies.invoker.services.model_manager.list_model(
model_name=info.model_name, base_model=info.base_model, model_type=info.model_type model_name=info.model_name,
base_model=info.base_model,
model_type=info.model_type,
) )
return parse_obj_as(ImportModelResponse, model_raw) return import_models_response_adapter.validate_python(model_raw)
except ModelNotFoundException as e: except ModelNotFoundException as e:
logger.error(str(e)) logger.error(str(e))
raise HTTPException(status_code=404, detail=str(e)) raise HTTPException(status_code=404, detail=str(e))
@ -223,7 +243,10 @@ async def add_model(
@models_router.delete( @models_router.delete(
"/{base_model}/{model_type}/{model_name}", "/{base_model}/{model_type}/{model_name}",
operation_id="del_model", operation_id="del_model",
responses={204: {"description": "Model deleted successfully"}, 404: {"description": "Model not found"}}, responses={
204: {"description": "Model deleted successfully"},
404: {"description": "Model not found"},
},
status_code=204, status_code=204,
response_model=None, response_model=None,
) )
@ -279,7 +302,7 @@ async def convert_model(
model_raw = ApiDependencies.invoker.services.model_manager.list_model( model_raw = ApiDependencies.invoker.services.model_manager.list_model(
model_name, base_model=base_model, model_type=model_type model_name, base_model=base_model, model_type=model_type
) )
response = parse_obj_as(ConvertModelResponse, model_raw) response = convert_models_response_adapter.validate_python(model_raw)
except ModelNotFoundException as e: except ModelNotFoundException as e:
raise HTTPException(status_code=404, detail=f"Model '{model_name}' not found: {str(e)}") raise HTTPException(status_code=404, detail=f"Model '{model_name}' not found: {str(e)}")
except ValueError as e: except ValueError as e:
@ -302,7 +325,8 @@ async def search_for_models(
) -> List[pathlib.Path]: ) -> List[pathlib.Path]:
if not search_path.is_dir(): if not search_path.is_dir():
raise HTTPException( raise HTTPException(
status_code=404, detail=f"The search path '{search_path}' does not exist or is not directory" status_code=404,
detail=f"The search path '{search_path}' does not exist or is not directory",
) )
return ApiDependencies.invoker.services.model_manager.search_for_models(search_path) return ApiDependencies.invoker.services.model_manager.search_for_models(search_path)
@ -337,6 +361,26 @@ async def sync_to_config() -> bool:
return True return True
# There's some weird pydantic-fastapi behaviour that requires this to be a separate class
# TODO: After a few updates, see if it works inside the route operation handler?
class MergeModelsBody(BaseModel):
model_names: List[str] = Field(description="model name", min_length=2, max_length=3)
merged_model_name: Optional[str] = Field(description="Name of destination model")
alpha: Optional[float] = Field(description="Alpha weighting strength to apply to 2d and 3d models", default=0.5)
interp: Optional[MergeInterpolationMethod] = Field(description="Interpolation method")
force: Optional[bool] = Field(
description="Force merging of models created with different versions of diffusers",
default=False,
)
merge_dest_directory: Optional[str] = Field(
description="Save the merged model to the designated directory (with 'merged_model_name' appended)",
default=None,
)
model_config = ConfigDict(protected_namespaces=())
@models_router.put( @models_router.put(
"/merge/{base_model}", "/merge/{base_model}",
operation_id="merge_models", operation_id="merge_models",
@ -349,31 +393,23 @@ async def sync_to_config() -> bool:
response_model=MergeModelResponse, response_model=MergeModelResponse,
) )
async def merge_models( async def merge_models(
body: Annotated[MergeModelsBody, Body(description="Model configuration", embed=True)],
base_model: BaseModelType = Path(description="Base model"), base_model: BaseModelType = Path(description="Base model"),
model_names: List[str] = Body(description="model name", min_items=2, max_items=3),
merged_model_name: Optional[str] = Body(description="Name of destination model"),
alpha: Optional[float] = Body(description="Alpha weighting strength to apply to 2d and 3d models", default=0.5),
interp: Optional[MergeInterpolationMethod] = Body(description="Interpolation method"),
force: Optional[bool] = Body(
description="Force merging of models created with different versions of diffusers", default=False
),
merge_dest_directory: Optional[str] = Body(
description="Save the merged model to the designated directory (with 'merged_model_name' appended)",
default=None,
),
) -> MergeModelResponse: ) -> MergeModelResponse:
"""Convert a checkpoint model into a diffusers model""" """Convert a checkpoint model into a diffusers model"""
logger = ApiDependencies.invoker.services.logger logger = ApiDependencies.invoker.services.logger
try: try:
logger.info(f"Merging models: {model_names} into {merge_dest_directory or '<MODELS>'}/{merged_model_name}") logger.info(
dest = pathlib.Path(merge_dest_directory) if merge_dest_directory else None f"Merging models: {body.model_names} into {body.merge_dest_directory or '<MODELS>'}/{body.merged_model_name}"
)
dest = pathlib.Path(body.merge_dest_directory) if body.merge_dest_directory else None
result = ApiDependencies.invoker.services.model_manager.merge_models( result = ApiDependencies.invoker.services.model_manager.merge_models(
model_names, model_names=body.model_names,
base_model, base_model=base_model,
merged_model_name=merged_model_name or "+".join(model_names), merged_model_name=body.merged_model_name or "+".join(body.model_names),
alpha=alpha, alpha=body.alpha,
interp=interp, interp=body.interp,
force=force, force=body.force,
merge_dest_directory=dest, merge_dest_directory=dest,
) )
model_raw = ApiDependencies.invoker.services.model_manager.list_model( model_raw = ApiDependencies.invoker.services.model_manager.list_model(
@ -381,9 +417,12 @@ async def merge_models(
base_model=base_model, base_model=base_model,
model_type=ModelType.Main, model_type=ModelType.Main,
) )
response = parse_obj_as(ConvertModelResponse, model_raw) response = convert_models_response_adapter.validate_python(model_raw)
except ModelNotFoundException: except ModelNotFoundException:
raise HTTPException(status_code=404, detail=f"One or more of the models '{model_names}' not found") raise HTTPException(
status_code=404,
detail=f"One or more of the models '{body.model_names}' not found",
)
except ValueError as e: except ValueError as e:
raise HTTPException(status_code=400, detail=str(e)) raise HTTPException(status_code=400, detail=str(e))
return response return response

View File

@ -1,4 +1,4 @@
from typing import Optional from typing import Optional, Union
from dynamicprompts.generators import CombinatorialPromptGenerator, RandomPromptGenerator from dynamicprompts.generators import CombinatorialPromptGenerator, RandomPromptGenerator
from fastapi import Body from fastapi import Body
@ -27,6 +27,7 @@ async def parse_dynamicprompts(
combinatorial: bool = Body(default=True, description="Whether to use the combinatorial generator"), combinatorial: bool = Body(default=True, description="Whether to use the combinatorial generator"),
) -> DynamicPromptsResponse: ) -> DynamicPromptsResponse:
"""Creates a batch process""" """Creates a batch process"""
generator: Union[RandomPromptGenerator, CombinatorialPromptGenerator]
try: try:
error: Optional[str] = None error: Optional[str] = None
if combinatorial: if combinatorial:

View File

@ -22,7 +22,7 @@ if True: # hack to make flake8 happy with imports coming after setting up the c
from fastapi.staticfiles import StaticFiles from fastapi.staticfiles import StaticFiles
from fastapi_events.handlers.local import local_handler from fastapi_events.handlers.local import local_handler
from fastapi_events.middleware import EventHandlerASGIMiddleware from fastapi_events.middleware import EventHandlerASGIMiddleware
from pydantic.schema import schema from pydantic.json_schema import models_json_schema
# noinspection PyUnresolvedReferences # noinspection PyUnresolvedReferences
import invokeai.backend.util.hotfixes # noqa: F401 (monkeypatching on import) import invokeai.backend.util.hotfixes # noqa: F401 (monkeypatching on import)
@ -31,7 +31,7 @@ if True: # hack to make flake8 happy with imports coming after setting up the c
from ..backend.util.logging import InvokeAILogger from ..backend.util.logging import InvokeAILogger
from .api.dependencies import ApiDependencies from .api.dependencies import ApiDependencies
from .api.routers import app_info, board_images, boards, images, models, session_queue, sessions, utilities from .api.routers import app_info, board_images, boards, images, models, session_queue, utilities
from .api.sockets import SocketIO from .api.sockets import SocketIO
from .invocations.baseinvocation import BaseInvocation, UIConfigBase, _InputField, _OutputField from .invocations.baseinvocation import BaseInvocation, UIConfigBase, _InputField, _OutputField
@ -51,7 +51,7 @@ mimetypes.add_type("text/css", ".css")
# Create the app # Create the app
# TODO: create this all in a method so configuration/etc. can be passed in? # TODO: create this all in a method so configuration/etc. can be passed in?
app = FastAPI(title="Invoke AI", docs_url=None, redoc_url=None) app = FastAPI(title="Invoke AI", docs_url=None, redoc_url=None, separate_input_output_schemas=False)
# Add event handler # Add event handler
event_handler_id: int = id(app) event_handler_id: int = id(app)
@ -63,18 +63,18 @@ app.add_middleware(
socket_io = SocketIO(app) socket_io = SocketIO(app)
app.add_middleware(
CORSMiddleware,
allow_origins=app_config.allow_origins,
allow_credentials=app_config.allow_credentials,
allow_methods=app_config.allow_methods,
allow_headers=app_config.allow_headers,
)
# Add startup event to load dependencies # Add startup event to load dependencies
@app.on_event("startup") @app.on_event("startup")
async def startup_event(): async def startup_event():
app.add_middleware(
CORSMiddleware,
allow_origins=app_config.allow_origins,
allow_credentials=app_config.allow_credentials,
allow_methods=app_config.allow_methods,
allow_headers=app_config.allow_headers,
)
ApiDependencies.initialize(config=app_config, event_handler_id=event_handler_id, logger=logger) ApiDependencies.initialize(config=app_config, event_handler_id=event_handler_id, logger=logger)
@ -85,12 +85,7 @@ async def shutdown_event():
# Include all routers # Include all routers
# TODO: REMOVE # app.include_router(sessions.session_router, prefix="/api")
# app.include_router(
# invocation.invocation_router,
# prefix = '/api')
app.include_router(sessions.session_router, prefix="/api")
app.include_router(utilities.utilities_router, prefix="/api") app.include_router(utilities.utilities_router, prefix="/api")
@ -117,6 +112,7 @@ def custom_openapi():
description="An API for invoking AI image operations", description="An API for invoking AI image operations",
version="1.0.0", version="1.0.0",
routes=app.routes, routes=app.routes,
separate_input_output_schemas=False, # https://fastapi.tiangolo.com/how-to/separate-openapi-schemas/
) )
# Add all outputs # Add all outputs
@ -127,29 +123,32 @@ def custom_openapi():
output_type = signature(invoker.invoke).return_annotation output_type = signature(invoker.invoke).return_annotation
output_types.add(output_type) output_types.add(output_type)
output_schemas = schema(output_types, ref_prefix="#/components/schemas/") output_schemas = models_json_schema(
for schema_key, output_schema in output_schemas["definitions"].items(): models=[(o, "serialization") for o in output_types], ref_template="#/components/schemas/{model}"
output_schema["class"] = "output" )
openapi_schema["components"]["schemas"][schema_key] = output_schema for schema_key, output_schema in output_schemas[1]["$defs"].items():
# TODO: note that we assume the schema_key here is the TYPE.__name__ # TODO: note that we assume the schema_key here is the TYPE.__name__
# This could break in some cases, figure out a better way to do it # This could break in some cases, figure out a better way to do it
output_type_titles[schema_key] = output_schema["title"] output_type_titles[schema_key] = output_schema["title"]
# Add Node Editor UI helper schemas # Add Node Editor UI helper schemas
ui_config_schemas = schema([UIConfigBase, _InputField, _OutputField], ref_prefix="#/components/schemas/") ui_config_schemas = models_json_schema(
for schema_key, ui_config_schema in ui_config_schemas["definitions"].items(): [(UIConfigBase, "serialization"), (_InputField, "serialization"), (_OutputField, "serialization")],
ref_template="#/components/schemas/{model}",
)
for schema_key, ui_config_schema in ui_config_schemas[1]["$defs"].items():
openapi_schema["components"]["schemas"][schema_key] = ui_config_schema openapi_schema["components"]["schemas"][schema_key] = ui_config_schema
# Add a reference to the output type to additionalProperties of the invoker schema # Add a reference to the output type to additionalProperties of the invoker schema
for invoker in all_invocations: for invoker in all_invocations:
invoker_name = invoker.__name__ invoker_name = invoker.__name__
output_type = signature(invoker.invoke).return_annotation output_type = signature(obj=invoker.invoke).return_annotation
output_type_title = output_type_titles[output_type.__name__] output_type_title = output_type_titles[output_type.__name__]
invoker_schema = openapi_schema["components"]["schemas"][invoker_name] invoker_schema = openapi_schema["components"]["schemas"][f"{invoker_name}"]
outputs_ref = {"$ref": f"#/components/schemas/{output_type_title}"} outputs_ref = {"$ref": f"#/components/schemas/{output_type_title}"}
invoker_schema["output"] = outputs_ref invoker_schema["output"] = outputs_ref
invoker_schema["class"] = "invocation" invoker_schema["class"] = "invocation"
openapi_schema["components"]["schemas"][f"{output_type_title}"]["class"] = "output"
from invokeai.backend.model_management.models import get_model_config_enums from invokeai.backend.model_management.models import get_model_config_enums
@ -172,7 +171,7 @@ def custom_openapi():
return app.openapi_schema return app.openapi_schema
app.openapi = custom_openapi app.openapi = custom_openapi # type: ignore [method-assign] # this is a valid assignment
# Override API doc favicons # Override API doc favicons
app.mount("/static", StaticFiles(directory=Path(web_dir.__path__[0], "static/dream_web")), name="static") app.mount("/static", StaticFiles(directory=Path(web_dir.__path__[0], "static/dream_web")), name="static")

View File

@ -24,8 +24,8 @@ def add_field_argument(command_parser, name: str, field, default_override=None):
if field.default_factory is None if field.default_factory is None
else field.default_factory() else field.default_factory()
) )
if get_origin(field.type_) == Literal: if get_origin(field.annotation) == Literal:
allowed_values = get_args(field.type_) allowed_values = get_args(field.annotation)
allowed_types = set() allowed_types = set()
for val in allowed_values: for val in allowed_values:
allowed_types.add(type(val)) allowed_types.add(type(val))
@ -38,15 +38,15 @@ def add_field_argument(command_parser, name: str, field, default_override=None):
type=field_type, type=field_type,
default=default, default=default,
choices=allowed_values, choices=allowed_values,
help=field.field_info.description, help=field.description,
) )
else: else:
command_parser.add_argument( command_parser.add_argument(
f"--{name}", f"--{name}",
dest=name, dest=name,
type=field.type_, type=field.annotation,
default=default, default=default,
help=field.field_info.description, help=field.description,
) )
@ -142,7 +142,6 @@ class BaseCommand(ABC, BaseModel):
"""A CLI command""" """A CLI command"""
# All commands must include a type name like this: # All commands must include a type name like this:
# type: Literal['your_command_name'] = 'your_command_name'
@classmethod @classmethod
def get_all_subclasses(cls): def get_all_subclasses(cls):

View File

@ -7,28 +7,16 @@ import re
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from enum import Enum from enum import Enum
from inspect import signature from inspect import signature
from typing import ( from types import UnionType
TYPE_CHECKING, from typing import TYPE_CHECKING, Any, Callable, ClassVar, Iterable, Literal, Optional, Type, TypeVar, Union
AbstractSet,
Any,
Callable,
ClassVar,
Literal,
Mapping,
Optional,
Type,
TypeVar,
Union,
get_args,
get_type_hints,
)
import semver import semver
from pydantic import BaseModel, Field, validator from pydantic import BaseModel, ConfigDict, Field, create_model, field_validator
from pydantic.fields import ModelField, Undefined from pydantic.fields import _Unset
from pydantic.typing import NoArgAnyCallable from pydantic_core import PydanticUndefined
from invokeai.app.services.config.config_default import InvokeAIAppConfig from invokeai.app.services.config.config_default import InvokeAIAppConfig
from invokeai.app.util.misc import uuid_string
if TYPE_CHECKING: if TYPE_CHECKING:
from ..services.invocation_services import InvocationServices from ..services.invocation_services import InvocationServices
@ -211,6 +199,11 @@ class _InputField(BaseModel):
ui_choice_labels: Optional[dict[str, str]] ui_choice_labels: Optional[dict[str, str]]
item_default: Optional[Any] item_default: Optional[Any]
model_config = ConfigDict(
validate_assignment=True,
json_schema_serialization_defaults_required=True,
)
class _OutputField(BaseModel): class _OutputField(BaseModel):
""" """
@ -224,34 +217,36 @@ class _OutputField(BaseModel):
ui_type: Optional[UIType] ui_type: Optional[UIType]
ui_order: Optional[int] ui_order: Optional[int]
model_config = ConfigDict(
validate_assignment=True,
json_schema_serialization_defaults_required=True,
)
def get_type(klass: BaseModel) -> str:
"""Helper function to get an invocation or invocation output's type. This is the default value of the `type` field."""
return klass.model_fields["type"].default
def InputField( def InputField(
*args: Any, # copied from pydantic's Field
default: Any = Undefined, default: Any = _Unset,
default_factory: Optional[NoArgAnyCallable] = None, default_factory: Callable[[], Any] | None = _Unset,
alias: Optional[str] = None, title: str | None = _Unset,
title: Optional[str] = None, description: str | None = _Unset,
description: Optional[str] = None, pattern: str | None = _Unset,
exclude: Optional[Union[AbstractSet[Union[int, str]], Mapping[Union[int, str], Any], Any]] = None, strict: bool | None = _Unset,
include: Optional[Union[AbstractSet[Union[int, str]], Mapping[Union[int, str], Any], Any]] = None, gt: float | None = _Unset,
const: Optional[bool] = None, ge: float | None = _Unset,
gt: Optional[float] = None, lt: float | None = _Unset,
ge: Optional[float] = None, le: float | None = _Unset,
lt: Optional[float] = None, multiple_of: float | None = _Unset,
le: Optional[float] = None, allow_inf_nan: bool | None = _Unset,
multiple_of: Optional[float] = None, max_digits: int | None = _Unset,
allow_inf_nan: Optional[bool] = None, decimal_places: int | None = _Unset,
max_digits: Optional[int] = None, min_length: int | None = _Unset,
decimal_places: Optional[int] = None, max_length: int | None = _Unset,
min_items: Optional[int] = None, # custom
max_items: Optional[int] = None,
unique_items: Optional[bool] = None,
min_length: Optional[int] = None,
max_length: Optional[int] = None,
allow_mutation: bool = True,
regex: Optional[str] = None,
discriminator: Optional[str] = None,
repr: bool = True,
input: Input = Input.Any, input: Input = Input.Any,
ui_type: Optional[UIType] = None, ui_type: Optional[UIType] = None,
ui_component: Optional[UIComponent] = None, ui_component: Optional[UIComponent] = None,
@ -259,7 +254,6 @@ def InputField(
ui_order: Optional[int] = None, ui_order: Optional[int] = None,
ui_choice_labels: Optional[dict[str, str]] = None, ui_choice_labels: Optional[dict[str, str]] = None,
item_default: Optional[Any] = None, item_default: Optional[Any] = None,
**kwargs: Any,
) -> Any: ) -> Any:
""" """
Creates an input field for an invocation. Creates an input field for an invocation.
@ -289,18 +283,26 @@ def InputField(
: param int ui_order: [None] Specifies the order in which this field should be rendered in the UI. \ : param int ui_order: [None] Specifies the order in which this field should be rendered in the UI. \
: param bool item_default: [None] Specifies the default item value, if this is a collection input. \ : param bool item_default: [None] Specifies the default item value, if this is a collection input. \
Ignored for non-collection fields.. Ignored for non-collection fields.
""" """
return Field(
*args, json_schema_extra_: dict[str, Any] = dict(
input=input,
ui_type=ui_type,
ui_component=ui_component,
ui_hidden=ui_hidden,
ui_order=ui_order,
item_default=item_default,
ui_choice_labels=ui_choice_labels,
)
field_args = dict(
default=default, default=default,
default_factory=default_factory, default_factory=default_factory,
alias=alias,
title=title, title=title,
description=description, description=description,
exclude=exclude, pattern=pattern,
include=include, strict=strict,
const=const,
gt=gt, gt=gt,
ge=ge, ge=ge,
lt=lt, lt=lt,
@ -309,57 +311,92 @@ def InputField(
allow_inf_nan=allow_inf_nan, allow_inf_nan=allow_inf_nan,
max_digits=max_digits, max_digits=max_digits,
decimal_places=decimal_places, decimal_places=decimal_places,
min_items=min_items,
max_items=max_items,
unique_items=unique_items,
min_length=min_length, min_length=min_length,
max_length=max_length, max_length=max_length,
allow_mutation=allow_mutation, )
regex=regex,
discriminator=discriminator, """
repr=repr, Invocation definitions have their fields typed correctly for their `invoke()` functions.
input=input, This typing is often more specific than the actual invocation definition requires, because
ui_type=ui_type, fields may have values provided only by connections.
ui_component=ui_component,
ui_hidden=ui_hidden, For example, consider an ResizeImageInvocation with an `image: ImageField` field.
ui_order=ui_order,
item_default=item_default, `image` is required during the call to `invoke()`, but when the python class is instantiated,
ui_choice_labels=ui_choice_labels, the field may not be present. This is fine, because that image field will be provided by a
**kwargs, an ancestor node that outputs the image.
So we'd like to type that `image` field as `Optional[ImageField]`. If we do that, however, then
we need to handle a lot of extra logic in the `invoke()` function to check if the field has a
value or not. This is very tedious.
Ideally, the invocation definition would be able to specify that the field is required during
invocation, but optional during instantiation. So the field would be typed as `image: ImageField`,
but when calling the `invoke()` function, we raise an error if the field is not present.
To do this, we need to do a bit of fanagling to make the pydantic field optional, and then do
extra validation when calling `invoke()`.
There is some additional logic here to cleaning create the pydantic field via the wrapper.
"""
# Filter out field args not provided
provided_args = {k: v for (k, v) in field_args.items() if v is not PydanticUndefined}
if (default is not PydanticUndefined) and (default_factory is not PydanticUndefined):
raise ValueError("Cannot specify both default and default_factory")
# because we are manually making fields optional, we need to store the original required bool for reference later
if default is PydanticUndefined and default_factory is PydanticUndefined:
json_schema_extra_.update(dict(orig_required=True))
else:
json_schema_extra_.update(dict(orig_required=False))
# make Input.Any and Input.Connection fields optional, providing None as a default if the field doesn't already have one
if (input is Input.Any or input is Input.Connection) and default_factory is PydanticUndefined:
default_ = None if default is PydanticUndefined else default
provided_args.update(dict(default=default_))
if default is not PydanticUndefined:
# before invoking, we'll grab the original default value and set it on the field if the field wasn't provided a value
json_schema_extra_.update(dict(default=default))
json_schema_extra_.update(dict(orig_default=default))
elif default is not PydanticUndefined and default_factory is PydanticUndefined:
default_ = default
provided_args.update(dict(default=default_))
json_schema_extra_.update(dict(orig_default=default_))
elif default_factory is not PydanticUndefined:
provided_args.update(dict(default_factory=default_factory))
# TODO: cannot serialize default_factory...
# json_schema_extra_.update(dict(orig_default_factory=default_factory))
return Field(
**provided_args,
json_schema_extra=json_schema_extra_,
) )
def OutputField( def OutputField(
*args: Any, # copied from pydantic's Field
default: Any = Undefined, default: Any = _Unset,
default_factory: Optional[NoArgAnyCallable] = None, default_factory: Callable[[], Any] | None = _Unset,
alias: Optional[str] = None, title: str | None = _Unset,
title: Optional[str] = None, description: str | None = _Unset,
description: Optional[str] = None, pattern: str | None = _Unset,
exclude: Optional[Union[AbstractSet[Union[int, str]], Mapping[Union[int, str], Any], Any]] = None, strict: bool | None = _Unset,
include: Optional[Union[AbstractSet[Union[int, str]], Mapping[Union[int, str], Any], Any]] = None, gt: float | None = _Unset,
const: Optional[bool] = None, ge: float | None = _Unset,
gt: Optional[float] = None, lt: float | None = _Unset,
ge: Optional[float] = None, le: float | None = _Unset,
lt: Optional[float] = None, multiple_of: float | None = _Unset,
le: Optional[float] = None, allow_inf_nan: bool | None = _Unset,
multiple_of: Optional[float] = None, max_digits: int | None = _Unset,
allow_inf_nan: Optional[bool] = None, decimal_places: int | None = _Unset,
max_digits: Optional[int] = None, min_length: int | None = _Unset,
decimal_places: Optional[int] = None, max_length: int | None = _Unset,
min_items: Optional[int] = None, # custom
max_items: Optional[int] = None,
unique_items: Optional[bool] = None,
min_length: Optional[int] = None,
max_length: Optional[int] = None,
allow_mutation: bool = True,
regex: Optional[str] = None,
discriminator: Optional[str] = None,
repr: bool = True,
ui_type: Optional[UIType] = None, ui_type: Optional[UIType] = None,
ui_hidden: bool = False, ui_hidden: bool = False,
ui_order: Optional[int] = None, ui_order: Optional[int] = None,
**kwargs: Any,
) -> Any: ) -> Any:
""" """
Creates an output field for an invocation output. Creates an output field for an invocation output.
@ -379,15 +416,12 @@ def OutputField(
: param int ui_order: [None] Specifies the order in which this field should be rendered in the UI. \ : param int ui_order: [None] Specifies the order in which this field should be rendered in the UI. \
""" """
return Field( return Field(
*args,
default=default, default=default,
default_factory=default_factory, default_factory=default_factory,
alias=alias,
title=title, title=title,
description=description, description=description,
exclude=exclude, pattern=pattern,
include=include, strict=strict,
const=const,
gt=gt, gt=gt,
ge=ge, ge=ge,
lt=lt, lt=lt,
@ -396,19 +430,13 @@ def OutputField(
allow_inf_nan=allow_inf_nan, allow_inf_nan=allow_inf_nan,
max_digits=max_digits, max_digits=max_digits,
decimal_places=decimal_places, decimal_places=decimal_places,
min_items=min_items,
max_items=max_items,
unique_items=unique_items,
min_length=min_length, min_length=min_length,
max_length=max_length, max_length=max_length,
allow_mutation=allow_mutation, json_schema_extra=dict(
regex=regex, ui_type=ui_type,
discriminator=discriminator, ui_hidden=ui_hidden,
repr=repr, ui_order=ui_order,
ui_type=ui_type, ),
ui_hidden=ui_hidden,
ui_order=ui_order,
**kwargs,
) )
@ -422,7 +450,13 @@ class UIConfigBase(BaseModel):
title: Optional[str] = Field(default=None, description="The node's display name") title: Optional[str] = Field(default=None, description="The node's display name")
category: Optional[str] = Field(default=None, description="The node's category") category: Optional[str] = Field(default=None, description="The node's category")
version: Optional[str] = Field( version: Optional[str] = Field(
default=None, description='The node\'s version. Should be a valid semver string e.g. "1.0.0" or "3.8.13".' default=None,
description='The node\'s version. Should be a valid semver string e.g. "1.0.0" or "3.8.13".',
)
model_config = ConfigDict(
validate_assignment=True,
json_schema_serialization_defaults_required=True,
) )
@ -457,23 +491,38 @@ class BaseInvocationOutput(BaseModel):
All invocation outputs must use the `@invocation_output` decorator to provide their unique type. All invocation outputs must use the `@invocation_output` decorator to provide their unique type.
""" """
@classmethod _output_classes: ClassVar[set[BaseInvocationOutput]] = set()
def get_all_subclasses_tuple(cls):
subclasses = []
toprocess = [cls]
while len(toprocess) > 0:
next = toprocess.pop(0)
next_subclasses = next.__subclasses__()
subclasses.extend(next_subclasses)
toprocess.extend(next_subclasses)
return tuple(subclasses)
class Config: @classmethod
@staticmethod def register_output(cls, output: BaseInvocationOutput) -> None:
def schema_extra(schema: dict[str, Any], model_class: Type[BaseModel]) -> None: cls._output_classes.add(output)
if "required" not in schema or not isinstance(schema["required"], list):
schema["required"] = list() @classmethod
schema["required"].extend(["type"]) def get_outputs(cls) -> Iterable[BaseInvocationOutput]:
return cls._output_classes
@classmethod
def get_outputs_union(cls) -> UnionType:
outputs_union = Union[tuple(cls._output_classes)] # type: ignore [valid-type]
return outputs_union # type: ignore [return-value]
@classmethod
def get_output_types(cls) -> Iterable[str]:
return map(lambda i: get_type(i), BaseInvocationOutput.get_outputs())
@staticmethod
def json_schema_extra(schema: dict[str, Any], model_class: Type[BaseModel]) -> None:
# Because we use a pydantic Literal field with default value for the invocation type,
# it will be typed as optional in the OpenAPI schema. Make it required manually.
if "required" not in schema or not isinstance(schema["required"], list):
schema["required"] = list()
schema["required"].extend(["type"])
model_config = ConfigDict(
validate_assignment=True,
json_schema_serialization_defaults_required=True,
json_schema_extra=json_schema_extra,
)
class RequiredConnectionException(Exception): class RequiredConnectionException(Exception):
@ -498,104 +547,91 @@ class BaseInvocation(ABC, BaseModel):
All invocations must use the `@invocation` decorator to provide their unique type. All invocations must use the `@invocation` decorator to provide their unique type.
""" """
_invocation_classes: ClassVar[set[BaseInvocation]] = set()
@classmethod @classmethod
def get_all_subclasses(cls): def register_invocation(cls, invocation: BaseInvocation) -> None:
cls._invocation_classes.add(invocation)
@classmethod
def get_invocations_union(cls) -> UnionType:
invocations_union = Union[tuple(cls._invocation_classes)] # type: ignore [valid-type]
return invocations_union # type: ignore [return-value]
@classmethod
def get_invocations(cls) -> Iterable[BaseInvocation]:
app_config = InvokeAIAppConfig.get_config() app_config = InvokeAIAppConfig.get_config()
subclasses = [] allowed_invocations: set[BaseInvocation] = set()
toprocess = [cls] for sc in cls._invocation_classes:
while len(toprocess) > 0: invocation_type = get_type(sc)
next = toprocess.pop(0)
next_subclasses = next.__subclasses__()
subclasses.extend(next_subclasses)
toprocess.extend(next_subclasses)
allowed_invocations = []
for sc in subclasses:
is_in_allowlist = ( is_in_allowlist = (
sc.__fields__.get("type").default in app_config.allow_nodes invocation_type in app_config.allow_nodes if isinstance(app_config.allow_nodes, list) else True
if isinstance(app_config.allow_nodes, list)
else True
) )
is_in_denylist = ( is_in_denylist = (
sc.__fields__.get("type").default in app_config.deny_nodes invocation_type in app_config.deny_nodes if isinstance(app_config.deny_nodes, list) else False
if isinstance(app_config.deny_nodes, list)
else False
) )
if is_in_allowlist and not is_in_denylist: if is_in_allowlist and not is_in_denylist:
allowed_invocations.append(sc) allowed_invocations.add(sc)
return allowed_invocations return allowed_invocations
@classmethod @classmethod
def get_invocations(cls): def get_invocations_map(cls) -> dict[str, BaseInvocation]:
return tuple(BaseInvocation.get_all_subclasses())
@classmethod
def get_invocations_map(cls):
# Get the type strings out of the literals and into a dictionary # Get the type strings out of the literals and into a dictionary
return dict( return dict(
map( map(
lambda t: (get_args(get_type_hints(t)["type"])[0], t), lambda i: (get_type(i), i),
BaseInvocation.get_all_subclasses(), BaseInvocation.get_invocations(),
) )
) )
@classmethod @classmethod
def get_output_type(cls): def get_invocation_types(cls) -> Iterable[str]:
return map(lambda i: get_type(i), BaseInvocation.get_invocations())
@classmethod
def get_output_type(cls) -> BaseInvocationOutput:
return signature(cls.invoke).return_annotation return signature(cls.invoke).return_annotation
class Config: @staticmethod
validate_assignment = True def json_schema_extra(schema: dict[str, Any], model_class: Type[BaseModel]) -> None:
validate_all = True # Add the various UI-facing attributes to the schema. These are used to build the invocation templates.
uiconfig = getattr(model_class, "UIConfig", None)
@staticmethod if uiconfig and hasattr(uiconfig, "title"):
def schema_extra(schema: dict[str, Any], model_class: Type[BaseModel]) -> None: schema["title"] = uiconfig.title
uiconfig = getattr(model_class, "UIConfig", None) if uiconfig and hasattr(uiconfig, "tags"):
if uiconfig and hasattr(uiconfig, "title"): schema["tags"] = uiconfig.tags
schema["title"] = uiconfig.title if uiconfig and hasattr(uiconfig, "category"):
if uiconfig and hasattr(uiconfig, "tags"): schema["category"] = uiconfig.category
schema["tags"] = uiconfig.tags if uiconfig and hasattr(uiconfig, "version"):
if uiconfig and hasattr(uiconfig, "category"): schema["version"] = uiconfig.version
schema["category"] = uiconfig.category if "required" not in schema or not isinstance(schema["required"], list):
if uiconfig and hasattr(uiconfig, "version"): schema["required"] = list()
schema["version"] = uiconfig.version schema["required"].extend(["type", "id"])
if "required" not in schema or not isinstance(schema["required"], list):
schema["required"] = list()
schema["required"].extend(["type", "id"])
@abstractmethod @abstractmethod
def invoke(self, context: InvocationContext) -> BaseInvocationOutput: def invoke(self, context: InvocationContext) -> BaseInvocationOutput:
"""Invoke with provided context and return outputs.""" """Invoke with provided context and return outputs."""
pass pass
def __init__(self, **data):
# nodes may have required fields, that can accept input from connections
# on instantiation of the model, we need to exclude these from validation
restore = dict()
try:
field_names = list(self.__fields__.keys())
for field_name in field_names:
# if the field is required and may get its value from a connection, exclude it from validation
field = self.__fields__[field_name]
_input = field.field_info.extra.get("input", None)
if _input in [Input.Connection, Input.Any] and field.required:
if field_name not in data:
restore[field_name] = self.__fields__.pop(field_name)
# instantiate the node, which will validate the data
super().__init__(**data)
finally:
# restore the removed fields
for field_name, field in restore.items():
self.__fields__[field_name] = field
def invoke_internal(self, context: InvocationContext) -> BaseInvocationOutput: def invoke_internal(self, context: InvocationContext) -> BaseInvocationOutput:
for field_name, field in self.__fields__.items(): for field_name, field in self.model_fields.items():
_input = field.field_info.extra.get("input", None) if not field.json_schema_extra or callable(field.json_schema_extra):
if field.required and not hasattr(self, field_name): # something has gone terribly awry, we should always have this and it should be a dict
if _input == Input.Connection: continue
raise RequiredConnectionException(self.__fields__["type"].default, field_name)
elif _input == Input.Any: # Here we handle the case where the field is optional in the pydantic class, but required
raise MissingInputException(self.__fields__["type"].default, field_name) # in the `invoke()` method.
orig_default = field.json_schema_extra.get("orig_default", PydanticUndefined)
orig_required = field.json_schema_extra.get("orig_required", True)
input_ = field.json_schema_extra.get("input", None)
if orig_default is not PydanticUndefined and not hasattr(self, field_name):
setattr(self, field_name, orig_default)
if orig_required and orig_default is PydanticUndefined and getattr(self, field_name) is None:
if input_ == Input.Connection:
raise RequiredConnectionException(self.model_fields["type"].default, field_name)
elif input_ == Input.Any:
raise MissingInputException(self.model_fields["type"].default, field_name)
# skip node cache codepath if it's disabled # skip node cache codepath if it's disabled
if context.services.configuration.node_cache_size == 0: if context.services.configuration.node_cache_size == 0:
@ -618,23 +654,31 @@ class BaseInvocation(ABC, BaseModel):
return self.invoke(context) return self.invoke(context)
def get_type(self) -> str: def get_type(self) -> str:
return self.__fields__["type"].default return self.model_fields["type"].default
id: str = Field( id: str = Field(
description="The id of this instance of an invocation. Must be unique among all instances of invocations." default_factory=uuid_string,
description="The id of this instance of an invocation. Must be unique among all instances of invocations.",
) )
is_intermediate: bool = InputField( is_intermediate: Optional[bool] = Field(
default=False, description="Whether or not this is an intermediate invocation.", ui_type=UIType.IsIntermediate default=False,
description="Whether or not this is an intermediate invocation.",
json_schema_extra=dict(ui_type=UIType.IsIntermediate),
) )
workflow: Optional[str] = InputField( workflow: Optional[str] = Field(
default=None, default=None,
description="The workflow to save with the image", description="The workflow to save with the image",
ui_type=UIType.WorkflowField, json_schema_extra=dict(ui_type=UIType.WorkflowField),
)
use_cache: Optional[bool] = Field(
default=True,
description="Whether or not to use the cache",
) )
use_cache: bool = InputField(default=True, description="Whether or not to use the cache")
@validator("workflow", pre=True) @field_validator("workflow", mode="before")
@classmethod
def validate_workflow_is_json(cls, v): def validate_workflow_is_json(cls, v):
"""We don't have a workflow schema in the backend, so we just check that it's valid JSON"""
if v is None: if v is None:
return None return None
try: try:
@ -645,8 +689,14 @@ class BaseInvocation(ABC, BaseModel):
UIConfig: ClassVar[Type[UIConfigBase]] UIConfig: ClassVar[Type[UIConfigBase]]
model_config = ConfigDict(
validate_assignment=True,
json_schema_extra=json_schema_extra,
json_schema_serialization_defaults_required=True,
)
GenericBaseInvocation = TypeVar("GenericBaseInvocation", bound=BaseInvocation)
TBaseInvocation = TypeVar("TBaseInvocation", bound=BaseInvocation)
def invocation( def invocation(
@ -656,7 +706,7 @@ def invocation(
category: Optional[str] = None, category: Optional[str] = None,
version: Optional[str] = None, version: Optional[str] = None,
use_cache: Optional[bool] = True, use_cache: Optional[bool] = True,
) -> Callable[[Type[GenericBaseInvocation]], Type[GenericBaseInvocation]]: ) -> Callable[[Type[TBaseInvocation]], Type[TBaseInvocation]]:
""" """
Adds metadata to an invocation. Adds metadata to an invocation.
@ -668,12 +718,15 @@ def invocation(
:param Optional[bool] use_cache: Whether or not to use the invocation cache. Defaults to True. The user may override this in the workflow editor. :param Optional[bool] use_cache: Whether or not to use the invocation cache. Defaults to True. The user may override this in the workflow editor.
""" """
def wrapper(cls: Type[GenericBaseInvocation]) -> Type[GenericBaseInvocation]: def wrapper(cls: Type[TBaseInvocation]) -> Type[TBaseInvocation]:
# Validate invocation types on creation of invocation classes # Validate invocation types on creation of invocation classes
# TODO: ensure unique? # TODO: ensure unique?
if re.compile(r"^\S+$").match(invocation_type) is None: if re.compile(r"^\S+$").match(invocation_type) is None:
raise ValueError(f'"invocation_type" must consist of non-whitespace characters, got "{invocation_type}"') raise ValueError(f'"invocation_type" must consist of non-whitespace characters, got "{invocation_type}"')
if invocation_type in BaseInvocation.get_invocation_types():
raise ValueError(f'Invocation type "{invocation_type}" already exists')
# Add OpenAPI schema extras # Add OpenAPI schema extras
uiconf_name = cls.__qualname__ + ".UIConfig" uiconf_name = cls.__qualname__ + ".UIConfig"
if not hasattr(cls, "UIConfig") or cls.UIConfig.__qualname__ != uiconf_name: if not hasattr(cls, "UIConfig") or cls.UIConfig.__qualname__ != uiconf_name:
@ -691,59 +744,83 @@ def invocation(
raise InvalidVersionError(f'Invalid version string for node "{invocation_type}": "{version}"') from e raise InvalidVersionError(f'Invalid version string for node "{invocation_type}": "{version}"') from e
cls.UIConfig.version = version cls.UIConfig.version = version
if use_cache is not None: if use_cache is not None:
cls.__fields__["use_cache"].default = use_cache cls.model_fields["use_cache"].default = use_cache
# Add the invocation type to the model.
# You'd be tempted to just add the type field and rebuild the model, like this:
# cls.model_fields.update(type=FieldInfo.from_annotated_attribute(Literal[invocation_type], invocation_type))
# cls.model_rebuild() or cls.model_rebuild(force=True)
# Unfortunately, because the `GraphInvocation` uses a forward ref in its `graph` field's annotation, this does
# not work. Instead, we have to create a new class with the type field and patch the original class with it.
# Add the invocation type to the pydantic model of the invocation
invocation_type_annotation = Literal[invocation_type] # type: ignore invocation_type_annotation = Literal[invocation_type] # type: ignore
invocation_type_field = ModelField.infer( invocation_type_field = Field(
name="type", title="type",
value=invocation_type, default=invocation_type,
annotation=invocation_type_annotation,
class_validators=None,
config=cls.__config__,
) )
cls.__fields__.update({"type": invocation_type_field})
# to support 3.9, 3.10 and 3.11, as described in https://docs.python.org/3/howto/annotations.html docstring = cls.__doc__
if annotations := cls.__dict__.get("__annotations__", None): cls = create_model(
annotations.update({"type": invocation_type_annotation}) cls.__qualname__,
__base__=cls,
__module__=cls.__module__,
type=(invocation_type_annotation, invocation_type_field),
)
cls.__doc__ = docstring
# TODO: how to type this correctly? it's typed as ModelMetaclass, a private class in pydantic
BaseInvocation.register_invocation(cls) # type: ignore
return cls return cls
return wrapper return wrapper
GenericBaseInvocationOutput = TypeVar("GenericBaseInvocationOutput", bound=BaseInvocationOutput) TBaseInvocationOutput = TypeVar("TBaseInvocationOutput", bound=BaseInvocationOutput)
def invocation_output( def invocation_output(
output_type: str, output_type: str,
) -> Callable[[Type[GenericBaseInvocationOutput]], Type[GenericBaseInvocationOutput]]: ) -> Callable[[Type[TBaseInvocationOutput]], Type[TBaseInvocationOutput]]:
""" """
Adds metadata to an invocation output. Adds metadata to an invocation output.
:param str output_type: The type of the invocation output. Must be unique among all invocation outputs. :param str output_type: The type of the invocation output. Must be unique among all invocation outputs.
""" """
def wrapper(cls: Type[GenericBaseInvocationOutput]) -> Type[GenericBaseInvocationOutput]: def wrapper(cls: Type[TBaseInvocationOutput]) -> Type[TBaseInvocationOutput]:
# Validate output types on creation of invocation output classes # Validate output types on creation of invocation output classes
# TODO: ensure unique? # TODO: ensure unique?
if re.compile(r"^\S+$").match(output_type) is None: if re.compile(r"^\S+$").match(output_type) is None:
raise ValueError(f'"output_type" must consist of non-whitespace characters, got "{output_type}"') raise ValueError(f'"output_type" must consist of non-whitespace characters, got "{output_type}"')
# Add the output type to the pydantic model of the invocation output if output_type in BaseInvocationOutput.get_output_types():
output_type_annotation = Literal[output_type] # type: ignore raise ValueError(f'Invocation type "{output_type}" already exists')
output_type_field = ModelField.infer(
name="type",
value=output_type,
annotation=output_type_annotation,
class_validators=None,
config=cls.__config__,
)
cls.__fields__.update({"type": output_type_field})
# to support 3.9, 3.10 and 3.11, as described in https://docs.python.org/3/howto/annotations.html # Add the output type to the model.
if annotations := cls.__dict__.get("__annotations__", None):
annotations.update({"type": output_type_annotation}) output_type_annotation = Literal[output_type] # type: ignore
output_type_field = Field(
title="type",
default=output_type,
)
docstring = cls.__doc__
cls = create_model(
cls.__qualname__,
__base__=cls,
__module__=cls.__module__,
type=(output_type_annotation, output_type_field),
)
cls.__doc__ = docstring
BaseInvocationOutput.register_output(cls) # type: ignore # TODO: how to type this correctly?
return cls return cls
return wrapper return wrapper
GenericBaseModel = TypeVar("GenericBaseModel", bound=BaseModel)

View File

@ -2,7 +2,7 @@
import numpy as np import numpy as np
from pydantic import validator from pydantic import ValidationInfo, field_validator
from invokeai.app.invocations.primitives import IntegerCollectionOutput from invokeai.app.invocations.primitives import IntegerCollectionOutput
from invokeai.app.util.misc import SEED_MAX, get_random_seed from invokeai.app.util.misc import SEED_MAX, get_random_seed
@ -20,9 +20,9 @@ class RangeInvocation(BaseInvocation):
stop: int = InputField(default=10, description="The stop of the range") stop: int = InputField(default=10, description="The stop of the range")
step: int = InputField(default=1, description="The step of the range") step: int = InputField(default=1, description="The step of the range")
@validator("stop") @field_validator("stop")
def stop_gt_start(cls, v, values): def stop_gt_start(cls, v: int, info: ValidationInfo):
if "start" in values and v <= values["start"]: if "start" in info.data and v <= info.data["start"]:
raise ValueError("stop must be greater than start") raise ValueError("stop must be greater than start")
return v return v

View File

@ -1,6 +1,6 @@
import re import re
from dataclasses import dataclass from dataclasses import dataclass
from typing import List, Union from typing import List, Optional, Union
import torch import torch
from compel import Compel, ReturnedEmbeddingsType from compel import Compel, ReturnedEmbeddingsType
@ -43,7 +43,13 @@ class ConditioningFieldData:
# PerpNeg = "perp_neg" # PerpNeg = "perp_neg"
@invocation("compel", title="Prompt", tags=["prompt", "compel"], category="conditioning", version="1.0.0") @invocation(
"compel",
title="Prompt",
tags=["prompt", "compel"],
category="conditioning",
version="1.0.0",
)
class CompelInvocation(BaseInvocation): class CompelInvocation(BaseInvocation):
"""Parse prompt using compel package to conditioning.""" """Parse prompt using compel package to conditioning."""
@ -61,17 +67,19 @@ class CompelInvocation(BaseInvocation):
@torch.no_grad() @torch.no_grad()
def invoke(self, context: InvocationContext) -> ConditioningOutput: def invoke(self, context: InvocationContext) -> ConditioningOutput:
tokenizer_info = context.services.model_manager.get_model( tokenizer_info = context.services.model_manager.get_model(
**self.clip.tokenizer.dict(), **self.clip.tokenizer.model_dump(),
context=context, context=context,
) )
text_encoder_info = context.services.model_manager.get_model( text_encoder_info = context.services.model_manager.get_model(
**self.clip.text_encoder.dict(), **self.clip.text_encoder.model_dump(),
context=context, context=context,
) )
def _lora_loader(): def _lora_loader():
for lora in self.clip.loras: for lora in self.clip.loras:
lora_info = context.services.model_manager.get_model(**lora.dict(exclude={"weight"}), context=context) lora_info = context.services.model_manager.get_model(
**lora.model_dump(exclude={"weight"}), context=context
)
yield (lora_info.context.model, lora.weight) yield (lora_info.context.model, lora.weight)
del lora_info del lora_info
return return
@ -160,11 +168,11 @@ class SDXLPromptInvocationBase:
zero_on_empty: bool, zero_on_empty: bool,
): ):
tokenizer_info = context.services.model_manager.get_model( tokenizer_info = context.services.model_manager.get_model(
**clip_field.tokenizer.dict(), **clip_field.tokenizer.model_dump(),
context=context, context=context,
) )
text_encoder_info = context.services.model_manager.get_model( text_encoder_info = context.services.model_manager.get_model(
**clip_field.text_encoder.dict(), **clip_field.text_encoder.model_dump(),
context=context, context=context,
) )
@ -172,7 +180,11 @@ class SDXLPromptInvocationBase:
if prompt == "" and zero_on_empty: if prompt == "" and zero_on_empty:
cpu_text_encoder = text_encoder_info.context.model cpu_text_encoder = text_encoder_info.context.model
c = torch.zeros( c = torch.zeros(
(1, cpu_text_encoder.config.max_position_embeddings, cpu_text_encoder.config.hidden_size), (
1,
cpu_text_encoder.config.max_position_embeddings,
cpu_text_encoder.config.hidden_size,
),
dtype=text_encoder_info.context.cache.precision, dtype=text_encoder_info.context.cache.precision,
) )
if get_pooled: if get_pooled:
@ -186,7 +198,9 @@ class SDXLPromptInvocationBase:
def _lora_loader(): def _lora_loader():
for lora in clip_field.loras: for lora in clip_field.loras:
lora_info = context.services.model_manager.get_model(**lora.dict(exclude={"weight"}), context=context) lora_info = context.services.model_manager.get_model(
**lora.model_dump(exclude={"weight"}), context=context
)
yield (lora_info.context.model, lora.weight) yield (lora_info.context.model, lora.weight)
del lora_info del lora_info
return return
@ -273,8 +287,16 @@ class SDXLPromptInvocationBase:
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase): class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
"""Parse prompt using compel package to conditioning.""" """Parse prompt using compel package to conditioning."""
prompt: str = InputField(default="", description=FieldDescriptions.compel_prompt, ui_component=UIComponent.Textarea) prompt: str = InputField(
style: str = InputField(default="", description=FieldDescriptions.compel_prompt, ui_component=UIComponent.Textarea) default="",
description=FieldDescriptions.compel_prompt,
ui_component=UIComponent.Textarea,
)
style: str = InputField(
default="",
description=FieldDescriptions.compel_prompt,
ui_component=UIComponent.Textarea,
)
original_width: int = InputField(default=1024, description="") original_width: int = InputField(default=1024, description="")
original_height: int = InputField(default=1024, description="") original_height: int = InputField(default=1024, description="")
crop_top: int = InputField(default=0, description="") crop_top: int = InputField(default=0, description="")
@ -310,7 +332,9 @@ class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
[ [
c1, c1,
torch.zeros( torch.zeros(
(c1.shape[0], c2.shape[1] - c1.shape[1], c1.shape[2]), device=c1.device, dtype=c1.dtype (c1.shape[0], c2.shape[1] - c1.shape[1], c1.shape[2]),
device=c1.device,
dtype=c1.dtype,
), ),
], ],
dim=1, dim=1,
@ -321,7 +345,9 @@ class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
[ [
c2, c2,
torch.zeros( torch.zeros(
(c2.shape[0], c1.shape[1] - c2.shape[1], c2.shape[2]), device=c2.device, dtype=c2.dtype (c2.shape[0], c1.shape[1] - c2.shape[1], c2.shape[2]),
device=c2.device,
dtype=c2.dtype,
), ),
], ],
dim=1, dim=1,
@ -359,7 +385,9 @@ class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase
"""Parse prompt using compel package to conditioning.""" """Parse prompt using compel package to conditioning."""
style: str = InputField( style: str = InputField(
default="", description=FieldDescriptions.compel_prompt, ui_component=UIComponent.Textarea default="",
description=FieldDescriptions.compel_prompt,
ui_component=UIComponent.Textarea,
) # TODO: ? ) # TODO: ?
original_width: int = InputField(default=1024, description="") original_width: int = InputField(default=1024, description="")
original_height: int = InputField(default=1024, description="") original_height: int = InputField(default=1024, description="")
@ -403,10 +431,16 @@ class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase
class ClipSkipInvocationOutput(BaseInvocationOutput): class ClipSkipInvocationOutput(BaseInvocationOutput):
"""Clip skip node output""" """Clip skip node output"""
clip: ClipField = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP") clip: Optional[ClipField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP")
@invocation("clip_skip", title="CLIP Skip", tags=["clipskip", "clip", "skip"], category="conditioning", version="1.0.0") @invocation(
"clip_skip",
title="CLIP Skip",
tags=["clipskip", "clip", "skip"],
category="conditioning",
version="1.0.0",
)
class ClipSkipInvocation(BaseInvocation): class ClipSkipInvocation(BaseInvocation):
"""Skip layers in clip text_encoder model.""" """Skip layers in clip text_encoder model."""
@ -421,7 +455,9 @@ class ClipSkipInvocation(BaseInvocation):
def get_max_token_count( def get_max_token_count(
tokenizer, prompt: Union[FlattenedPrompt, Blend, Conjunction], truncate_if_too_long=False tokenizer,
prompt: Union[FlattenedPrompt, Blend, Conjunction],
truncate_if_too_long=False,
) -> int: ) -> int:
if type(prompt) is Blend: if type(prompt) is Blend:
blend: Blend = prompt blend: Blend = prompt

View File

@ -2,7 +2,7 @@
# initial implementation by Gregg Helt, 2023 # initial implementation by Gregg Helt, 2023
# heavily leverages controlnet_aux package: https://github.com/patrickvonplaten/controlnet_aux # heavily leverages controlnet_aux package: https://github.com/patrickvonplaten/controlnet_aux
from builtins import bool, float from builtins import bool, float
from typing import Dict, List, Literal, Optional, Union from typing import Dict, List, Literal, Union
import cv2 import cv2
import numpy as np import numpy as np
@ -24,7 +24,7 @@ from controlnet_aux import (
) )
from controlnet_aux.util import HWC3, ade_palette from controlnet_aux.util import HWC3, ade_palette
from PIL import Image from PIL import Image
from pydantic import BaseModel, Field, validator from pydantic import BaseModel, ConfigDict, Field, field_validator
from invokeai.app.invocations.primitives import ImageField, ImageOutput from invokeai.app.invocations.primitives import ImageField, ImageOutput
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
@ -57,6 +57,8 @@ class ControlNetModelField(BaseModel):
model_name: str = Field(description="Name of the ControlNet model") model_name: str = Field(description="Name of the ControlNet model")
base_model: BaseModelType = Field(description="Base model") base_model: BaseModelType = Field(description="Base model")
model_config = ConfigDict(protected_namespaces=())
class ControlField(BaseModel): class ControlField(BaseModel):
image: ImageField = Field(description="The control image") image: ImageField = Field(description="The control image")
@ -71,7 +73,7 @@ class ControlField(BaseModel):
control_mode: CONTROLNET_MODE_VALUES = Field(default="balanced", description="The control mode to use") control_mode: CONTROLNET_MODE_VALUES = Field(default="balanced", description="The control mode to use")
resize_mode: CONTROLNET_RESIZE_VALUES = Field(default="just_resize", description="The resize mode to use") resize_mode: CONTROLNET_RESIZE_VALUES = Field(default="just_resize", description="The resize mode to use")
@validator("control_weight") @field_validator("control_weight")
def validate_control_weight(cls, v): def validate_control_weight(cls, v):
"""Validate that all control weights in the valid range""" """Validate that all control weights in the valid range"""
if isinstance(v, list): if isinstance(v, list):
@ -124,9 +126,7 @@ class ControlNetInvocation(BaseInvocation):
) )
@invocation( # This invocation exists for other invocations to subclass it - do not register with @invocation!
"image_processor", title="Base Image Processor", tags=["controlnet"], category="controlnet", version="1.0.0"
)
class ImageProcessorInvocation(BaseInvocation): class ImageProcessorInvocation(BaseInvocation):
"""Base class for invocations that preprocess images for ControlNet""" """Base class for invocations that preprocess images for ControlNet"""
@ -393,9 +393,9 @@ class ContentShuffleImageProcessorInvocation(ImageProcessorInvocation):
detect_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.detect_res) detect_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res) image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
h: Optional[int] = InputField(default=512, ge=0, description="Content shuffle `h` parameter") h: int = InputField(default=512, ge=0, description="Content shuffle `h` parameter")
w: Optional[int] = InputField(default=512, ge=0, description="Content shuffle `w` parameter") w: int = InputField(default=512, ge=0, description="Content shuffle `w` parameter")
f: Optional[int] = InputField(default=256, ge=0, description="Content shuffle `f` parameter") f: int = InputField(default=256, ge=0, description="Content shuffle `f` parameter")
def run_processor(self, image): def run_processor(self, image):
content_shuffle_processor = ContentShuffleDetector() content_shuffle_processor = ContentShuffleDetector()
@ -575,14 +575,14 @@ class ColorMapImageProcessorInvocation(ImageProcessorInvocation):
def run_processor(self, image: Image.Image): def run_processor(self, image: Image.Image):
image = image.convert("RGB") image = image.convert("RGB")
image = np.array(image, dtype=np.uint8) np_image = np.array(image, dtype=np.uint8)
height, width = image.shape[:2] height, width = np_image.shape[:2]
width_tile_size = min(self.color_map_tile_size, width) width_tile_size = min(self.color_map_tile_size, width)
height_tile_size = min(self.color_map_tile_size, height) height_tile_size = min(self.color_map_tile_size, height)
color_map = cv2.resize( color_map = cv2.resize(
image, np_image,
(width // width_tile_size, height // height_tile_size), (width // width_tile_size, height // height_tile_size),
interpolation=cv2.INTER_CUBIC, interpolation=cv2.INTER_CUBIC,
) )

View File

@ -8,7 +8,7 @@ import numpy as np
from mediapipe.python.solutions.face_mesh import FaceMesh # type: ignore[import] from mediapipe.python.solutions.face_mesh import FaceMesh # type: ignore[import]
from PIL import Image, ImageDraw, ImageFilter, ImageFont, ImageOps from PIL import Image, ImageDraw, ImageFilter, ImageFont, ImageOps
from PIL.Image import Image as ImageType from PIL.Image import Image as ImageType
from pydantic import validator from pydantic import field_validator
import invokeai.assets.fonts as font_assets import invokeai.assets.fonts as font_assets
from invokeai.app.invocations.baseinvocation import ( from invokeai.app.invocations.baseinvocation import (
@ -550,7 +550,7 @@ class FaceMaskInvocation(BaseInvocation):
) )
invert_mask: bool = InputField(default=False, description="Toggle to invert the mask") invert_mask: bool = InputField(default=False, description="Toggle to invert the mask")
@validator("face_ids") @field_validator("face_ids")
def validate_comma_separated_ints(cls, v) -> str: def validate_comma_separated_ints(cls, v) -> str:
comma_separated_ints_regex = re.compile(r"^\d*(,\d+)*$") comma_separated_ints_regex = re.compile(r"^\d*(,\d+)*$")
if comma_separated_ints_regex.match(v) is None: if comma_separated_ints_regex.match(v) is None:

View File

@ -36,7 +36,13 @@ class ShowImageInvocation(BaseInvocation):
) )
@invocation("blank_image", title="Blank Image", tags=["image"], category="image", version="1.0.0") @invocation(
"blank_image",
title="Blank Image",
tags=["image"],
category="image",
version="1.0.0",
)
class BlankImageInvocation(BaseInvocation): class BlankImageInvocation(BaseInvocation):
"""Creates a blank image and forwards it to the pipeline""" """Creates a blank image and forwards it to the pipeline"""
@ -65,7 +71,13 @@ class BlankImageInvocation(BaseInvocation):
) )
@invocation("img_crop", title="Crop Image", tags=["image", "crop"], category="image", version="1.0.0") @invocation(
"img_crop",
title="Crop Image",
tags=["image", "crop"],
category="image",
version="1.0.0",
)
class ImageCropInvocation(BaseInvocation): class ImageCropInvocation(BaseInvocation):
"""Crops an image to a specified box. The box can be outside of the image.""" """Crops an image to a specified box. The box can be outside of the image."""
@ -98,7 +110,13 @@ class ImageCropInvocation(BaseInvocation):
) )
@invocation("img_paste", title="Paste Image", tags=["image", "paste"], category="image", version="1.0.1") @invocation(
"img_paste",
title="Paste Image",
tags=["image", "paste"],
category="image",
version="1.0.1",
)
class ImagePasteInvocation(BaseInvocation): class ImagePasteInvocation(BaseInvocation):
"""Pastes an image into another image.""" """Pastes an image into another image."""
@ -151,7 +169,13 @@ class ImagePasteInvocation(BaseInvocation):
) )
@invocation("tomask", title="Mask from Alpha", tags=["image", "mask"], category="image", version="1.0.0") @invocation(
"tomask",
title="Mask from Alpha",
tags=["image", "mask"],
category="image",
version="1.0.0",
)
class MaskFromAlphaInvocation(BaseInvocation): class MaskFromAlphaInvocation(BaseInvocation):
"""Extracts the alpha channel of an image as a mask.""" """Extracts the alpha channel of an image as a mask."""
@ -182,7 +206,13 @@ class MaskFromAlphaInvocation(BaseInvocation):
) )
@invocation("img_mul", title="Multiply Images", tags=["image", "multiply"], category="image", version="1.0.0") @invocation(
"img_mul",
title="Multiply Images",
tags=["image", "multiply"],
category="image",
version="1.0.0",
)
class ImageMultiplyInvocation(BaseInvocation): class ImageMultiplyInvocation(BaseInvocation):
"""Multiplies two images together using `PIL.ImageChops.multiply()`.""" """Multiplies two images together using `PIL.ImageChops.multiply()`."""
@ -215,7 +245,13 @@ class ImageMultiplyInvocation(BaseInvocation):
IMAGE_CHANNELS = Literal["A", "R", "G", "B"] IMAGE_CHANNELS = Literal["A", "R", "G", "B"]
@invocation("img_chan", title="Extract Image Channel", tags=["image", "channel"], category="image", version="1.0.0") @invocation(
"img_chan",
title="Extract Image Channel",
tags=["image", "channel"],
category="image",
version="1.0.0",
)
class ImageChannelInvocation(BaseInvocation): class ImageChannelInvocation(BaseInvocation):
"""Gets a channel from an image.""" """Gets a channel from an image."""
@ -247,7 +283,13 @@ class ImageChannelInvocation(BaseInvocation):
IMAGE_MODES = Literal["L", "RGB", "RGBA", "CMYK", "YCbCr", "LAB", "HSV", "I", "F"] IMAGE_MODES = Literal["L", "RGB", "RGBA", "CMYK", "YCbCr", "LAB", "HSV", "I", "F"]
@invocation("img_conv", title="Convert Image Mode", tags=["image", "convert"], category="image", version="1.0.0") @invocation(
"img_conv",
title="Convert Image Mode",
tags=["image", "convert"],
category="image",
version="1.0.0",
)
class ImageConvertInvocation(BaseInvocation): class ImageConvertInvocation(BaseInvocation):
"""Converts an image to a different mode.""" """Converts an image to a different mode."""
@ -276,7 +318,13 @@ class ImageConvertInvocation(BaseInvocation):
) )
@invocation("img_blur", title="Blur Image", tags=["image", "blur"], category="image", version="1.0.0") @invocation(
"img_blur",
title="Blur Image",
tags=["image", "blur"],
category="image",
version="1.0.0",
)
class ImageBlurInvocation(BaseInvocation): class ImageBlurInvocation(BaseInvocation):
"""Blurs an image""" """Blurs an image"""
@ -330,7 +378,13 @@ PIL_RESAMPLING_MAP = {
} }
@invocation("img_resize", title="Resize Image", tags=["image", "resize"], category="image", version="1.0.0") @invocation(
"img_resize",
title="Resize Image",
tags=["image", "resize"],
category="image",
version="1.0.0",
)
class ImageResizeInvocation(BaseInvocation): class ImageResizeInvocation(BaseInvocation):
"""Resizes an image to specific dimensions""" """Resizes an image to specific dimensions"""
@ -359,7 +413,7 @@ class ImageResizeInvocation(BaseInvocation):
node_id=self.id, node_id=self.id,
session_id=context.graph_execution_state_id, session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate, is_intermediate=self.is_intermediate,
metadata=self.metadata.dict() if self.metadata else None, metadata=self.metadata.model_dump() if self.metadata else None,
workflow=self.workflow, workflow=self.workflow,
) )
@ -370,7 +424,13 @@ class ImageResizeInvocation(BaseInvocation):
) )
@invocation("img_scale", title="Scale Image", tags=["image", "scale"], category="image", version="1.0.0") @invocation(
"img_scale",
title="Scale Image",
tags=["image", "scale"],
category="image",
version="1.0.0",
)
class ImageScaleInvocation(BaseInvocation): class ImageScaleInvocation(BaseInvocation):
"""Scales an image by a factor""" """Scales an image by a factor"""
@ -411,7 +471,13 @@ class ImageScaleInvocation(BaseInvocation):
) )
@invocation("img_lerp", title="Lerp Image", tags=["image", "lerp"], category="image", version="1.0.0") @invocation(
"img_lerp",
title="Lerp Image",
tags=["image", "lerp"],
category="image",
version="1.0.0",
)
class ImageLerpInvocation(BaseInvocation): class ImageLerpInvocation(BaseInvocation):
"""Linear interpolation of all pixels of an image""" """Linear interpolation of all pixels of an image"""
@ -444,7 +510,13 @@ class ImageLerpInvocation(BaseInvocation):
) )
@invocation("img_ilerp", title="Inverse Lerp Image", tags=["image", "ilerp"], category="image", version="1.0.0") @invocation(
"img_ilerp",
title="Inverse Lerp Image",
tags=["image", "ilerp"],
category="image",
version="1.0.0",
)
class ImageInverseLerpInvocation(BaseInvocation): class ImageInverseLerpInvocation(BaseInvocation):
"""Inverse linear interpolation of all pixels of an image""" """Inverse linear interpolation of all pixels of an image"""
@ -456,7 +528,7 @@ class ImageInverseLerpInvocation(BaseInvocation):
image = context.services.images.get_pil_image(self.image.image_name) image = context.services.images.get_pil_image(self.image.image_name)
image_arr = numpy.asarray(image, dtype=numpy.float32) image_arr = numpy.asarray(image, dtype=numpy.float32)
image_arr = numpy.minimum(numpy.maximum(image_arr - self.min, 0) / float(self.max - self.min), 1) * 255 image_arr = numpy.minimum(numpy.maximum(image_arr - self.min, 0) / float(self.max - self.min), 1) * 255 # type: ignore [assignment]
ilerp_image = Image.fromarray(numpy.uint8(image_arr)) ilerp_image = Image.fromarray(numpy.uint8(image_arr))
@ -477,7 +549,13 @@ class ImageInverseLerpInvocation(BaseInvocation):
) )
@invocation("img_nsfw", title="Blur NSFW Image", tags=["image", "nsfw"], category="image", version="1.0.0") @invocation(
"img_nsfw",
title="Blur NSFW Image",
tags=["image", "nsfw"],
category="image",
version="1.0.0",
)
class ImageNSFWBlurInvocation(BaseInvocation): class ImageNSFWBlurInvocation(BaseInvocation):
"""Add blur to NSFW-flagged images""" """Add blur to NSFW-flagged images"""
@ -505,7 +583,7 @@ class ImageNSFWBlurInvocation(BaseInvocation):
node_id=self.id, node_id=self.id,
session_id=context.graph_execution_state_id, session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate, is_intermediate=self.is_intermediate,
metadata=self.metadata.dict() if self.metadata else None, metadata=self.metadata.model_dump() if self.metadata else None,
workflow=self.workflow, workflow=self.workflow,
) )
@ -515,7 +593,7 @@ class ImageNSFWBlurInvocation(BaseInvocation):
height=image_dto.height, height=image_dto.height,
) )
def _get_caution_img(self) -> Image: def _get_caution_img(self) -> Image.Image:
import invokeai.app.assets.images as image_assets import invokeai.app.assets.images as image_assets
caution = Image.open(Path(image_assets.__path__[0]) / "caution.png") caution = Image.open(Path(image_assets.__path__[0]) / "caution.png")
@ -523,7 +601,11 @@ class ImageNSFWBlurInvocation(BaseInvocation):
@invocation( @invocation(
"img_watermark", title="Add Invisible Watermark", tags=["image", "watermark"], category="image", version="1.0.0" "img_watermark",
title="Add Invisible Watermark",
tags=["image", "watermark"],
category="image",
version="1.0.0",
) )
class ImageWatermarkInvocation(BaseInvocation): class ImageWatermarkInvocation(BaseInvocation):
"""Add an invisible watermark to an image""" """Add an invisible watermark to an image"""
@ -544,7 +626,7 @@ class ImageWatermarkInvocation(BaseInvocation):
node_id=self.id, node_id=self.id,
session_id=context.graph_execution_state_id, session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate, is_intermediate=self.is_intermediate,
metadata=self.metadata.dict() if self.metadata else None, metadata=self.metadata.model_dump() if self.metadata else None,
workflow=self.workflow, workflow=self.workflow,
) )
@ -555,7 +637,13 @@ class ImageWatermarkInvocation(BaseInvocation):
) )
@invocation("mask_edge", title="Mask Edge", tags=["image", "mask", "inpaint"], category="image", version="1.0.0") @invocation(
"mask_edge",
title="Mask Edge",
tags=["image", "mask", "inpaint"],
category="image",
version="1.0.0",
)
class MaskEdgeInvocation(BaseInvocation): class MaskEdgeInvocation(BaseInvocation):
"""Applies an edge mask to an image""" """Applies an edge mask to an image"""
@ -601,7 +689,11 @@ class MaskEdgeInvocation(BaseInvocation):
@invocation( @invocation(
"mask_combine", title="Combine Masks", tags=["image", "mask", "multiply"], category="image", version="1.0.0" "mask_combine",
title="Combine Masks",
tags=["image", "mask", "multiply"],
category="image",
version="1.0.0",
) )
class MaskCombineInvocation(BaseInvocation): class MaskCombineInvocation(BaseInvocation):
"""Combine two masks together by multiplying them using `PIL.ImageChops.multiply()`.""" """Combine two masks together by multiplying them using `PIL.ImageChops.multiply()`."""
@ -632,7 +724,13 @@ class MaskCombineInvocation(BaseInvocation):
) )
@invocation("color_correct", title="Color Correct", tags=["image", "color"], category="image", version="1.0.0") @invocation(
"color_correct",
title="Color Correct",
tags=["image", "color"],
category="image",
version="1.0.0",
)
class ColorCorrectInvocation(BaseInvocation): class ColorCorrectInvocation(BaseInvocation):
""" """
Shifts the colors of a target image to match the reference image, optionally Shifts the colors of a target image to match the reference image, optionally
@ -742,7 +840,13 @@ class ColorCorrectInvocation(BaseInvocation):
) )
@invocation("img_hue_adjust", title="Adjust Image Hue", tags=["image", "hue"], category="image", version="1.0.0") @invocation(
"img_hue_adjust",
title="Adjust Image Hue",
tags=["image", "hue"],
category="image",
version="1.0.0",
)
class ImageHueAdjustmentInvocation(BaseInvocation): class ImageHueAdjustmentInvocation(BaseInvocation):
"""Adjusts the Hue of an image.""" """Adjusts the Hue of an image."""
@ -980,7 +1084,7 @@ class SaveImageInvocation(BaseInvocation):
image: ImageField = InputField(description=FieldDescriptions.image) image: ImageField = InputField(description=FieldDescriptions.image)
board: Optional[BoardField] = InputField(default=None, description=FieldDescriptions.board, input=Input.Direct) board: Optional[BoardField] = InputField(default=None, description=FieldDescriptions.board, input=Input.Direct)
metadata: CoreMetadata = InputField( metadata: Optional[CoreMetadata] = InputField(
default=None, default=None,
description=FieldDescriptions.core_metadata, description=FieldDescriptions.core_metadata,
ui_hidden=True, ui_hidden=True,
@ -997,7 +1101,7 @@ class SaveImageInvocation(BaseInvocation):
node_id=self.id, node_id=self.id,
session_id=context.graph_execution_state_id, session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate, is_intermediate=self.is_intermediate,
metadata=self.metadata.dict() if self.metadata else None, metadata=self.metadata.model_dump() if self.metadata else None,
workflow=self.workflow, workflow=self.workflow,
) )

View File

@ -2,7 +2,7 @@ import os
from builtins import float from builtins import float
from typing import List, Union from typing import List, Union
from pydantic import BaseModel, Field from pydantic import BaseModel, ConfigDict, Field
from invokeai.app.invocations.baseinvocation import ( from invokeai.app.invocations.baseinvocation import (
BaseInvocation, BaseInvocation,
@ -25,11 +25,15 @@ class IPAdapterModelField(BaseModel):
model_name: str = Field(description="Name of the IP-Adapter model") model_name: str = Field(description="Name of the IP-Adapter model")
base_model: BaseModelType = Field(description="Base model") base_model: BaseModelType = Field(description="Base model")
model_config = ConfigDict(protected_namespaces=())
class CLIPVisionModelField(BaseModel): class CLIPVisionModelField(BaseModel):
model_name: str = Field(description="Name of the CLIP Vision image encoder model") model_name: str = Field(description="Name of the CLIP Vision image encoder model")
base_model: BaseModelType = Field(description="Base model (usually 'Any')") base_model: BaseModelType = Field(description="Base model (usually 'Any')")
model_config = ConfigDict(protected_namespaces=())
class IPAdapterField(BaseModel): class IPAdapterField(BaseModel):
image: ImageField = Field(description="The IP-Adapter image prompt.") image: ImageField = Field(description="The IP-Adapter image prompt.")

View File

@ -19,7 +19,7 @@ from diffusers.models.attention_processor import (
) )
from diffusers.schedulers import DPMSolverSDEScheduler from diffusers.schedulers import DPMSolverSDEScheduler
from diffusers.schedulers import SchedulerMixin as Scheduler from diffusers.schedulers import SchedulerMixin as Scheduler
from pydantic import validator from pydantic import field_validator
from torchvision.transforms.functional import resize as tv_resize from torchvision.transforms.functional import resize as tv_resize
from invokeai.app.invocations.ip_adapter import IPAdapterField from invokeai.app.invocations.ip_adapter import IPAdapterField
@ -84,12 +84,20 @@ class SchedulerOutput(BaseInvocationOutput):
scheduler: SAMPLER_NAME_VALUES = OutputField(description=FieldDescriptions.scheduler, ui_type=UIType.Scheduler) scheduler: SAMPLER_NAME_VALUES = OutputField(description=FieldDescriptions.scheduler, ui_type=UIType.Scheduler)
@invocation("scheduler", title="Scheduler", tags=["scheduler"], category="latents", version="1.0.0") @invocation(
"scheduler",
title="Scheduler",
tags=["scheduler"],
category="latents",
version="1.0.0",
)
class SchedulerInvocation(BaseInvocation): class SchedulerInvocation(BaseInvocation):
"""Selects a scheduler.""" """Selects a scheduler."""
scheduler: SAMPLER_NAME_VALUES = InputField( scheduler: SAMPLER_NAME_VALUES = InputField(
default="euler", description=FieldDescriptions.scheduler, ui_type=UIType.Scheduler default="euler",
description=FieldDescriptions.scheduler,
ui_type=UIType.Scheduler,
) )
def invoke(self, context: InvocationContext) -> SchedulerOutput: def invoke(self, context: InvocationContext) -> SchedulerOutput:
@ -97,7 +105,11 @@ class SchedulerInvocation(BaseInvocation):
@invocation( @invocation(
"create_denoise_mask", title="Create Denoise Mask", tags=["mask", "denoise"], category="latents", version="1.0.0" "create_denoise_mask",
title="Create Denoise Mask",
tags=["mask", "denoise"],
category="latents",
version="1.0.0",
) )
class CreateDenoiseMaskInvocation(BaseInvocation): class CreateDenoiseMaskInvocation(BaseInvocation):
"""Creates mask for denoising model run.""" """Creates mask for denoising model run."""
@ -106,7 +118,11 @@ class CreateDenoiseMaskInvocation(BaseInvocation):
image: Optional[ImageField] = InputField(default=None, description="Image which will be masked", ui_order=1) image: Optional[ImageField] = InputField(default=None, description="Image which will be masked", ui_order=1)
mask: ImageField = InputField(description="The mask to use when pasting", ui_order=2) mask: ImageField = InputField(description="The mask to use when pasting", ui_order=2)
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled, ui_order=3) tiled: bool = InputField(default=False, description=FieldDescriptions.tiled, ui_order=3)
fp32: bool = InputField(default=DEFAULT_PRECISION == "float32", description=FieldDescriptions.fp32, ui_order=4) fp32: bool = InputField(
default=DEFAULT_PRECISION == "float32",
description=FieldDescriptions.fp32,
ui_order=4,
)
def prep_mask_tensor(self, mask_image): def prep_mask_tensor(self, mask_image):
if mask_image.mode != "L": if mask_image.mode != "L":
@ -134,7 +150,7 @@ class CreateDenoiseMaskInvocation(BaseInvocation):
if image is not None: if image is not None:
vae_info = context.services.model_manager.get_model( vae_info = context.services.model_manager.get_model(
**self.vae.vae.dict(), **self.vae.vae.model_dump(),
context=context, context=context,
) )
@ -167,7 +183,7 @@ def get_scheduler(
) -> Scheduler: ) -> Scheduler:
scheduler_class, scheduler_extra_config = SCHEDULER_MAP.get(scheduler_name, SCHEDULER_MAP["ddim"]) scheduler_class, scheduler_extra_config = SCHEDULER_MAP.get(scheduler_name, SCHEDULER_MAP["ddim"])
orig_scheduler_info = context.services.model_manager.get_model( orig_scheduler_info = context.services.model_manager.get_model(
**scheduler_info.dict(), **scheduler_info.model_dump(),
context=context, context=context,
) )
with orig_scheduler_info as orig_scheduler: with orig_scheduler_info as orig_scheduler:
@ -209,34 +225,64 @@ class DenoiseLatentsInvocation(BaseInvocation):
negative_conditioning: ConditioningField = InputField( negative_conditioning: ConditioningField = InputField(
description=FieldDescriptions.negative_cond, input=Input.Connection, ui_order=1 description=FieldDescriptions.negative_cond, input=Input.Connection, ui_order=1
) )
noise: Optional[LatentsField] = InputField(description=FieldDescriptions.noise, input=Input.Connection, ui_order=3) noise: Optional[LatentsField] = InputField(
default=None,
description=FieldDescriptions.noise,
input=Input.Connection,
ui_order=3,
)
steps: int = InputField(default=10, gt=0, description=FieldDescriptions.steps) steps: int = InputField(default=10, gt=0, description=FieldDescriptions.steps)
cfg_scale: Union[float, List[float]] = InputField( cfg_scale: Union[float, List[float]] = InputField(
default=7.5, ge=1, description=FieldDescriptions.cfg_scale, title="CFG Scale" default=7.5, ge=1, description=FieldDescriptions.cfg_scale, title="CFG Scale"
) )
denoising_start: float = InputField(default=0.0, ge=0, le=1, description=FieldDescriptions.denoising_start) denoising_start: float = InputField(
default=0.0,
ge=0,
le=1,
description=FieldDescriptions.denoising_start,
)
denoising_end: float = InputField(default=1.0, ge=0, le=1, description=FieldDescriptions.denoising_end) denoising_end: float = InputField(default=1.0, ge=0, le=1, description=FieldDescriptions.denoising_end)
scheduler: SAMPLER_NAME_VALUES = InputField( scheduler: SAMPLER_NAME_VALUES = InputField(
default="euler", description=FieldDescriptions.scheduler, ui_type=UIType.Scheduler default="euler",
description=FieldDescriptions.scheduler,
ui_type=UIType.Scheduler,
) )
unet: UNetField = InputField(description=FieldDescriptions.unet, input=Input.Connection, title="UNet", ui_order=2) unet: UNetField = InputField(
control: Union[ControlField, list[ControlField]] = InputField( description=FieldDescriptions.unet,
input=Input.Connection,
title="UNet",
ui_order=2,
)
control: Optional[Union[ControlField, list[ControlField]]] = InputField(
default=None, default=None,
input=Input.Connection, input=Input.Connection,
ui_order=5, ui_order=5,
) )
ip_adapter: Optional[Union[IPAdapterField, list[IPAdapterField]]] = InputField( ip_adapter: Optional[Union[IPAdapterField, list[IPAdapterField]]] = InputField(
description=FieldDescriptions.ip_adapter, title="IP-Adapter", default=None, input=Input.Connection, ui_order=6 description=FieldDescriptions.ip_adapter,
title="IP-Adapter",
default=None,
input=Input.Connection,
ui_order=6,
) )
t2i_adapter: Union[T2IAdapterField, list[T2IAdapterField]] = InputField( t2i_adapter: Optional[Union[T2IAdapterField, list[T2IAdapterField]]] = InputField(
description=FieldDescriptions.t2i_adapter, title="T2I-Adapter", default=None, input=Input.Connection, ui_order=7 description=FieldDescriptions.t2i_adapter,
title="T2I-Adapter",
default=None,
input=Input.Connection,
ui_order=7,
)
latents: Optional[LatentsField] = InputField(
default=None, description=FieldDescriptions.latents, input=Input.Connection
) )
latents: Optional[LatentsField] = InputField(description=FieldDescriptions.latents, input=Input.Connection)
denoise_mask: Optional[DenoiseMaskField] = InputField( denoise_mask: Optional[DenoiseMaskField] = InputField(
default=None, description=FieldDescriptions.mask, input=Input.Connection, ui_order=8 default=None,
description=FieldDescriptions.mask,
input=Input.Connection,
ui_order=8,
) )
@validator("cfg_scale") @field_validator("cfg_scale")
def ge_one(cls, v): def ge_one(cls, v):
"""validate that all cfg_scale values are >= 1""" """validate that all cfg_scale values are >= 1"""
if isinstance(v, list): if isinstance(v, list):
@ -259,7 +305,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
stable_diffusion_step_callback( stable_diffusion_step_callback(
context=context, context=context,
intermediate_state=intermediate_state, intermediate_state=intermediate_state,
node=self.dict(), node=self.model_dump(),
source_node_id=source_node_id, source_node_id=source_node_id,
base_model=base_model, base_model=base_model,
) )
@ -451,9 +497,10 @@ class DenoiseLatentsInvocation(BaseInvocation):
# models are needed in memory. This would help to reduce peak memory utilization in low-memory environments. # models are needed in memory. This would help to reduce peak memory utilization in low-memory environments.
with image_encoder_model_info as image_encoder_model: with image_encoder_model_info as image_encoder_model:
# Get image embeddings from CLIP and ImageProjModel. # Get image embeddings from CLIP and ImageProjModel.
image_prompt_embeds, uncond_image_prompt_embeds = ip_adapter_model.get_image_embeds( (
input_image, image_encoder_model image_prompt_embeds,
) uncond_image_prompt_embeds,
) = ip_adapter_model.get_image_embeds(input_image, image_encoder_model)
conditioning_data.ip_adapter_conditioning.append( conditioning_data.ip_adapter_conditioning.append(
IPAdapterConditioningInfo(image_prompt_embeds, uncond_image_prompt_embeds) IPAdapterConditioningInfo(image_prompt_embeds, uncond_image_prompt_embeds)
) )
@ -628,7 +675,10 @@ class DenoiseLatentsInvocation(BaseInvocation):
# TODO(ryand): I have hard-coded `do_classifier_free_guidance=True` to mirror the behaviour of ControlNets, # TODO(ryand): I have hard-coded `do_classifier_free_guidance=True` to mirror the behaviour of ControlNets,
# below. Investigate whether this is appropriate. # below. Investigate whether this is appropriate.
t2i_adapter_data = self.run_t2i_adapters( t2i_adapter_data = self.run_t2i_adapters(
context, self.t2i_adapter, latents.shape, do_classifier_free_guidance=True context,
self.t2i_adapter,
latents.shape,
do_classifier_free_guidance=True,
) )
# Get the source node id (we are invoking the prepared node) # Get the source node id (we are invoking the prepared node)
@ -641,7 +691,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
def _lora_loader(): def _lora_loader():
for lora in self.unet.loras: for lora in self.unet.loras:
lora_info = context.services.model_manager.get_model( lora_info = context.services.model_manager.get_model(
**lora.dict(exclude={"weight"}), **lora.model_dump(exclude={"weight"}),
context=context, context=context,
) )
yield (lora_info.context.model, lora.weight) yield (lora_info.context.model, lora.weight)
@ -649,7 +699,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
return return
unet_info = context.services.model_manager.get_model( unet_info = context.services.model_manager.get_model(
**self.unet.unet.dict(), **self.unet.unet.model_dump(),
context=context, context=context,
) )
with ( with (
@ -700,7 +750,10 @@ class DenoiseLatentsInvocation(BaseInvocation):
denoising_end=self.denoising_end, denoising_end=self.denoising_end,
) )
result_latents, result_attention_map_saver = pipeline.latents_from_embeddings( (
result_latents,
result_attention_map_saver,
) = pipeline.latents_from_embeddings(
latents=latents, latents=latents,
timesteps=timesteps, timesteps=timesteps,
init_timestep=init_timestep, init_timestep=init_timestep,
@ -728,7 +781,11 @@ class DenoiseLatentsInvocation(BaseInvocation):
@invocation( @invocation(
"l2i", title="Latents to Image", tags=["latents", "image", "vae", "l2i"], category="latents", version="1.0.0" "l2i",
title="Latents to Image",
tags=["latents", "image", "vae", "l2i"],
category="latents",
version="1.0.0",
) )
class LatentsToImageInvocation(BaseInvocation): class LatentsToImageInvocation(BaseInvocation):
"""Generates an image from latents.""" """Generates an image from latents."""
@ -743,7 +800,7 @@ class LatentsToImageInvocation(BaseInvocation):
) )
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled) tiled: bool = InputField(default=False, description=FieldDescriptions.tiled)
fp32: bool = InputField(default=DEFAULT_PRECISION == "float32", description=FieldDescriptions.fp32) fp32: bool = InputField(default=DEFAULT_PRECISION == "float32", description=FieldDescriptions.fp32)
metadata: CoreMetadata = InputField( metadata: Optional[CoreMetadata] = InputField(
default=None, default=None,
description=FieldDescriptions.core_metadata, description=FieldDescriptions.core_metadata,
ui_hidden=True, ui_hidden=True,
@ -754,7 +811,7 @@ class LatentsToImageInvocation(BaseInvocation):
latents = context.services.latents.get(self.latents.latents_name) latents = context.services.latents.get(self.latents.latents_name)
vae_info = context.services.model_manager.get_model( vae_info = context.services.model_manager.get_model(
**self.vae.vae.dict(), **self.vae.vae.model_dump(),
context=context, context=context,
) )
@ -816,7 +873,7 @@ class LatentsToImageInvocation(BaseInvocation):
node_id=self.id, node_id=self.id,
session_id=context.graph_execution_state_id, session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate, is_intermediate=self.is_intermediate,
metadata=self.metadata.dict() if self.metadata else None, metadata=self.metadata.model_dump() if self.metadata else None,
workflow=self.workflow, workflow=self.workflow,
) )
@ -830,7 +887,13 @@ class LatentsToImageInvocation(BaseInvocation):
LATENTS_INTERPOLATION_MODE = Literal["nearest", "linear", "bilinear", "bicubic", "trilinear", "area", "nearest-exact"] LATENTS_INTERPOLATION_MODE = Literal["nearest", "linear", "bilinear", "bicubic", "trilinear", "area", "nearest-exact"]
@invocation("lresize", title="Resize Latents", tags=["latents", "resize"], category="latents", version="1.0.0") @invocation(
"lresize",
title="Resize Latents",
tags=["latents", "resize"],
category="latents",
version="1.0.0",
)
class ResizeLatentsInvocation(BaseInvocation): class ResizeLatentsInvocation(BaseInvocation):
"""Resizes latents to explicit width/height (in pixels). Provided dimensions are floor-divided by 8.""" """Resizes latents to explicit width/height (in pixels). Provided dimensions are floor-divided by 8."""
@ -876,7 +939,13 @@ class ResizeLatentsInvocation(BaseInvocation):
return build_latents_output(latents_name=name, latents=resized_latents, seed=self.latents.seed) return build_latents_output(latents_name=name, latents=resized_latents, seed=self.latents.seed)
@invocation("lscale", title="Scale Latents", tags=["latents", "resize"], category="latents", version="1.0.0") @invocation(
"lscale",
title="Scale Latents",
tags=["latents", "resize"],
category="latents",
version="1.0.0",
)
class ScaleLatentsInvocation(BaseInvocation): class ScaleLatentsInvocation(BaseInvocation):
"""Scales latents by a given factor.""" """Scales latents by a given factor."""
@ -915,7 +984,11 @@ class ScaleLatentsInvocation(BaseInvocation):
@invocation( @invocation(
"i2l", title="Image to Latents", tags=["latents", "image", "vae", "i2l"], category="latents", version="1.0.0" "i2l",
title="Image to Latents",
tags=["latents", "image", "vae", "i2l"],
category="latents",
version="1.0.0",
) )
class ImageToLatentsInvocation(BaseInvocation): class ImageToLatentsInvocation(BaseInvocation):
"""Encodes an image into latents.""" """Encodes an image into latents."""
@ -979,7 +1052,7 @@ class ImageToLatentsInvocation(BaseInvocation):
image = context.services.images.get_pil_image(self.image.image_name) image = context.services.images.get_pil_image(self.image.image_name)
vae_info = context.services.model_manager.get_model( vae_info = context.services.model_manager.get_model(
**self.vae.vae.dict(), **self.vae.vae.model_dump(),
context=context, context=context,
) )
@ -1007,7 +1080,13 @@ class ImageToLatentsInvocation(BaseInvocation):
return vae.encode(image_tensor).latents return vae.encode(image_tensor).latents
@invocation("lblend", title="Blend Latents", tags=["latents", "blend"], category="latents", version="1.0.0") @invocation(
"lblend",
title="Blend Latents",
tags=["latents", "blend"],
category="latents",
version="1.0.0",
)
class BlendLatentsInvocation(BaseInvocation): class BlendLatentsInvocation(BaseInvocation):
"""Blend two latents using a given alpha. Latents must have same size.""" """Blend two latents using a given alpha. Latents must have same size."""

View File

@ -3,7 +3,7 @@
from typing import Literal from typing import Literal
import numpy as np import numpy as np
from pydantic import validator from pydantic import field_validator
from invokeai.app.invocations.primitives import FloatOutput, IntegerOutput from invokeai.app.invocations.primitives import FloatOutput, IntegerOutput
@ -72,7 +72,14 @@ class RandomIntInvocation(BaseInvocation):
return IntegerOutput(value=np.random.randint(self.low, self.high)) return IntegerOutput(value=np.random.randint(self.low, self.high))
@invocation("rand_float", title="Random Float", tags=["math", "float", "random"], category="math", version="1.0.0") @invocation(
"rand_float",
title="Random Float",
tags=["math", "float", "random"],
category="math",
version="1.0.1",
use_cache=False,
)
class RandomFloatInvocation(BaseInvocation): class RandomFloatInvocation(BaseInvocation):
"""Outputs a single random float""" """Outputs a single random float"""
@ -178,7 +185,7 @@ class IntegerMathInvocation(BaseInvocation):
a: int = InputField(default=0, description=FieldDescriptions.num_1) a: int = InputField(default=0, description=FieldDescriptions.num_1)
b: int = InputField(default=0, description=FieldDescriptions.num_2) b: int = InputField(default=0, description=FieldDescriptions.num_2)
@validator("b") @field_validator("b")
def no_unrepresentable_results(cls, v, values): def no_unrepresentable_results(cls, v, values):
if values["operation"] == "DIV" and v == 0: if values["operation"] == "DIV" and v == 0:
raise ValueError("Cannot divide by zero") raise ValueError("Cannot divide by zero")
@ -252,7 +259,7 @@ class FloatMathInvocation(BaseInvocation):
a: float = InputField(default=0, description=FieldDescriptions.num_1) a: float = InputField(default=0, description=FieldDescriptions.num_1)
b: float = InputField(default=0, description=FieldDescriptions.num_2) b: float = InputField(default=0, description=FieldDescriptions.num_2)
@validator("b") @field_validator("b")
def no_unrepresentable_results(cls, v, values): def no_unrepresentable_results(cls, v, values):
if values["operation"] == "DIV" and v == 0: if values["operation"] == "DIV" and v == 0:
raise ValueError("Cannot divide by zero") raise ValueError("Cannot divide by zero")

View File

@ -223,4 +223,4 @@ class MetadataAccumulatorInvocation(BaseInvocation):
def invoke(self, context: InvocationContext) -> MetadataAccumulatorOutput: def invoke(self, context: InvocationContext) -> MetadataAccumulatorOutput:
"""Collects and outputs a CoreMetadata object""" """Collects and outputs a CoreMetadata object"""
return MetadataAccumulatorOutput(metadata=CoreMetadata(**self.dict())) return MetadataAccumulatorOutput(metadata=CoreMetadata(**self.model_dump()))

View File

@ -1,7 +1,7 @@
import copy import copy
from typing import List, Optional from typing import List, Optional
from pydantic import BaseModel, Field from pydantic import BaseModel, ConfigDict, Field
from ...backend.model_management import BaseModelType, ModelType, SubModelType from ...backend.model_management import BaseModelType, ModelType, SubModelType
from .baseinvocation import ( from .baseinvocation import (
@ -24,6 +24,8 @@ class ModelInfo(BaseModel):
model_type: ModelType = Field(description="Info to load submodel") model_type: ModelType = Field(description="Info to load submodel")
submodel: Optional[SubModelType] = Field(default=None, description="Info to load submodel") submodel: Optional[SubModelType] = Field(default=None, description="Info to load submodel")
model_config = ConfigDict(protected_namespaces=())
class LoraInfo(ModelInfo): class LoraInfo(ModelInfo):
weight: float = Field(description="Lora's weight which to use when apply to model") weight: float = Field(description="Lora's weight which to use when apply to model")
@ -65,6 +67,8 @@ class MainModelField(BaseModel):
base_model: BaseModelType = Field(description="Base model") base_model: BaseModelType = Field(description="Base model")
model_type: ModelType = Field(description="Model Type") model_type: ModelType = Field(description="Model Type")
model_config = ConfigDict(protected_namespaces=())
class LoRAModelField(BaseModel): class LoRAModelField(BaseModel):
"""LoRA model field""" """LoRA model field"""
@ -72,8 +76,16 @@ class LoRAModelField(BaseModel):
model_name: str = Field(description="Name of the LoRA model") model_name: str = Field(description="Name of the LoRA model")
base_model: BaseModelType = Field(description="Base model") base_model: BaseModelType = Field(description="Base model")
model_config = ConfigDict(protected_namespaces=())
@invocation("main_model_loader", title="Main Model", tags=["model"], category="model", version="1.0.0")
@invocation(
"main_model_loader",
title="Main Model",
tags=["model"],
category="model",
version="1.0.0",
)
class MainModelLoaderInvocation(BaseInvocation): class MainModelLoaderInvocation(BaseInvocation):
"""Loads a main model, outputting its submodels.""" """Loads a main model, outputting its submodels."""
@ -180,10 +192,16 @@ class LoraLoaderInvocation(BaseInvocation):
lora: LoRAModelField = InputField(description=FieldDescriptions.lora_model, input=Input.Direct, title="LoRA") lora: LoRAModelField = InputField(description=FieldDescriptions.lora_model, input=Input.Direct, title="LoRA")
weight: float = InputField(default=0.75, description=FieldDescriptions.lora_weight) weight: float = InputField(default=0.75, description=FieldDescriptions.lora_weight)
unet: Optional[UNetField] = InputField( unet: Optional[UNetField] = InputField(
default=None, description=FieldDescriptions.unet, input=Input.Connection, title="UNet" default=None,
description=FieldDescriptions.unet,
input=Input.Connection,
title="UNet",
) )
clip: Optional[ClipField] = InputField( clip: Optional[ClipField] = InputField(
default=None, description=FieldDescriptions.clip, input=Input.Connection, title="CLIP" default=None,
description=FieldDescriptions.clip,
input=Input.Connection,
title="CLIP",
) )
def invoke(self, context: InvocationContext) -> LoraLoaderOutput: def invoke(self, context: InvocationContext) -> LoraLoaderOutput:
@ -244,20 +262,35 @@ class SDXLLoraLoaderOutput(BaseInvocationOutput):
clip2: Optional[ClipField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP 2") clip2: Optional[ClipField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP 2")
@invocation("sdxl_lora_loader", title="SDXL LoRA", tags=["lora", "model"], category="model", version="1.0.0") @invocation(
"sdxl_lora_loader",
title="SDXL LoRA",
tags=["lora", "model"],
category="model",
version="1.0.0",
)
class SDXLLoraLoaderInvocation(BaseInvocation): class SDXLLoraLoaderInvocation(BaseInvocation):
"""Apply selected lora to unet and text_encoder.""" """Apply selected lora to unet and text_encoder."""
lora: LoRAModelField = InputField(description=FieldDescriptions.lora_model, input=Input.Direct, title="LoRA") lora: LoRAModelField = InputField(description=FieldDescriptions.lora_model, input=Input.Direct, title="LoRA")
weight: float = InputField(default=0.75, description=FieldDescriptions.lora_weight) weight: float = InputField(default=0.75, description=FieldDescriptions.lora_weight)
unet: Optional[UNetField] = InputField( unet: Optional[UNetField] = InputField(
default=None, description=FieldDescriptions.unet, input=Input.Connection, title="UNet" default=None,
description=FieldDescriptions.unet,
input=Input.Connection,
title="UNet",
) )
clip: Optional[ClipField] = InputField( clip: Optional[ClipField] = InputField(
default=None, description=FieldDescriptions.clip, input=Input.Connection, title="CLIP 1" default=None,
description=FieldDescriptions.clip,
input=Input.Connection,
title="CLIP 1",
) )
clip2: Optional[ClipField] = InputField( clip2: Optional[ClipField] = InputField(
default=None, description=FieldDescriptions.clip, input=Input.Connection, title="CLIP 2" default=None,
description=FieldDescriptions.clip,
input=Input.Connection,
title="CLIP 2",
) )
def invoke(self, context: InvocationContext) -> SDXLLoraLoaderOutput: def invoke(self, context: InvocationContext) -> SDXLLoraLoaderOutput:
@ -330,6 +363,8 @@ class VAEModelField(BaseModel):
model_name: str = Field(description="Name of the model") model_name: str = Field(description="Name of the model")
base_model: BaseModelType = Field(description="Base model") base_model: BaseModelType = Field(description="Base model")
model_config = ConfigDict(protected_namespaces=())
@invocation_output("vae_loader_output") @invocation_output("vae_loader_output")
class VaeLoaderOutput(BaseInvocationOutput): class VaeLoaderOutput(BaseInvocationOutput):
@ -343,7 +378,10 @@ class VaeLoaderInvocation(BaseInvocation):
"""Loads a VAE model, outputting a VaeLoaderOutput""" """Loads a VAE model, outputting a VaeLoaderOutput"""
vae_model: VAEModelField = InputField( vae_model: VAEModelField = InputField(
description=FieldDescriptions.vae_model, input=Input.Direct, ui_type=UIType.VaeModel, title="VAE" description=FieldDescriptions.vae_model,
input=Input.Direct,
ui_type=UIType.VaeModel,
title="VAE",
) )
def invoke(self, context: InvocationContext) -> VaeLoaderOutput: def invoke(self, context: InvocationContext) -> VaeLoaderOutput:
@ -372,19 +410,31 @@ class VaeLoaderInvocation(BaseInvocation):
class SeamlessModeOutput(BaseInvocationOutput): class SeamlessModeOutput(BaseInvocationOutput):
"""Modified Seamless Model output""" """Modified Seamless Model output"""
unet: Optional[UNetField] = OutputField(description=FieldDescriptions.unet, title="UNet") unet: Optional[UNetField] = OutputField(default=None, description=FieldDescriptions.unet, title="UNet")
vae: Optional[VaeField] = OutputField(description=FieldDescriptions.vae, title="VAE") vae: Optional[VaeField] = OutputField(default=None, description=FieldDescriptions.vae, title="VAE")
@invocation("seamless", title="Seamless", tags=["seamless", "model"], category="model", version="1.0.0") @invocation(
"seamless",
title="Seamless",
tags=["seamless", "model"],
category="model",
version="1.0.0",
)
class SeamlessModeInvocation(BaseInvocation): class SeamlessModeInvocation(BaseInvocation):
"""Applies the seamless transformation to the Model UNet and VAE.""" """Applies the seamless transformation to the Model UNet and VAE."""
unet: Optional[UNetField] = InputField( unet: Optional[UNetField] = InputField(
default=None, description=FieldDescriptions.unet, input=Input.Connection, title="UNet" default=None,
description=FieldDescriptions.unet,
input=Input.Connection,
title="UNet",
) )
vae: Optional[VaeField] = InputField( vae: Optional[VaeField] = InputField(
default=None, description=FieldDescriptions.vae_model, input=Input.Connection, title="VAE" default=None,
description=FieldDescriptions.vae_model,
input=Input.Connection,
title="VAE",
) )
seamless_y: bool = InputField(default=True, input=Input.Any, description="Specify whether Y axis is seamless") seamless_y: bool = InputField(default=True, input=Input.Any, description="Specify whether Y axis is seamless")
seamless_x: bool = InputField(default=True, input=Input.Any, description="Specify whether X axis is seamless") seamless_x: bool = InputField(default=True, input=Input.Any, description="Specify whether X axis is seamless")

View File

@ -2,7 +2,7 @@
import torch import torch
from pydantic import validator from pydantic import field_validator
from invokeai.app.invocations.latent import LatentsField from invokeai.app.invocations.latent import LatentsField
from invokeai.app.util.misc import SEED_MAX, get_random_seed from invokeai.app.util.misc import SEED_MAX, get_random_seed
@ -65,7 +65,7 @@ Nodes
class NoiseOutput(BaseInvocationOutput): class NoiseOutput(BaseInvocationOutput):
"""Invocation noise output""" """Invocation noise output"""
noise: LatentsField = OutputField(default=None, description=FieldDescriptions.noise) noise: LatentsField = OutputField(description=FieldDescriptions.noise)
width: int = OutputField(description=FieldDescriptions.width) width: int = OutputField(description=FieldDescriptions.width)
height: int = OutputField(description=FieldDescriptions.height) height: int = OutputField(description=FieldDescriptions.height)
@ -78,7 +78,13 @@ def build_noise_output(latents_name: str, latents: torch.Tensor, seed: int):
) )
@invocation("noise", title="Noise", tags=["latents", "noise"], category="latents", version="1.0.0") @invocation(
"noise",
title="Noise",
tags=["latents", "noise"],
category="latents",
version="1.0.0",
)
class NoiseInvocation(BaseInvocation): class NoiseInvocation(BaseInvocation):
"""Generates latent noise.""" """Generates latent noise."""
@ -105,7 +111,7 @@ class NoiseInvocation(BaseInvocation):
description="Use CPU for noise generation (for reproducible results across platforms)", description="Use CPU for noise generation (for reproducible results across platforms)",
) )
@validator("seed", pre=True) @field_validator("seed", mode="before")
def modulo_seed(cls, v): def modulo_seed(cls, v):
"""Returns the seed modulo (SEED_MAX + 1) to ensure it is within the valid range.""" """Returns the seed modulo (SEED_MAX + 1) to ensure it is within the valid range."""
return v % (SEED_MAX + 1) return v % (SEED_MAX + 1)

View File

@ -9,7 +9,7 @@ from typing import List, Literal, Optional, Union
import numpy as np import numpy as np
import torch import torch
from diffusers.image_processor import VaeImageProcessor from diffusers.image_processor import VaeImageProcessor
from pydantic import BaseModel, Field, validator from pydantic import BaseModel, ConfigDict, Field, field_validator
from tqdm import tqdm from tqdm import tqdm
from invokeai.app.invocations.metadata import CoreMetadata from invokeai.app.invocations.metadata import CoreMetadata
@ -63,14 +63,17 @@ class ONNXPromptInvocation(BaseInvocation):
def invoke(self, context: InvocationContext) -> ConditioningOutput: def invoke(self, context: InvocationContext) -> ConditioningOutput:
tokenizer_info = context.services.model_manager.get_model( tokenizer_info = context.services.model_manager.get_model(
**self.clip.tokenizer.dict(), **self.clip.tokenizer.model_dump(),
) )
text_encoder_info = context.services.model_manager.get_model( text_encoder_info = context.services.model_manager.get_model(
**self.clip.text_encoder.dict(), **self.clip.text_encoder.model_dump(),
) )
with tokenizer_info as orig_tokenizer, text_encoder_info as text_encoder: # , ExitStack() as stack: with tokenizer_info as orig_tokenizer, text_encoder_info as text_encoder: # , ExitStack() as stack:
loras = [ loras = [
(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) (
context.services.model_manager.get_model(**lora.model_dump(exclude={"weight"})).context.model,
lora.weight,
)
for lora in self.clip.loras for lora in self.clip.loras
] ]
@ -175,14 +178,14 @@ class ONNXTextToLatentsInvocation(BaseInvocation):
description=FieldDescriptions.unet, description=FieldDescriptions.unet,
input=Input.Connection, input=Input.Connection,
) )
control: Optional[Union[ControlField, list[ControlField]]] = InputField( control: Union[ControlField, list[ControlField]] = InputField(
default=None, default=None,
description=FieldDescriptions.control, description=FieldDescriptions.control,
) )
# seamless: bool = InputField(default=False, description="Whether or not to generate an image that can tile without seams", ) # seamless: bool = InputField(default=False, description="Whether or not to generate an image that can tile without seams", )
# seamless_axes: str = InputField(default="", description="The axes to tile the image on, 'x' and/or 'y'") # seamless_axes: str = InputField(default="", description="The axes to tile the image on, 'x' and/or 'y'")
@validator("cfg_scale") @field_validator("cfg_scale")
def ge_one(cls, v): def ge_one(cls, v):
"""validate that all cfg_scale values are >= 1""" """validate that all cfg_scale values are >= 1"""
if isinstance(v, list): if isinstance(v, list):
@ -241,7 +244,7 @@ class ONNXTextToLatentsInvocation(BaseInvocation):
stable_diffusion_step_callback( stable_diffusion_step_callback(
context=context, context=context,
intermediate_state=intermediate_state, intermediate_state=intermediate_state,
node=self.dict(), node=self.model_dump(),
source_node_id=source_node_id, source_node_id=source_node_id,
) )
@ -254,12 +257,15 @@ class ONNXTextToLatentsInvocation(BaseInvocation):
eta=0.0, eta=0.0,
) )
unet_info = context.services.model_manager.get_model(**self.unet.unet.dict()) unet_info = context.services.model_manager.get_model(**self.unet.unet.model_dump())
with unet_info as unet: # , ExitStack() as stack: with unet_info as unet: # , ExitStack() as stack:
# loras = [(stack.enter_context(context.services.model_manager.get_model(**lora.dict(exclude={"weight"}))), lora.weight) for lora in self.unet.loras] # loras = [(stack.enter_context(context.services.model_manager.get_model(**lora.dict(exclude={"weight"}))), lora.weight) for lora in self.unet.loras]
loras = [ loras = [
(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) (
context.services.model_manager.get_model(**lora.model_dump(exclude={"weight"})).context.model,
lora.weight,
)
for lora in self.unet.loras for lora in self.unet.loras
] ]
@ -346,7 +352,7 @@ class ONNXLatentsToImageInvocation(BaseInvocation):
raise Exception(f"Expected vae_decoder, found: {self.vae.vae.model_type}") raise Exception(f"Expected vae_decoder, found: {self.vae.vae.model_type}")
vae_info = context.services.model_manager.get_model( vae_info = context.services.model_manager.get_model(
**self.vae.vae.dict(), **self.vae.vae.model_dump(),
) )
# clear memory as vae decode can request a lot # clear memory as vae decode can request a lot
@ -375,7 +381,7 @@ class ONNXLatentsToImageInvocation(BaseInvocation):
node_id=self.id, node_id=self.id,
session_id=context.graph_execution_state_id, session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate, is_intermediate=self.is_intermediate,
metadata=self.metadata.dict() if self.metadata else None, metadata=self.metadata.model_dump() if self.metadata else None,
workflow=self.workflow, workflow=self.workflow,
) )
@ -403,6 +409,8 @@ class OnnxModelField(BaseModel):
base_model: BaseModelType = Field(description="Base model") base_model: BaseModelType = Field(description="Base model")
model_type: ModelType = Field(description="Model Type") model_type: ModelType = Field(description="Model Type")
model_config = ConfigDict(protected_namespaces=())
@invocation("onnx_model_loader", title="ONNX Main Model", tags=["onnx", "model"], category="model", version="1.0.0") @invocation("onnx_model_loader", title="ONNX Main Model", tags=["onnx", "model"], category="model", version="1.0.0")
class OnnxModelLoaderInvocation(BaseInvocation): class OnnxModelLoaderInvocation(BaseInvocation):

View File

@ -44,13 +44,22 @@ from invokeai.app.invocations.primitives import FloatCollectionOutput
from .baseinvocation import BaseInvocation, InputField, InvocationContext, invocation from .baseinvocation import BaseInvocation, InputField, InvocationContext, invocation
@invocation("float_range", title="Float Range", tags=["math", "range"], category="math", version="1.0.0") @invocation(
"float_range",
title="Float Range",
tags=["math", "range"],
category="math",
version="1.0.0",
)
class FloatLinearRangeInvocation(BaseInvocation): class FloatLinearRangeInvocation(BaseInvocation):
"""Creates a range""" """Creates a range"""
start: float = InputField(default=5, description="The first value of the range") start: float = InputField(default=5, description="The first value of the range")
stop: float = InputField(default=10, description="The last value of the range") stop: float = InputField(default=10, description="The last value of the range")
steps: int = InputField(default=30, description="number of values to interpolate over (including start and stop)") steps: int = InputField(
default=30,
description="number of values to interpolate over (including start and stop)",
)
def invoke(self, context: InvocationContext) -> FloatCollectionOutput: def invoke(self, context: InvocationContext) -> FloatCollectionOutput:
param_list = list(np.linspace(self.start, self.stop, self.steps)) param_list = list(np.linspace(self.start, self.stop, self.steps))
@ -95,7 +104,13 @@ EASING_FUNCTION_KEYS = Literal[tuple(list(EASING_FUNCTIONS_MAP.keys()))]
# actually I think for now could just use CollectionOutput (which is list[Any] # actually I think for now could just use CollectionOutput (which is list[Any]
@invocation("step_param_easing", title="Step Param Easing", tags=["step", "easing"], category="step", version="1.0.0") @invocation(
"step_param_easing",
title="Step Param Easing",
tags=["step", "easing"],
category="step",
version="1.0.0",
)
class StepParamEasingInvocation(BaseInvocation): class StepParamEasingInvocation(BaseInvocation):
"""Experimental per-step parameter easing for denoising steps""" """Experimental per-step parameter easing for denoising steps"""
@ -159,7 +174,9 @@ class StepParamEasingInvocation(BaseInvocation):
context.services.logger.debug("base easing duration: " + str(base_easing_duration)) context.services.logger.debug("base easing duration: " + str(base_easing_duration))
even_num_steps = num_easing_steps % 2 == 0 # even number of steps even_num_steps = num_easing_steps % 2 == 0 # even number of steps
easing_function = easing_class( easing_function = easing_class(
start=self.start_value, end=self.end_value, duration=base_easing_duration - 1 start=self.start_value,
end=self.end_value,
duration=base_easing_duration - 1,
) )
base_easing_vals = list() base_easing_vals = list()
for step_index in range(base_easing_duration): for step_index in range(base_easing_duration):
@ -199,7 +216,11 @@ class StepParamEasingInvocation(BaseInvocation):
# #
else: # no mirroring (default) else: # no mirroring (default)
easing_function = easing_class(start=self.start_value, end=self.end_value, duration=num_easing_steps - 1) easing_function = easing_class(
start=self.start_value,
end=self.end_value,
duration=num_easing_steps - 1,
)
for step_index in range(num_easing_steps): for step_index in range(num_easing_steps):
step_val = easing_function.ease(step_index) step_val = easing_function.ease(step_index)
easing_list.append(step_val) easing_list.append(step_val)

View File

@ -3,7 +3,7 @@ from typing import Optional, Union
import numpy as np import numpy as np
from dynamicprompts.generators import CombinatorialPromptGenerator, RandomPromptGenerator from dynamicprompts.generators import CombinatorialPromptGenerator, RandomPromptGenerator
from pydantic import validator from pydantic import field_validator
from invokeai.app.invocations.primitives import StringCollectionOutput from invokeai.app.invocations.primitives import StringCollectionOutput
@ -21,7 +21,10 @@ from .baseinvocation import BaseInvocation, InputField, InvocationContext, UICom
class DynamicPromptInvocation(BaseInvocation): class DynamicPromptInvocation(BaseInvocation):
"""Parses a prompt using adieyal/dynamicprompts' random or combinatorial generator""" """Parses a prompt using adieyal/dynamicprompts' random or combinatorial generator"""
prompt: str = InputField(description="The prompt to parse with dynamicprompts", ui_component=UIComponent.Textarea) prompt: str = InputField(
description="The prompt to parse with dynamicprompts",
ui_component=UIComponent.Textarea,
)
max_prompts: int = InputField(default=1, description="The number of prompts to generate") max_prompts: int = InputField(default=1, description="The number of prompts to generate")
combinatorial: bool = InputField(default=False, description="Whether to use the combinatorial generator") combinatorial: bool = InputField(default=False, description="Whether to use the combinatorial generator")
@ -36,21 +39,31 @@ class DynamicPromptInvocation(BaseInvocation):
return StringCollectionOutput(collection=prompts) return StringCollectionOutput(collection=prompts)
@invocation("prompt_from_file", title="Prompts from File", tags=["prompt", "file"], category="prompt", version="1.0.0") @invocation(
"prompt_from_file",
title="Prompts from File",
tags=["prompt", "file"],
category="prompt",
version="1.0.0",
)
class PromptsFromFileInvocation(BaseInvocation): class PromptsFromFileInvocation(BaseInvocation):
"""Loads prompts from a text file""" """Loads prompts from a text file"""
file_path: str = InputField(description="Path to prompt text file") file_path: str = InputField(description="Path to prompt text file")
pre_prompt: Optional[str] = InputField( pre_prompt: Optional[str] = InputField(
default=None, description="String to prepend to each prompt", ui_component=UIComponent.Textarea default=None,
description="String to prepend to each prompt",
ui_component=UIComponent.Textarea,
) )
post_prompt: Optional[str] = InputField( post_prompt: Optional[str] = InputField(
default=None, description="String to append to each prompt", ui_component=UIComponent.Textarea default=None,
description="String to append to each prompt",
ui_component=UIComponent.Textarea,
) )
start_line: int = InputField(default=1, ge=1, description="Line in the file to start start from") start_line: int = InputField(default=1, ge=1, description="Line in the file to start start from")
max_prompts: int = InputField(default=1, ge=0, description="Max lines to read from file (0=all)") max_prompts: int = InputField(default=1, ge=0, description="Max lines to read from file (0=all)")
@validator("file_path") @field_validator("file_path")
def file_path_exists(cls, v): def file_path_exists(cls, v):
if not exists(v): if not exists(v):
raise ValueError(FileNotFoundError) raise ValueError(FileNotFoundError)
@ -79,6 +92,10 @@ class PromptsFromFileInvocation(BaseInvocation):
def invoke(self, context: InvocationContext) -> StringCollectionOutput: def invoke(self, context: InvocationContext) -> StringCollectionOutput:
prompts = self.promptsFromFile( prompts = self.promptsFromFile(
self.file_path, self.pre_prompt, self.post_prompt, self.start_line, self.max_prompts self.file_path,
self.pre_prompt,
self.post_prompt,
self.start_line,
self.max_prompts,
) )
return StringCollectionOutput(collection=prompts) return StringCollectionOutput(collection=prompts)

View File

@ -1,6 +1,6 @@
from typing import Union from typing import Union
from pydantic import BaseModel, Field from pydantic import BaseModel, ConfigDict, Field
from invokeai.app.invocations.baseinvocation import ( from invokeai.app.invocations.baseinvocation import (
BaseInvocation, BaseInvocation,
@ -23,6 +23,8 @@ class T2IAdapterModelField(BaseModel):
model_name: str = Field(description="Name of the T2I-Adapter model") model_name: str = Field(description="Name of the T2I-Adapter model")
base_model: BaseModelType = Field(description="Base model") base_model: BaseModelType = Field(description="Base model")
model_config = ConfigDict(protected_namespaces=())
class T2IAdapterField(BaseModel): class T2IAdapterField(BaseModel):
image: ImageField = Field(description="The T2I-Adapter image prompt.") image: ImageField = Field(description="The T2I-Adapter image prompt.")

View File

@ -7,6 +7,7 @@ import numpy as np
import torch import torch
from basicsr.archs.rrdbnet_arch import RRDBNet from basicsr.archs.rrdbnet_arch import RRDBNet
from PIL import Image from PIL import Image
from pydantic import ConfigDict
from realesrgan import RealESRGANer from realesrgan import RealESRGANer
from invokeai.app.invocations.primitives import ImageField, ImageOutput from invokeai.app.invocations.primitives import ImageField, ImageOutput
@ -38,6 +39,8 @@ class ESRGANInvocation(BaseInvocation):
default=400, ge=0, description="Tile size for tiled ESRGAN upscaling (0=tiling disabled)" default=400, ge=0, description="Tile size for tiled ESRGAN upscaling (0=tiling disabled)"
) )
model_config = ConfigDict(protected_namespaces=())
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name) image = context.services.images.get_pil_image(self.image.image_name)
models_path = context.services.configuration.models_path models_path = context.services.configuration.models_path

View File

@ -1,7 +1,7 @@
from datetime import datetime from datetime import datetime
from typing import Optional, Union from typing import Optional, Union
from pydantic import BaseModel, Extra, Field from pydantic import BaseModel, Field
from invokeai.app.util.misc import get_iso_timestamp from invokeai.app.util.misc import get_iso_timestamp
from invokeai.app.util.model_exclude_null import BaseModelExcludeNull from invokeai.app.util.model_exclude_null import BaseModelExcludeNull
@ -18,9 +18,9 @@ class BoardRecord(BaseModelExcludeNull):
"""The created timestamp of the image.""" """The created timestamp of the image."""
updated_at: Union[datetime, str] = Field(description="The updated timestamp of the board.") updated_at: Union[datetime, str] = Field(description="The updated timestamp of the board.")
"""The updated timestamp of the image.""" """The updated timestamp of the image."""
deleted_at: Union[datetime, str, None] = Field(description="The deleted timestamp of the board.") deleted_at: Optional[Union[datetime, str]] = Field(default=None, description="The deleted timestamp of the board.")
"""The updated timestamp of the image.""" """The updated timestamp of the image."""
cover_image_name: Optional[str] = Field(description="The name of the cover image of the board.") cover_image_name: Optional[str] = Field(default=None, description="The name of the cover image of the board.")
"""The name of the cover image of the board.""" """The name of the cover image of the board."""
@ -46,9 +46,9 @@ def deserialize_board_record(board_dict: dict) -> BoardRecord:
) )
class BoardChanges(BaseModel, extra=Extra.forbid): class BoardChanges(BaseModel, extra="forbid"):
board_name: Optional[str] = Field(description="The board's new name.") board_name: Optional[str] = Field(default=None, description="The board's new name.")
cover_image_name: Optional[str] = Field(description="The name of the board's new cover image.") cover_image_name: Optional[str] = Field(default=None, description="The name of the board's new cover image.")
class BoardRecordNotFoundException(Exception): class BoardRecordNotFoundException(Exception):

View File

@ -17,7 +17,7 @@ class BoardDTO(BoardRecord):
def board_record_to_dto(board_record: BoardRecord, cover_image_name: Optional[str], image_count: int) -> BoardDTO: def board_record_to_dto(board_record: BoardRecord, cover_image_name: Optional[str], image_count: int) -> BoardDTO:
"""Converts a board record to a board DTO.""" """Converts a board record to a board DTO."""
return BoardDTO( return BoardDTO(
**board_record.dict(exclude={"cover_image_name"}), **board_record.model_dump(exclude={"cover_image_name"}),
cover_image_name=cover_image_name, cover_image_name=cover_image_name,
image_count=image_count, image_count=image_count,
) )

View File

@ -18,7 +18,7 @@ from pathlib import Path
from typing import ClassVar, Dict, List, Literal, Optional, Union, get_args, get_origin, get_type_hints from typing import ClassVar, Dict, List, Literal, Optional, Union, get_args, get_origin, get_type_hints
from omegaconf import DictConfig, ListConfig, OmegaConf from omegaconf import DictConfig, ListConfig, OmegaConf
from pydantic import BaseSettings from pydantic_settings import BaseSettings, SettingsConfigDict
from invokeai.app.services.config.config_common import PagingArgumentParser, int_or_float_or_str from invokeai.app.services.config.config_common import PagingArgumentParser, int_or_float_or_str
@ -32,12 +32,14 @@ class InvokeAISettings(BaseSettings):
initconf: ClassVar[Optional[DictConfig]] = None initconf: ClassVar[Optional[DictConfig]] = None
argparse_groups: ClassVar[Dict] = {} argparse_groups: ClassVar[Dict] = {}
model_config = SettingsConfigDict(env_file_encoding="utf-8", arbitrary_types_allowed=True, case_sensitive=True)
def parse_args(self, argv: Optional[list] = sys.argv[1:]): def parse_args(self, argv: Optional[list] = sys.argv[1:]):
parser = self.get_parser() parser = self.get_parser()
opt, unknown_opts = parser.parse_known_args(argv) opt, unknown_opts = parser.parse_known_args(argv)
if len(unknown_opts) > 0: if len(unknown_opts) > 0:
print("Unknown args:", unknown_opts) print("Unknown args:", unknown_opts)
for name in self.__fields__: for name in self.model_fields:
if name not in self._excluded(): if name not in self._excluded():
value = getattr(opt, name) value = getattr(opt, name)
if isinstance(value, ListConfig): if isinstance(value, ListConfig):
@ -54,10 +56,12 @@ class InvokeAISettings(BaseSettings):
cls = self.__class__ cls = self.__class__
type = get_args(get_type_hints(cls)["type"])[0] type = get_args(get_type_hints(cls)["type"])[0]
field_dict = dict({type: dict()}) field_dict = dict({type: dict()})
for name, field in self.__fields__.items(): for name, field in self.model_fields.items():
if name in cls._excluded_from_yaml(): if name in cls._excluded_from_yaml():
continue continue
category = field.field_info.extra.get("category") or "Uncategorized" category = (
field.json_schema_extra.get("category", "Uncategorized") if field.json_schema_extra else "Uncategorized"
)
value = getattr(self, name) value = getattr(self, name)
if category not in field_dict[type]: if category not in field_dict[type]:
field_dict[type][category] = dict() field_dict[type][category] = dict()
@ -73,7 +77,7 @@ class InvokeAISettings(BaseSettings):
else: else:
settings_stanza = "Uncategorized" settings_stanza = "Uncategorized"
env_prefix = getattr(cls.Config, "env_prefix", None) env_prefix = getattr(cls.model_config, "env_prefix", None)
env_prefix = env_prefix if env_prefix is not None else settings_stanza.upper() env_prefix = env_prefix if env_prefix is not None else settings_stanza.upper()
initconf = ( initconf = (
@ -89,14 +93,18 @@ class InvokeAISettings(BaseSettings):
for key, value in os.environ.items(): for key, value in os.environ.items():
upcase_environ[key.upper()] = value upcase_environ[key.upper()] = value
fields = cls.__fields__ fields = cls.model_fields
cls.argparse_groups = {} cls.argparse_groups = {}
for name, field in fields.items(): for name, field in fields.items():
if name not in cls._excluded(): if name not in cls._excluded():
current_default = field.default current_default = field.default
category = field.field_info.extra.get("category", "Uncategorized") category = (
field.json_schema_extra.get("category", "Uncategorized")
if field.json_schema_extra
else "Uncategorized"
)
env_name = env_prefix + "_" + name env_name = env_prefix + "_" + name
if category in initconf and name in initconf.get(category): if category in initconf and name in initconf.get(category):
field.default = initconf.get(category).get(name) field.default = initconf.get(category).get(name)
@ -146,11 +154,6 @@ class InvokeAISettings(BaseSettings):
"tiled_decode", "tiled_decode",
] ]
class Config:
env_file_encoding = "utf-8"
arbitrary_types_allowed = True
case_sensitive = True
@classmethod @classmethod
def add_field_argument(cls, command_parser, name: str, field, default_override=None): def add_field_argument(cls, command_parser, name: str, field, default_override=None):
field_type = get_type_hints(cls).get(name) field_type = get_type_hints(cls).get(name)
@ -161,7 +164,7 @@ class InvokeAISettings(BaseSettings):
if field.default_factory is None if field.default_factory is None
else field.default_factory() else field.default_factory()
) )
if category := field.field_info.extra.get("category"): if category := (field.json_schema_extra.get("category", None) if field.json_schema_extra else None):
if category not in cls.argparse_groups: if category not in cls.argparse_groups:
cls.argparse_groups[category] = command_parser.add_argument_group(category) cls.argparse_groups[category] = command_parser.add_argument_group(category)
argparse_group = cls.argparse_groups[category] argparse_group = cls.argparse_groups[category]
@ -169,7 +172,7 @@ class InvokeAISettings(BaseSettings):
argparse_group = command_parser argparse_group = command_parser
if get_origin(field_type) == Literal: if get_origin(field_type) == Literal:
allowed_values = get_args(field.type_) allowed_values = get_args(field.annotation)
allowed_types = set() allowed_types = set()
for val in allowed_values: for val in allowed_values:
allowed_types.add(type(val)) allowed_types.add(type(val))
@ -182,7 +185,7 @@ class InvokeAISettings(BaseSettings):
type=field_type, type=field_type,
default=default, default=default,
choices=allowed_values, choices=allowed_values,
help=field.field_info.description, help=field.description,
) )
elif get_origin(field_type) == Union: elif get_origin(field_type) == Union:
@ -191,7 +194,7 @@ class InvokeAISettings(BaseSettings):
dest=name, dest=name,
type=int_or_float_or_str, type=int_or_float_or_str,
default=default, default=default,
help=field.field_info.description, help=field.description,
) )
elif get_origin(field_type) == list: elif get_origin(field_type) == list:
@ -199,17 +202,17 @@ class InvokeAISettings(BaseSettings):
f"--{name}", f"--{name}",
dest=name, dest=name,
nargs="*", nargs="*",
type=field.type_, type=field.annotation,
default=default, default=default,
action=argparse.BooleanOptionalAction if field.type_ == bool else "store", action=argparse.BooleanOptionalAction if field.annotation == bool else "store",
help=field.field_info.description, help=field.description,
) )
else: else:
argparse_group.add_argument( argparse_group.add_argument(
f"--{name}", f"--{name}",
dest=name, dest=name,
type=field.type_, type=field.annotation,
default=default, default=default,
action=argparse.BooleanOptionalAction if field.type_ == bool else "store", action=argparse.BooleanOptionalAction if field.annotation == bool else "store",
help=field.field_info.description, help=field.description,
) )

View File

@ -144,8 +144,8 @@ which is set to the desired top-level name. For example, to create a
class InvokeBatch(InvokeAISettings): class InvokeBatch(InvokeAISettings):
type: Literal["InvokeBatch"] = "InvokeBatch" type: Literal["InvokeBatch"] = "InvokeBatch"
node_count : int = Field(default=1, description="Number of nodes to run on", category='Resources') node_count : int = Field(default=1, description="Number of nodes to run on", json_schema_extra=dict(category='Resources'))
cpu_count : int = Field(default=8, description="Number of GPUs to run on per node", category='Resources') cpu_count : int = Field(default=8, description="Number of GPUs to run on per node", json_schema_extra=dict(category='Resources'))
This will now read and write from the "InvokeBatch" section of the This will now read and write from the "InvokeBatch" section of the
config file, look for environment variables named INVOKEBATCH_*, and config file, look for environment variables named INVOKEBATCH_*, and
@ -175,7 +175,8 @@ from pathlib import Path
from typing import ClassVar, Dict, List, Literal, Optional, Union, get_type_hints from typing import ClassVar, Dict, List, Literal, Optional, Union, get_type_hints
from omegaconf import DictConfig, OmegaConf from omegaconf import DictConfig, OmegaConf
from pydantic import Field, parse_obj_as from pydantic import Field, TypeAdapter
from pydantic_settings import SettingsConfigDict
from .config_base import InvokeAISettings from .config_base import InvokeAISettings
@ -185,6 +186,21 @@ LEGACY_INIT_FILE = Path("invokeai.init")
DEFAULT_MAX_VRAM = 0.5 DEFAULT_MAX_VRAM = 0.5
class Categories(object):
WebServer = dict(category="Web Server")
Features = dict(category="Features")
Paths = dict(category="Paths")
Logging = dict(category="Logging")
Development = dict(category="Development")
Other = dict(category="Other")
ModelCache = dict(category="Model Cache")
Device = dict(category="Device")
Generation = dict(category="Generation")
Queue = dict(category="Queue")
Nodes = dict(category="Nodes")
MemoryPerformance = dict(category="Memory/Performance")
class InvokeAIAppConfig(InvokeAISettings): class InvokeAIAppConfig(InvokeAISettings):
""" """
Generate images using Stable Diffusion. Use "invokeai" to launch Generate images using Stable Diffusion. Use "invokeai" to launch
@ -201,86 +217,88 @@ class InvokeAIAppConfig(InvokeAISettings):
type: Literal["InvokeAI"] = "InvokeAI" type: Literal["InvokeAI"] = "InvokeAI"
# WEB # WEB
host : str = Field(default="127.0.0.1", description="IP address to bind to", category='Web Server') host : str = Field(default="127.0.0.1", description="IP address to bind to", json_schema_extra=Categories.WebServer)
port : int = Field(default=9090, description="Port to bind to", category='Web Server') port : int = Field(default=9090, description="Port to bind to", json_schema_extra=Categories.WebServer)
allow_origins : List[str] = Field(default=[], description="Allowed CORS origins", category='Web Server') allow_origins : List[str] = Field(default=[], description="Allowed CORS origins", json_schema_extra=Categories.WebServer)
allow_credentials : bool = Field(default=True, description="Allow CORS credentials", category='Web Server') allow_credentials : bool = Field(default=True, description="Allow CORS credentials", json_schema_extra=Categories.WebServer)
allow_methods : List[str] = Field(default=["*"], description="Methods allowed for CORS", category='Web Server') allow_methods : List[str] = Field(default=["*"], description="Methods allowed for CORS", json_schema_extra=Categories.WebServer)
allow_headers : List[str] = Field(default=["*"], description="Headers allowed for CORS", category='Web Server') allow_headers : List[str] = Field(default=["*"], description="Headers allowed for CORS", json_schema_extra=Categories.WebServer)
# FEATURES # FEATURES
esrgan : bool = Field(default=True, description="Enable/disable upscaling code", category='Features') esrgan : bool = Field(default=True, description="Enable/disable upscaling code", json_schema_extra=Categories.Features)
internet_available : bool = Field(default=True, description="If true, attempt to download models on the fly; otherwise only use local models", category='Features') internet_available : bool = Field(default=True, description="If true, attempt to download models on the fly; otherwise only use local models", json_schema_extra=Categories.Features)
log_tokenization : bool = Field(default=False, description="Enable logging of parsed prompt tokens.", category='Features') log_tokenization : bool = Field(default=False, description="Enable logging of parsed prompt tokens.", json_schema_extra=Categories.Features)
patchmatch : bool = Field(default=True, description="Enable/disable patchmatch inpaint code", category='Features') patchmatch : bool = Field(default=True, description="Enable/disable patchmatch inpaint code", json_schema_extra=Categories.Features)
ignore_missing_core_models : bool = Field(default=False, description='Ignore missing models in models/core/convert', category='Features') ignore_missing_core_models : bool = Field(default=False, description='Ignore missing models in models/core/convert', json_schema_extra=Categories.Features)
# PATHS # PATHS
root : Path = Field(default=None, description='InvokeAI runtime root directory', category='Paths') root : Optional[Path] = Field(default=None, description='InvokeAI runtime root directory', json_schema_extra=Categories.Paths)
autoimport_dir : Path = Field(default='autoimport', description='Path to a directory of models files to be imported on startup.', category='Paths') autoimport_dir : Optional[Path] = Field(default=Path('autoimport'), description='Path to a directory of models files to be imported on startup.', json_schema_extra=Categories.Paths)
lora_dir : Path = Field(default=None, description='Path to a directory of LoRA/LyCORIS models to be imported on startup.', category='Paths') lora_dir : Optional[Path] = Field(default=None, description='Path to a directory of LoRA/LyCORIS models to be imported on startup.', json_schema_extra=Categories.Paths)
embedding_dir : Path = Field(default=None, description='Path to a directory of Textual Inversion embeddings to be imported on startup.', category='Paths') embedding_dir : Optional[Path] = Field(default=None, description='Path to a directory of Textual Inversion embeddings to be imported on startup.', json_schema_extra=Categories.Paths)
controlnet_dir : Path = Field(default=None, description='Path to a directory of ControlNet embeddings to be imported on startup.', category='Paths') controlnet_dir : Optional[Path] = Field(default=None, description='Path to a directory of ControlNet embeddings to be imported on startup.', json_schema_extra=Categories.Paths)
conf_path : Path = Field(default='configs/models.yaml', description='Path to models definition file', category='Paths') conf_path : Optional[Path] = Field(default=Path('configs/models.yaml'), description='Path to models definition file', json_schema_extra=Categories.Paths)
models_dir : Path = Field(default='models', description='Path to the models directory', category='Paths') models_dir : Optional[Path] = Field(default=Path('models'), description='Path to the models directory', json_schema_extra=Categories.Paths)
legacy_conf_dir : Path = Field(default='configs/stable-diffusion', description='Path to directory of legacy checkpoint config files', category='Paths') legacy_conf_dir : Optional[Path] = Field(default=Path('configs/stable-diffusion'), description='Path to directory of legacy checkpoint config files', json_schema_extra=Categories.Paths)
db_dir : Path = Field(default='databases', description='Path to InvokeAI databases directory', category='Paths') db_dir : Optional[Path] = Field(default=Path('databases'), description='Path to InvokeAI databases directory', json_schema_extra=Categories.Paths)
outdir : Path = Field(default='outputs', description='Default folder for output images', category='Paths') outdir : Optional[Path] = Field(default=Path('outputs'), description='Default folder for output images', json_schema_extra=Categories.Paths)
use_memory_db : bool = Field(default=False, description='Use in-memory database for storing image metadata', category='Paths') use_memory_db : bool = Field(default=False, description='Use in-memory database for storing image metadata', json_schema_extra=Categories.Paths)
from_file : Path = Field(default=None, description='Take command input from the indicated file (command-line client only)', category='Paths') from_file : Optional[Path] = Field(default=None, description='Take command input from the indicated file (command-line client only)', json_schema_extra=Categories.Paths)
# LOGGING # LOGGING
log_handlers : List[str] = Field(default=["console"], description='Log handler. Valid options are "console", "file=<path>", "syslog=path|address:host:port", "http=<url>"', category="Logging") log_handlers : List[str] = Field(default=["console"], description='Log handler. Valid options are "console", "file=<path>", "syslog=path|address:host:port", "http=<url>"', json_schema_extra=Categories.Logging)
# note - would be better to read the log_format values from logging.py, but this creates circular dependencies issues # note - would be better to read the log_format values from logging.py, but this creates circular dependencies issues
log_format : Literal['plain', 'color', 'syslog', 'legacy'] = Field(default="color", description='Log format. Use "plain" for text-only, "color" for colorized output, "legacy" for 2.3-style logging and "syslog" for syslog-style', category="Logging") log_format : Literal['plain', 'color', 'syslog', 'legacy'] = Field(default="color", description='Log format. Use "plain" for text-only, "color" for colorized output, "legacy" for 2.3-style logging and "syslog" for syslog-style', json_schema_extra=Categories.Logging)
log_level : Literal["debug", "info", "warning", "error", "critical"] = Field(default="info", description="Emit logging messages at this level or higher", category="Logging") log_level : Literal["debug", "info", "warning", "error", "critical"] = Field(default="info", description="Emit logging messages at this level or higher", json_schema_extra=Categories.Logging)
log_sql : bool = Field(default=False, description="Log SQL queries", category="Logging") log_sql : bool = Field(default=False, description="Log SQL queries", json_schema_extra=Categories.Logging)
dev_reload : bool = Field(default=False, description="Automatically reload when Python sources are changed.", category="Development") dev_reload : bool = Field(default=False, description="Automatically reload when Python sources are changed.", json_schema_extra=Categories.Development)
version : bool = Field(default=False, description="Show InvokeAI version and exit", category="Other") version : bool = Field(default=False, description="Show InvokeAI version and exit", json_schema_extra=Categories.Other)
# CACHE # CACHE
ram : float = Field(default=7.5, gt=0, description="Maximum memory amount used by model cache for rapid switching (floating point number, GB)", category="Model Cache", ) ram : float = Field(default=7.5, gt=0, description="Maximum memory amount used by model cache for rapid switching (floating point number, GB)", json_schema_extra=Categories.ModelCache, )
vram : float = Field(default=0.25, ge=0, description="Amount of VRAM reserved for model storage (floating point number, GB)", category="Model Cache", ) vram : float = Field(default=0.25, ge=0, description="Amount of VRAM reserved for model storage (floating point number, GB)", json_schema_extra=Categories.ModelCache, )
lazy_offload : bool = Field(default=True, description="Keep models in VRAM until their space is needed", category="Model Cache", ) lazy_offload : bool = Field(default=True, description="Keep models in VRAM until their space is needed", json_schema_extra=Categories.ModelCache, )
# DEVICE # DEVICE
device : Literal["auto", "cpu", "cuda", "cuda:1", "mps"] = Field(default="auto", description="Generation device", category="Device", ) device : Literal["auto", "cpu", "cuda", "cuda:1", "mps"] = Field(default="auto", description="Generation device", json_schema_extra=Categories.Device)
precision : Literal["auto", "float16", "float32", "autocast"] = Field(default="auto", description="Floating point precision", category="Device", ) precision : Literal["auto", "float16", "float32", "autocast"] = Field(default="auto", description="Floating point precision", json_schema_extra=Categories.Device)
# GENERATION # GENERATION
sequential_guidance : bool = Field(default=False, description="Whether to calculate guidance in serial instead of in parallel, lowering memory requirements", category="Generation", ) sequential_guidance : bool = Field(default=False, description="Whether to calculate guidance in serial instead of in parallel, lowering memory requirements", json_schema_extra=Categories.Generation)
attention_type : Literal["auto", "normal", "xformers", "sliced", "torch-sdp"] = Field(default="auto", description="Attention type", category="Generation", ) attention_type : Literal["auto", "normal", "xformers", "sliced", "torch-sdp"] = Field(default="auto", description="Attention type", json_schema_extra=Categories.Generation)
attention_slice_size: Literal["auto", "balanced", "max", 1, 2, 3, 4, 5, 6, 7, 8] = Field(default="auto", description='Slice size, valid when attention_type=="sliced"', category="Generation", ) attention_slice_size: Literal["auto", "balanced", "max", 1, 2, 3, 4, 5, 6, 7, 8] = Field(default="auto", description='Slice size, valid when attention_type=="sliced"', json_schema_extra=Categories.Generation)
force_tiled_decode : bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty)", category="Generation",) force_tiled_decode : bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty)", json_schema_extra=Categories.Generation)
force_tiled_decode: bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty)", category="Generation",) png_compress_level : int = Field(default=6, description="The compress_level setting of PIL.Image.save(), used for PNG encoding. All settings are lossless. 0 = fastest, largest filesize, 9 = slowest, smallest filesize", json_schema_extra=Categories.Generation)
png_compress_level : int = Field(default=6, description="The compress_level setting of PIL.Image.save(), used for PNG encoding. All settings are lossless. 0 = fastest, largest filesize, 9 = slowest, smallest filesize", category="Generation", )
# QUEUE # QUEUE
max_queue_size : int = Field(default=10000, gt=0, description="Maximum number of items in the session queue", category="Queue", ) max_queue_size : int = Field(default=10000, gt=0, description="Maximum number of items in the session queue", json_schema_extra=Categories.Queue)
# NODES # NODES
allow_nodes : Optional[List[str]] = Field(default=None, description="List of nodes to allow. Omit to allow all.", category="Nodes") allow_nodes : Optional[List[str]] = Field(default=None, description="List of nodes to allow. Omit to allow all.", json_schema_extra=Categories.Nodes)
deny_nodes : Optional[List[str]] = Field(default=None, description="List of nodes to deny. Omit to deny none.", category="Nodes") deny_nodes : Optional[List[str]] = Field(default=None, description="List of nodes to deny. Omit to deny none.", json_schema_extra=Categories.Nodes)
node_cache_size : int = Field(default=512, description="How many cached nodes to keep in memory", category="Nodes", ) node_cache_size : int = Field(default=512, description="How many cached nodes to keep in memory", json_schema_extra=Categories.Nodes)
# DEPRECATED FIELDS - STILL HERE IN ORDER TO OBTAN VALUES FROM PRE-3.1 CONFIG FILES # DEPRECATED FIELDS - STILL HERE IN ORDER TO OBTAN VALUES FROM PRE-3.1 CONFIG FILES
always_use_cpu : bool = Field(default=False, description="If true, use the CPU for rendering even if a GPU is available.", category='Memory/Performance') always_use_cpu : bool = Field(default=False, description="If true, use the CPU for rendering even if a GPU is available.", json_schema_extra=Categories.MemoryPerformance)
free_gpu_mem : Optional[bool] = Field(default=None, description="If true, purge model from GPU after each generation.", category='Memory/Performance') free_gpu_mem : Optional[bool] = Field(default=None, description="If true, purge model from GPU after each generation.", json_schema_extra=Categories.MemoryPerformance)
max_cache_size : Optional[float] = Field(default=None, gt=0, description="Maximum memory amount used by model cache for rapid switching", category='Memory/Performance') max_cache_size : Optional[float] = Field(default=None, gt=0, description="Maximum memory amount used by model cache for rapid switching", json_schema_extra=Categories.MemoryPerformance)
max_vram_cache_size : Optional[float] = Field(default=None, ge=0, description="Amount of VRAM reserved for model storage", category='Memory/Performance') max_vram_cache_size : Optional[float] = Field(default=None, ge=0, description="Amount of VRAM reserved for model storage", json_schema_extra=Categories.MemoryPerformance)
xformers_enabled : bool = Field(default=True, description="Enable/disable memory-efficient attention", category='Memory/Performance') xformers_enabled : bool = Field(default=True, description="Enable/disable memory-efficient attention", json_schema_extra=Categories.MemoryPerformance)
tiled_decode : bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty)", category='Memory/Performance') tiled_decode : bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty)", json_schema_extra=Categories.MemoryPerformance)
# See InvokeAIAppConfig subclass below for CACHE and DEVICE categories # See InvokeAIAppConfig subclass below for CACHE and DEVICE categories
# fmt: on # fmt: on
class Config: model_config = SettingsConfigDict(validate_assignment=True, env_prefix="INVOKEAI")
validate_assignment = True
env_prefix = "INVOKEAI"
def parse_args(self, argv: Optional[list[str]] = None, conf: Optional[DictConfig] = None, clobber=False): def parse_args(
self,
argv: Optional[list[str]] = None,
conf: Optional[DictConfig] = None,
clobber=False,
):
""" """
Update settings with contents of init file, environment, and Update settings with contents of init file, environment, and
command-line settings. command-line settings.
@ -308,7 +326,11 @@ class InvokeAIAppConfig(InvokeAISettings):
if self.singleton_init and not clobber: if self.singleton_init and not clobber:
hints = get_type_hints(self.__class__) hints = get_type_hints(self.__class__)
for k in self.singleton_init: for k in self.singleton_init:
setattr(self, k, parse_obj_as(hints[k], self.singleton_init[k])) setattr(
self,
k,
TypeAdapter(hints[k]).validate_python(self.singleton_init[k]),
)
@classmethod @classmethod
def get_config(cls, **kwargs) -> InvokeAIAppConfig: def get_config(cls, **kwargs) -> InvokeAIAppConfig:

View File

@ -2,7 +2,6 @@
from typing import Any, Optional from typing import Any, Optional
from invokeai.app.invocations.model import ModelInfo
from invokeai.app.services.invocation_processor.invocation_processor_common import ProgressImage from invokeai.app.services.invocation_processor.invocation_processor_common import ProgressImage
from invokeai.app.services.session_queue.session_queue_common import ( from invokeai.app.services.session_queue.session_queue_common import (
BatchStatus, BatchStatus,
@ -11,6 +10,7 @@ from invokeai.app.services.session_queue.session_queue_common import (
SessionQueueStatus, SessionQueueStatus,
) )
from invokeai.app.util.misc import get_timestamp from invokeai.app.util.misc import get_timestamp
from invokeai.backend.model_management.model_manager import ModelInfo
from invokeai.backend.model_management.models.base import BaseModelType, ModelType, SubModelType from invokeai.backend.model_management.models.base import BaseModelType, ModelType, SubModelType
@ -55,7 +55,7 @@ class EventServiceBase:
graph_execution_state_id=graph_execution_state_id, graph_execution_state_id=graph_execution_state_id,
node_id=node.get("id"), node_id=node.get("id"),
source_node_id=source_node_id, source_node_id=source_node_id,
progress_image=progress_image.dict() if progress_image is not None else None, progress_image=progress_image.model_dump() if progress_image is not None else None,
step=step, step=step,
order=order, order=order,
total_steps=total_steps, total_steps=total_steps,
@ -291,8 +291,8 @@ class EventServiceBase:
started_at=str(session_queue_item.started_at) if session_queue_item.started_at else None, started_at=str(session_queue_item.started_at) if session_queue_item.started_at else None,
completed_at=str(session_queue_item.completed_at) if session_queue_item.completed_at else None, completed_at=str(session_queue_item.completed_at) if session_queue_item.completed_at else None,
), ),
batch_status=batch_status.dict(), batch_status=batch_status.model_dump(),
queue_status=queue_status.dict(), queue_status=queue_status.model_dump(),
), ),
) )

View File

@ -1,4 +1,5 @@
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from pathlib import Path
from typing import Optional from typing import Optional
from PIL.Image import Image as PILImageType from PIL.Image import Image as PILImageType
@ -13,7 +14,7 @@ class ImageFileStorageBase(ABC):
pass pass
@abstractmethod @abstractmethod
def get_path(self, image_name: str, thumbnail: bool = False) -> str: def get_path(self, image_name: str, thumbnail: bool = False) -> Path:
"""Gets the internal path to an image or thumbnail.""" """Gets the internal path to an image or thumbnail."""
pass pass

View File

@ -34,8 +34,8 @@ class ImageRecordStorageBase(ABC):
@abstractmethod @abstractmethod
def get_many( def get_many(
self, self,
offset: Optional[int] = None, offset: int = 0,
limit: Optional[int] = None, limit: int = 10,
image_origin: Optional[ResourceOrigin] = None, image_origin: Optional[ResourceOrigin] = None,
categories: Optional[list[ImageCategory]] = None, categories: Optional[list[ImageCategory]] = None,
is_intermediate: Optional[bool] = None, is_intermediate: Optional[bool] = None,
@ -69,11 +69,11 @@ class ImageRecordStorageBase(ABC):
image_category: ImageCategory, image_category: ImageCategory,
width: int, width: int,
height: int, height: int,
session_id: Optional[str], is_intermediate: Optional[bool] = False,
node_id: Optional[str], starred: Optional[bool] = False,
metadata: Optional[dict], session_id: Optional[str] = None,
is_intermediate: bool = False, node_id: Optional[str] = None,
starred: bool = False, metadata: Optional[dict] = None,
) -> datetime: ) -> datetime:
"""Saves an image record.""" """Saves an image record."""
pass pass

View File

@ -3,7 +3,7 @@ import datetime
from enum import Enum from enum import Enum
from typing import Optional, Union from typing import Optional, Union
from pydantic import Extra, Field, StrictBool, StrictStr from pydantic import Field, StrictBool, StrictStr
from invokeai.app.util.metaenum import MetaEnum from invokeai.app.util.metaenum import MetaEnum
from invokeai.app.util.misc import get_iso_timestamp from invokeai.app.util.misc import get_iso_timestamp
@ -129,7 +129,9 @@ class ImageRecord(BaseModelExcludeNull):
"""The created timestamp of the image.""" """The created timestamp of the image."""
updated_at: Union[datetime.datetime, str] = Field(description="The updated timestamp of the image.") updated_at: Union[datetime.datetime, str] = Field(description="The updated timestamp of the image.")
"""The updated timestamp of the image.""" """The updated timestamp of the image."""
deleted_at: Union[datetime.datetime, str, None] = Field(description="The deleted timestamp of the image.") deleted_at: Optional[Union[datetime.datetime, str]] = Field(
default=None, description="The deleted timestamp of the image."
)
"""The deleted timestamp of the image.""" """The deleted timestamp of the image."""
is_intermediate: bool = Field(description="Whether this is an intermediate image.") is_intermediate: bool = Field(description="Whether this is an intermediate image.")
"""Whether this is an intermediate image.""" """Whether this is an intermediate image."""
@ -147,7 +149,7 @@ class ImageRecord(BaseModelExcludeNull):
"""Whether this image is starred.""" """Whether this image is starred."""
class ImageRecordChanges(BaseModelExcludeNull, extra=Extra.forbid): class ImageRecordChanges(BaseModelExcludeNull, extra="allow"):
"""A set of changes to apply to an image record. """A set of changes to apply to an image record.
Only limited changes are valid: Only limited changes are valid:

View File

@ -2,7 +2,7 @@ import json
import sqlite3 import sqlite3
import threading import threading
from datetime import datetime from datetime import datetime
from typing import Optional, cast from typing import Optional, Union, cast
from invokeai.app.services.shared.pagination import OffsetPaginatedResults from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from invokeai.app.services.shared.sqlite import SqliteDatabase from invokeai.app.services.shared.sqlite import SqliteDatabase
@ -117,7 +117,7 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
""" """
) )
def get(self, image_name: str) -> Optional[ImageRecord]: def get(self, image_name: str) -> ImageRecord:
try: try:
self._lock.acquire() self._lock.acquire()
@ -223,8 +223,8 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
def get_many( def get_many(
self, self,
offset: Optional[int] = None, offset: int = 0,
limit: Optional[int] = None, limit: int = 10,
image_origin: Optional[ResourceOrigin] = None, image_origin: Optional[ResourceOrigin] = None,
categories: Optional[list[ImageCategory]] = None, categories: Optional[list[ImageCategory]] = None,
is_intermediate: Optional[bool] = None, is_intermediate: Optional[bool] = None,
@ -249,7 +249,7 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
""" """
query_conditions = "" query_conditions = ""
query_params = [] query_params: list[Union[int, str, bool]] = []
if image_origin is not None: if image_origin is not None:
query_conditions += """--sql query_conditions += """--sql
@ -387,13 +387,13 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
image_name: str, image_name: str,
image_origin: ResourceOrigin, image_origin: ResourceOrigin,
image_category: ImageCategory, image_category: ImageCategory,
session_id: Optional[str],
width: int, width: int,
height: int, height: int,
node_id: Optional[str], is_intermediate: Optional[bool] = False,
metadata: Optional[dict], starred: Optional[bool] = False,
is_intermediate: bool = False, session_id: Optional[str] = None,
starred: bool = False, node_id: Optional[str] = None,
metadata: Optional[dict] = None,
) -> datetime: ) -> datetime:
try: try:
metadata_json = None if metadata is None else json.dumps(metadata) metadata_json = None if metadata is None else json.dumps(metadata)

View File

@ -49,7 +49,7 @@ class ImageServiceABC(ABC):
node_id: Optional[str] = None, node_id: Optional[str] = None,
session_id: Optional[str] = None, session_id: Optional[str] = None,
board_id: Optional[str] = None, board_id: Optional[str] = None,
is_intermediate: bool = False, is_intermediate: Optional[bool] = False,
metadata: Optional[dict] = None, metadata: Optional[dict] = None,
workflow: Optional[str] = None, workflow: Optional[str] = None,
) -> ImageDTO: ) -> ImageDTO:

View File

@ -20,7 +20,9 @@ class ImageUrlsDTO(BaseModelExcludeNull):
class ImageDTO(ImageRecord, ImageUrlsDTO): class ImageDTO(ImageRecord, ImageUrlsDTO):
"""Deserialized image record, enriched for the frontend.""" """Deserialized image record, enriched for the frontend."""
board_id: Optional[str] = Field(description="The id of the board the image belongs to, if one exists.") board_id: Optional[str] = Field(
default=None, description="The id of the board the image belongs to, if one exists."
)
"""The id of the board the image belongs to, if one exists.""" """The id of the board the image belongs to, if one exists."""
pass pass
@ -34,7 +36,7 @@ def image_record_to_dto(
) -> ImageDTO: ) -> ImageDTO:
"""Converts an image record to an image DTO.""" """Converts an image record to an image DTO."""
return ImageDTO( return ImageDTO(
**image_record.dict(), **image_record.model_dump(),
image_url=image_url, image_url=image_url,
thumbnail_url=thumbnail_url, thumbnail_url=thumbnail_url,
board_id=board_id, board_id=board_id,

View File

@ -41,7 +41,7 @@ class ImageService(ImageServiceABC):
node_id: Optional[str] = None, node_id: Optional[str] = None,
session_id: Optional[str] = None, session_id: Optional[str] = None,
board_id: Optional[str] = None, board_id: Optional[str] = None,
is_intermediate: bool = False, is_intermediate: Optional[bool] = False,
metadata: Optional[dict] = None, metadata: Optional[dict] = None,
workflow: Optional[str] = None, workflow: Optional[str] = None,
) -> ImageDTO: ) -> ImageDTO:
@ -146,7 +146,7 @@ class ImageService(ImageServiceABC):
self.__invoker.services.logger.error("Problem getting image DTO") self.__invoker.services.logger.error("Problem getting image DTO")
raise e raise e
def get_metadata(self, image_name: str) -> Optional[ImageMetadata]: def get_metadata(self, image_name: str) -> ImageMetadata:
try: try:
image_record = self.__invoker.services.image_records.get(image_name) image_record = self.__invoker.services.image_records.get(image_name)
metadata = self.__invoker.services.image_records.get_metadata(image_name) metadata = self.__invoker.services.image_records.get_metadata(image_name)
@ -174,7 +174,7 @@ class ImageService(ImageServiceABC):
def get_path(self, image_name: str, thumbnail: bool = False) -> str: def get_path(self, image_name: str, thumbnail: bool = False) -> str:
try: try:
return self.__invoker.services.image_files.get_path(image_name, thumbnail) return str(self.__invoker.services.image_files.get_path(image_name, thumbnail))
except Exception as e: except Exception as e:
self.__invoker.services.logger.error("Problem getting image path") self.__invoker.services.logger.error("Problem getting image path")
raise e raise e

View File

@ -58,7 +58,12 @@ class MemoryInvocationCache(InvocationCacheBase):
# If the cache is full, we need to remove the least used # If the cache is full, we need to remove the least used
number_to_delete = len(self._cache) + 1 - self._max_cache_size number_to_delete = len(self._cache) + 1 - self._max_cache_size
self._delete_oldest_access(number_to_delete) self._delete_oldest_access(number_to_delete)
self._cache[key] = CachedItem(invocation_output, invocation_output.json()) self._cache[key] = CachedItem(
invocation_output,
invocation_output.model_dump_json(
warnings=False, exclude_defaults=True, exclude_unset=True, include={"type"}
),
)
def _delete_oldest_access(self, number_to_delete: int) -> None: def _delete_oldest_access(self, number_to_delete: int) -> None:
number_to_delete = min(number_to_delete, len(self._cache)) number_to_delete = min(number_to_delete, len(self._cache))
@ -85,7 +90,7 @@ class MemoryInvocationCache(InvocationCacheBase):
@staticmethod @staticmethod
def create_key(invocation: BaseInvocation) -> int: def create_key(invocation: BaseInvocation) -> int:
return hash(invocation.json(exclude={"id"})) return hash(invocation.model_dump_json(exclude={"id"}, warnings=False))
def disable(self) -> None: def disable(self) -> None:
with self._lock: with self._lock:

View File

@ -89,7 +89,7 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
queue_item_id=queue_item.session_queue_item_id, queue_item_id=queue_item.session_queue_item_id,
queue_id=queue_item.session_queue_id, queue_id=queue_item.session_queue_id,
graph_execution_state_id=graph_execution_state.id, graph_execution_state_id=graph_execution_state.id,
node=invocation.dict(), node=invocation.model_dump(),
source_node_id=source_node_id, source_node_id=source_node_id,
) )
@ -127,9 +127,9 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
queue_item_id=queue_item.session_queue_item_id, queue_item_id=queue_item.session_queue_item_id,
queue_id=queue_item.session_queue_id, queue_id=queue_item.session_queue_id,
graph_execution_state_id=graph_execution_state.id, graph_execution_state_id=graph_execution_state.id,
node=invocation.dict(), node=invocation.model_dump(),
source_node_id=source_node_id, source_node_id=source_node_id,
result=outputs.dict(), result=outputs.model_dump(),
) )
self.__invoker.services.performance_statistics.log_stats() self.__invoker.services.performance_statistics.log_stats()
@ -157,7 +157,7 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
queue_item_id=queue_item.session_queue_item_id, queue_item_id=queue_item.session_queue_item_id,
queue_id=queue_item.session_queue_id, queue_id=queue_item.session_queue_id,
graph_execution_state_id=graph_execution_state.id, graph_execution_state_id=graph_execution_state.id,
node=invocation.dict(), node=invocation.model_dump(),
source_node_id=source_node_id, source_node_id=source_node_id,
error_type=e.__class__.__name__, error_type=e.__class__.__name__,
error=error, error=error,
@ -187,7 +187,7 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
queue_item_id=queue_item.session_queue_item_id, queue_item_id=queue_item.session_queue_item_id,
queue_id=queue_item.session_queue_id, queue_id=queue_item.session_queue_id,
graph_execution_state_id=graph_execution_state.id, graph_execution_state_id=graph_execution_state.id,
node=invocation.dict(), node=invocation.model_dump(),
source_node_id=source_node_id, source_node_id=source_node_id,
error_type=e.__class__.__name__, error_type=e.__class__.__name__,
error=traceback.format_exc(), error=traceback.format_exc(),

View File

@ -72,7 +72,7 @@ class InvocationStatsService(InvocationStatsServiceBase):
) )
self.collector.update_invocation_stats( self.collector.update_invocation_stats(
graph_id=self.graph_id, graph_id=self.graph_id,
invocation_type=self.invocation.type, # type: ignore - `type` is not on the `BaseInvocation` model, but *is* on all invocations invocation_type=self.invocation.type, # type: ignore # `type` is not on the `BaseInvocation` model, but *is* on all invocations
time_used=time.time() - self.start_time, time_used=time.time() - self.start_time,
vram_used=torch.cuda.max_memory_allocated() / GIG if torch.cuda.is_available() else 0.0, vram_used=torch.cuda.max_memory_allocated() / GIG if torch.cuda.is_available() else 0.0,
) )

View File

@ -2,7 +2,7 @@ import sqlite3
import threading import threading
from typing import Generic, Optional, TypeVar, get_args from typing import Generic, Optional, TypeVar, get_args
from pydantic import BaseModel, parse_raw_as from pydantic import BaseModel, TypeAdapter
from invokeai.app.services.shared.pagination import PaginatedResults from invokeai.app.services.shared.pagination import PaginatedResults
from invokeai.app.services.shared.sqlite import SqliteDatabase from invokeai.app.services.shared.sqlite import SqliteDatabase
@ -18,6 +18,7 @@ class SqliteItemStorage(ItemStorageABC, Generic[T]):
_cursor: sqlite3.Cursor _cursor: sqlite3.Cursor
_id_field: str _id_field: str
_lock: threading.RLock _lock: threading.RLock
_adapter: Optional[TypeAdapter[T]]
def __init__(self, db: SqliteDatabase, table_name: str, id_field: str = "id"): def __init__(self, db: SqliteDatabase, table_name: str, id_field: str = "id"):
super().__init__() super().__init__()
@ -27,6 +28,7 @@ class SqliteItemStorage(ItemStorageABC, Generic[T]):
self._table_name = table_name self._table_name = table_name
self._id_field = id_field # TODO: validate that T has this field self._id_field = id_field # TODO: validate that T has this field
self._cursor = self._conn.cursor() self._cursor = self._conn.cursor()
self._adapter: Optional[TypeAdapter[T]] = None
self._create_table() self._create_table()
@ -45,16 +47,21 @@ class SqliteItemStorage(ItemStorageABC, Generic[T]):
self._lock.release() self._lock.release()
def _parse_item(self, item: str) -> T: def _parse_item(self, item: str) -> T:
# __orig_class__ is technically an implementation detail of the typing module, not a supported API if self._adapter is None:
item_type = get_args(self.__orig_class__)[0] # type: ignore """
return parse_raw_as(item_type, item) We don't get access to `__orig_class__` in `__init__()`, and we need this before start(), so
we can create it when it is first needed instead.
__orig_class__ is technically an implementation detail of the typing module, not a supported API
"""
self._adapter = TypeAdapter(get_args(self.__orig_class__)[0]) # type: ignore [attr-defined]
return self._adapter.validate_json(item)
def set(self, item: T): def set(self, item: T):
try: try:
self._lock.acquire() self._lock.acquire()
self._cursor.execute( self._cursor.execute(
f"""INSERT OR REPLACE INTO {self._table_name} (item) VALUES (?);""", f"""INSERT OR REPLACE INTO {self._table_name} (item) VALUES (?);""",
(item.json(),), (item.model_dump_json(warnings=False, exclude_none=True),),
) )
self._conn.commit() self._conn.commit()
finally: finally:

View File

@ -231,7 +231,7 @@ class ModelManagerServiceBase(ABC):
def merge_models( def merge_models(
self, self,
model_names: List[str] = Field( model_names: List[str] = Field(
default=None, min_items=2, max_items=3, description="List of model names to merge" default=None, min_length=2, max_length=3, description="List of model names to merge"
), ),
base_model: Union[BaseModelType, str] = Field( base_model: Union[BaseModelType, str] = Field(
default=None, description="Base model shared by all models to be merged" default=None, description="Base model shared by all models to be merged"

View File

@ -327,7 +327,7 @@ class ModelManagerService(ModelManagerServiceBase):
def merge_models( def merge_models(
self, self,
model_names: List[str] = Field( model_names: List[str] = Field(
default=None, min_items=2, max_items=3, description="List of model names to merge" default=None, min_length=2, max_length=3, description="List of model names to merge"
), ),
base_model: Union[BaseModelType, str] = Field( base_model: Union[BaseModelType, str] = Field(
default=None, description="Base model shared by all models to be merged" default=None, description="Base model shared by all models to be merged"

View File

@ -3,8 +3,8 @@ import json
from itertools import chain, product from itertools import chain, product
from typing import Generator, Iterable, Literal, NamedTuple, Optional, TypeAlias, Union, cast from typing import Generator, Iterable, Literal, NamedTuple, Optional, TypeAlias, Union, cast
from pydantic import BaseModel, Field, StrictStr, parse_raw_as, root_validator, validator from pydantic import BaseModel, ConfigDict, Field, StrictStr, TypeAdapter, field_validator, model_validator
from pydantic.json import pydantic_encoder from pydantic_core import to_jsonable_python
from invokeai.app.invocations.baseinvocation import BaseInvocation from invokeai.app.invocations.baseinvocation import BaseInvocation
from invokeai.app.services.shared.graph import Graph, GraphExecutionState, NodeNotFoundError from invokeai.app.services.shared.graph import Graph, GraphExecutionState, NodeNotFoundError
@ -17,7 +17,7 @@ class BatchZippedLengthError(ValueError):
"""Raise when a batch has items of different lengths.""" """Raise when a batch has items of different lengths."""
class BatchItemsTypeError(TypeError): class BatchItemsTypeError(ValueError): # this cannot be a TypeError in pydantic v2
"""Raise when a batch has items of different types.""" """Raise when a batch has items of different types."""
@ -70,7 +70,7 @@ class Batch(BaseModel):
default=1, ge=1, description="Int stating how many times to iterate through all possible batch indices" default=1, ge=1, description="Int stating how many times to iterate through all possible batch indices"
) )
@validator("data") @field_validator("data")
def validate_lengths(cls, v: Optional[BatchDataCollection]): def validate_lengths(cls, v: Optional[BatchDataCollection]):
if v is None: if v is None:
return v return v
@ -81,7 +81,7 @@ class Batch(BaseModel):
raise BatchZippedLengthError("Zipped batch items must all have the same length") raise BatchZippedLengthError("Zipped batch items must all have the same length")
return v return v
@validator("data") @field_validator("data")
def validate_types(cls, v: Optional[BatchDataCollection]): def validate_types(cls, v: Optional[BatchDataCollection]):
if v is None: if v is None:
return v return v
@ -94,7 +94,7 @@ class Batch(BaseModel):
raise BatchItemsTypeError("All items in a batch must have the same type") raise BatchItemsTypeError("All items in a batch must have the same type")
return v return v
@validator("data") @field_validator("data")
def validate_unique_field_mappings(cls, v: Optional[BatchDataCollection]): def validate_unique_field_mappings(cls, v: Optional[BatchDataCollection]):
if v is None: if v is None:
return v return v
@ -107,34 +107,35 @@ class Batch(BaseModel):
paths.add(pair) paths.add(pair)
return v return v
@root_validator(skip_on_failure=True) @model_validator(mode="after")
def validate_batch_nodes_and_edges(cls, values): def validate_batch_nodes_and_edges(cls, values):
batch_data_collection = cast(Optional[BatchDataCollection], values["data"]) batch_data_collection = cast(Optional[BatchDataCollection], values.data)
if batch_data_collection is None: if batch_data_collection is None:
return values return values
graph = cast(Graph, values["graph"]) graph = cast(Graph, values.graph)
for batch_data_list in batch_data_collection: for batch_data_list in batch_data_collection:
for batch_data in batch_data_list: for batch_data in batch_data_list:
try: try:
node = cast(BaseInvocation, graph.get_node(batch_data.node_path)) node = cast(BaseInvocation, graph.get_node(batch_data.node_path))
except NodeNotFoundError: except NodeNotFoundError:
raise NodeNotFoundError(f"Node {batch_data.node_path} not found in graph") raise NodeNotFoundError(f"Node {batch_data.node_path} not found in graph")
if batch_data.field_name not in node.__fields__: if batch_data.field_name not in node.model_fields:
raise NodeNotFoundError(f"Field {batch_data.field_name} not found in node {batch_data.node_path}") raise NodeNotFoundError(f"Field {batch_data.field_name} not found in node {batch_data.node_path}")
return values return values
@validator("graph") @field_validator("graph")
def validate_graph(cls, v: Graph): def validate_graph(cls, v: Graph):
v.validate_self() v.validate_self()
return v return v
class Config: model_config = ConfigDict(
schema_extra = { json_schema_extra=dict(
"required": [ required=[
"graph", "graph",
"runs", "runs",
] ]
} )
)
# endregion Batch # endregion Batch
@ -146,15 +147,21 @@ DEFAULT_QUEUE_ID = "default"
QUEUE_ITEM_STATUS = Literal["pending", "in_progress", "completed", "failed", "canceled"] QUEUE_ITEM_STATUS = Literal["pending", "in_progress", "completed", "failed", "canceled"]
adapter_NodeFieldValue = TypeAdapter(list[NodeFieldValue])
def get_field_values(queue_item_dict: dict) -> Optional[list[NodeFieldValue]]: def get_field_values(queue_item_dict: dict) -> Optional[list[NodeFieldValue]]:
field_values_raw = queue_item_dict.get("field_values", None) field_values_raw = queue_item_dict.get("field_values", None)
return parse_raw_as(list[NodeFieldValue], field_values_raw) if field_values_raw is not None else None return adapter_NodeFieldValue.validate_json(field_values_raw) if field_values_raw is not None else None
adapter_GraphExecutionState = TypeAdapter(GraphExecutionState)
def get_session(queue_item_dict: dict) -> GraphExecutionState: def get_session(queue_item_dict: dict) -> GraphExecutionState:
session_raw = queue_item_dict.get("session", "{}") session_raw = queue_item_dict.get("session", "{}")
return parse_raw_as(GraphExecutionState, session_raw) session = adapter_GraphExecutionState.validate_json(session_raw, strict=False)
return session
class SessionQueueItemWithoutGraph(BaseModel): class SessionQueueItemWithoutGraph(BaseModel):
@ -178,14 +185,14 @@ class SessionQueueItemWithoutGraph(BaseModel):
) )
@classmethod @classmethod
def from_dict(cls, queue_item_dict: dict) -> "SessionQueueItemDTO": def queue_item_dto_from_dict(cls, queue_item_dict: dict) -> "SessionQueueItemDTO":
# must parse these manually # must parse these manually
queue_item_dict["field_values"] = get_field_values(queue_item_dict) queue_item_dict["field_values"] = get_field_values(queue_item_dict)
return SessionQueueItemDTO(**queue_item_dict) return SessionQueueItemDTO(**queue_item_dict)
class Config: model_config = ConfigDict(
schema_extra = { json_schema_extra=dict(
"required": [ required=[
"item_id", "item_id",
"status", "status",
"batch_id", "batch_id",
@ -196,7 +203,8 @@ class SessionQueueItemWithoutGraph(BaseModel):
"created_at", "created_at",
"updated_at", "updated_at",
] ]
} )
)
class SessionQueueItemDTO(SessionQueueItemWithoutGraph): class SessionQueueItemDTO(SessionQueueItemWithoutGraph):
@ -207,15 +215,15 @@ class SessionQueueItem(SessionQueueItemWithoutGraph):
session: GraphExecutionState = Field(description="The fully-populated session to be executed") session: GraphExecutionState = Field(description="The fully-populated session to be executed")
@classmethod @classmethod
def from_dict(cls, queue_item_dict: dict) -> "SessionQueueItem": def queue_item_from_dict(cls, queue_item_dict: dict) -> "SessionQueueItem":
# must parse these manually # must parse these manually
queue_item_dict["field_values"] = get_field_values(queue_item_dict) queue_item_dict["field_values"] = get_field_values(queue_item_dict)
queue_item_dict["session"] = get_session(queue_item_dict) queue_item_dict["session"] = get_session(queue_item_dict)
return SessionQueueItem(**queue_item_dict) return SessionQueueItem(**queue_item_dict)
class Config: model_config = ConfigDict(
schema_extra = { json_schema_extra=dict(
"required": [ required=[
"item_id", "item_id",
"status", "status",
"batch_id", "batch_id",
@ -227,7 +235,8 @@ class SessionQueueItem(SessionQueueItemWithoutGraph):
"created_at", "created_at",
"updated_at", "updated_at",
] ]
} )
)
# endregion Queue Items # endregion Queue Items
@ -321,7 +330,7 @@ def populate_graph(graph: Graph, node_field_values: Iterable[NodeFieldValue]) ->
""" """
Populates the given graph with the given batch data items. Populates the given graph with the given batch data items.
""" """
graph_clone = graph.copy(deep=True) graph_clone = graph.model_copy(deep=True)
for item in node_field_values: for item in node_field_values:
node = graph_clone.get_node(item.node_path) node = graph_clone.get_node(item.node_path)
if node is None: if node is None:
@ -354,7 +363,7 @@ def create_session_nfv_tuples(
for item in batch_datum.items for item in batch_datum.items
] ]
node_field_values_to_zip.append(node_field_values) node_field_values_to_zip.append(node_field_values)
data.append(list(zip(*node_field_values_to_zip))) data.append(list(zip(*node_field_values_to_zip))) # type: ignore [arg-type]
# create generator to yield session,nfv tuples # create generator to yield session,nfv tuples
count = 0 count = 0
@ -409,11 +418,11 @@ def prepare_values_to_insert(queue_id: str, batch: Batch, priority: int, max_new
values_to_insert.append( values_to_insert.append(
SessionQueueValueToInsert( SessionQueueValueToInsert(
queue_id, # queue_id queue_id, # queue_id
session.json(), # session (json) session.model_dump_json(warnings=False, exclude_none=True), # session (json)
session.id, # session_id session.id, # session_id
batch.batch_id, # batch_id batch.batch_id, # batch_id
# must use pydantic_encoder bc field_values is a list of models # must use pydantic_encoder bc field_values is a list of models
json.dumps(field_values, default=pydantic_encoder) if field_values else None, # field_values (json) json.dumps(field_values, default=to_jsonable_python) if field_values else None, # field_values (json)
priority, # priority priority, # priority
) )
) )
@ -421,3 +430,6 @@ def prepare_values_to_insert(queue_id: str, batch: Batch, priority: int, max_new
# endregion Util # endregion Util
Batch.model_rebuild(force=True)
SessionQueueItem.model_rebuild(force=True)

View File

@ -277,8 +277,8 @@ class SqliteSessionQueue(SessionQueueBase):
if result is None: if result is None:
raise SessionQueueItemNotFoundError(f"No queue item with batch id {enqueue_result.batch.batch_id}") raise SessionQueueItemNotFoundError(f"No queue item with batch id {enqueue_result.batch.batch_id}")
return EnqueueGraphResult( return EnqueueGraphResult(
**enqueue_result.dict(), **enqueue_result.model_dump(),
queue_item=SessionQueueItemDTO.from_dict(dict(result)), queue_item=SessionQueueItemDTO.queue_item_dto_from_dict(dict(result)),
) )
def enqueue_batch(self, queue_id: str, batch: Batch, prepend: bool) -> EnqueueBatchResult: def enqueue_batch(self, queue_id: str, batch: Batch, prepend: bool) -> EnqueueBatchResult:
@ -351,7 +351,7 @@ class SqliteSessionQueue(SessionQueueBase):
self.__lock.release() self.__lock.release()
if result is None: if result is None:
return None return None
queue_item = SessionQueueItem.from_dict(dict(result)) queue_item = SessionQueueItem.queue_item_from_dict(dict(result))
queue_item = self._set_queue_item_status(item_id=queue_item.item_id, status="in_progress") queue_item = self._set_queue_item_status(item_id=queue_item.item_id, status="in_progress")
return queue_item return queue_item
@ -380,7 +380,7 @@ class SqliteSessionQueue(SessionQueueBase):
self.__lock.release() self.__lock.release()
if result is None: if result is None:
return None return None
return SessionQueueItem.from_dict(dict(result)) return SessionQueueItem.queue_item_from_dict(dict(result))
def get_current(self, queue_id: str) -> Optional[SessionQueueItem]: def get_current(self, queue_id: str) -> Optional[SessionQueueItem]:
try: try:
@ -404,7 +404,7 @@ class SqliteSessionQueue(SessionQueueBase):
self.__lock.release() self.__lock.release()
if result is None: if result is None:
return None return None
return SessionQueueItem.from_dict(dict(result)) return SessionQueueItem.queue_item_from_dict(dict(result))
def _set_queue_item_status( def _set_queue_item_status(
self, item_id: int, status: QUEUE_ITEM_STATUS, error: Optional[str] = None self, item_id: int, status: QUEUE_ITEM_STATUS, error: Optional[str] = None
@ -564,7 +564,7 @@ class SqliteSessionQueue(SessionQueueBase):
queue_item = self.get_queue_item(item_id) queue_item = self.get_queue_item(item_id)
if queue_item.status not in ["canceled", "failed", "completed"]: if queue_item.status not in ["canceled", "failed", "completed"]:
status = "failed" if error is not None else "canceled" status = "failed" if error is not None else "canceled"
queue_item = self._set_queue_item_status(item_id=item_id, status=status, error=error) queue_item = self._set_queue_item_status(item_id=item_id, status=status, error=error) # type: ignore [arg-type] # mypy seems to not narrow the Literals here
self.__invoker.services.queue.cancel(queue_item.session_id) self.__invoker.services.queue.cancel(queue_item.session_id)
self.__invoker.services.events.emit_session_canceled( self.__invoker.services.events.emit_session_canceled(
queue_item_id=queue_item.item_id, queue_item_id=queue_item.item_id,
@ -699,7 +699,7 @@ class SqliteSessionQueue(SessionQueueBase):
self.__lock.release() self.__lock.release()
if result is None: if result is None:
raise SessionQueueItemNotFoundError(f"No queue item with id {item_id}") raise SessionQueueItemNotFoundError(f"No queue item with id {item_id}")
return SessionQueueItem.from_dict(dict(result)) return SessionQueueItem.queue_item_from_dict(dict(result))
def list_queue_items( def list_queue_items(
self, self,
@ -751,7 +751,7 @@ class SqliteSessionQueue(SessionQueueBase):
params.append(limit + 1) params.append(limit + 1)
self.__cursor.execute(query, params) self.__cursor.execute(query, params)
results = cast(list[sqlite3.Row], self.__cursor.fetchall()) results = cast(list[sqlite3.Row], self.__cursor.fetchall())
items = [SessionQueueItemDTO.from_dict(dict(result)) for result in results] items = [SessionQueueItemDTO.queue_item_dto_from_dict(dict(result)) for result in results]
has_more = False has_more = False
if len(items) > limit: if len(items) > limit:
# remove the extra item # remove the extra item

View File

@ -80,10 +80,10 @@ def create_system_graphs(graph_library: ItemStorageABC[LibraryGraph]) -> list[Li
# TODO: Uncomment this when we are ready to fix this up to prevent breaking changes # TODO: Uncomment this when we are ready to fix this up to prevent breaking changes
graphs: list[LibraryGraph] = list() graphs: list[LibraryGraph] = list()
# text_to_image = graph_library.get(default_text_to_image_graph_id) text_to_image = graph_library.get(default_text_to_image_graph_id)
# # TODO: Check if the graph is the same as the default one, and if not, update it # TODO: Check if the graph is the same as the default one, and if not, update it
# #if text_to_image is None: # if text_to_image is None:
text_to_image = create_text_to_image() text_to_image = create_text_to_image()
graph_library.set(text_to_image) graph_library.set(text_to_image)

View File

@ -5,7 +5,7 @@ import itertools
from typing import Annotated, Any, Optional, Union, get_args, get_origin, get_type_hints from typing import Annotated, Any, Optional, Union, get_args, get_origin, get_type_hints
import networkx as nx import networkx as nx
from pydantic import BaseModel, root_validator, validator from pydantic import BaseModel, ConfigDict, field_validator, model_validator
from pydantic.fields import Field from pydantic.fields import Field
# Importing * is bad karma but needed here for node detection # Importing * is bad karma but needed here for node detection
@ -235,7 +235,8 @@ class CollectInvocationOutput(BaseInvocationOutput):
class CollectInvocation(BaseInvocation): class CollectInvocation(BaseInvocation):
"""Collects values into a collection""" """Collects values into a collection"""
item: Any = InputField( item: Optional[Any] = InputField(
default=None,
description="The item to collect (all inputs must be of the same type)", description="The item to collect (all inputs must be of the same type)",
ui_type=UIType.CollectionItem, ui_type=UIType.CollectionItem,
title="Collection Item", title="Collection Item",
@ -250,8 +251,8 @@ class CollectInvocation(BaseInvocation):
return CollectInvocationOutput(collection=copy.copy(self.collection)) return CollectInvocationOutput(collection=copy.copy(self.collection))
InvocationsUnion = Union[BaseInvocation.get_invocations()] # type: ignore InvocationsUnion: Any = BaseInvocation.get_invocations_union()
InvocationOutputsUnion = Union[BaseInvocationOutput.get_all_subclasses_tuple()] # type: ignore InvocationOutputsUnion: Any = BaseInvocationOutput.get_outputs_union()
class Graph(BaseModel): class Graph(BaseModel):
@ -378,13 +379,13 @@ class Graph(BaseModel):
raise NodeNotFoundError(f"Edge destination node {edge.destination.node_id} does not exist in the graph") raise NodeNotFoundError(f"Edge destination node {edge.destination.node_id} does not exist in the graph")
# output fields are not on the node object directly, they are on the output type # output fields are not on the node object directly, they are on the output type
if edge.source.field not in source_node.get_output_type().__fields__: if edge.source.field not in source_node.get_output_type().model_fields:
raise NodeFieldNotFoundError( raise NodeFieldNotFoundError(
f"Edge source field {edge.source.field} does not exist in node {edge.source.node_id}" f"Edge source field {edge.source.field} does not exist in node {edge.source.node_id}"
) )
# input fields are on the node # input fields are on the node
if edge.destination.field not in destination_node.__fields__: if edge.destination.field not in destination_node.model_fields:
raise NodeFieldNotFoundError( raise NodeFieldNotFoundError(
f"Edge destination field {edge.destination.field} does not exist in node {edge.destination.node_id}" f"Edge destination field {edge.destination.field} does not exist in node {edge.destination.node_id}"
) )
@ -395,24 +396,24 @@ class Graph(BaseModel):
raise CyclicalGraphError("Graph contains cycles") raise CyclicalGraphError("Graph contains cycles")
# Validate all edge connections are valid # Validate all edge connections are valid
for e in self.edges: for edge in self.edges:
if not are_connections_compatible( if not are_connections_compatible(
self.get_node(e.source.node_id), self.get_node(edge.source.node_id),
e.source.field, edge.source.field,
self.get_node(e.destination.node_id), self.get_node(edge.destination.node_id),
e.destination.field, edge.destination.field,
): ):
raise InvalidEdgeError( raise InvalidEdgeError(
f"Invalid edge from {e.source.node_id}.{e.source.field} to {e.destination.node_id}.{e.destination.field}" f"Invalid edge from {edge.source.node_id}.{edge.source.field} to {edge.destination.node_id}.{edge.destination.field}"
) )
# Validate all iterators & collectors # Validate all iterators & collectors
# TODO: may need to validate all iterators & collectors in subgraphs so edge connections in parent graphs will be available # TODO: may need to validate all iterators & collectors in subgraphs so edge connections in parent graphs will be available
for n in self.nodes.values(): for node in self.nodes.values():
if isinstance(n, IterateInvocation) and not self._is_iterator_connection_valid(n.id): if isinstance(node, IterateInvocation) and not self._is_iterator_connection_valid(node.id):
raise InvalidEdgeError(f"Invalid iterator node {n.id}") raise InvalidEdgeError(f"Invalid iterator node {node.id}")
if isinstance(n, CollectInvocation) and not self._is_collector_connection_valid(n.id): if isinstance(node, CollectInvocation) and not self._is_collector_connection_valid(node.id):
raise InvalidEdgeError(f"Invalid collector node {n.id}") raise InvalidEdgeError(f"Invalid collector node {node.id}")
return None return None
@ -594,7 +595,7 @@ class Graph(BaseModel):
def _get_input_edges_and_graphs( def _get_input_edges_and_graphs(
self, node_path: str, prefix: Optional[str] = None self, node_path: str, prefix: Optional[str] = None
) -> list[tuple["Graph", str, Edge]]: ) -> list[tuple["Graph", Union[str, None], Edge]]:
"""Gets all input edges for a node along with the graph they are in and the graph's path""" """Gets all input edges for a node along with the graph they are in and the graph's path"""
edges = list() edges = list()
@ -636,7 +637,7 @@ class Graph(BaseModel):
def _get_output_edges_and_graphs( def _get_output_edges_and_graphs(
self, node_path: str, prefix: Optional[str] = None self, node_path: str, prefix: Optional[str] = None
) -> list[tuple["Graph", str, Edge]]: ) -> list[tuple["Graph", Union[str, None], Edge]]:
"""Gets all output edges for a node along with the graph they are in and the graph's path""" """Gets all output edges for a node along with the graph they are in and the graph's path"""
edges = list() edges = list()
@ -817,15 +818,15 @@ class GraphExecutionState(BaseModel):
default_factory=dict, default_factory=dict,
) )
@validator("graph") @field_validator("graph")
def graph_is_valid(cls, v: Graph): def graph_is_valid(cls, v: Graph):
"""Validates that the graph is valid""" """Validates that the graph is valid"""
v.validate_self() v.validate_self()
return v return v
class Config: model_config = ConfigDict(
schema_extra = { json_schema_extra=dict(
"required": [ required=[
"id", "id",
"graph", "graph",
"execution_graph", "execution_graph",
@ -836,7 +837,8 @@ class GraphExecutionState(BaseModel):
"prepared_source_mapping", "prepared_source_mapping",
"source_prepared_mapping", "source_prepared_mapping",
] ]
} )
)
def next(self) -> Optional[BaseInvocation]: def next(self) -> Optional[BaseInvocation]:
"""Gets the next node ready to execute.""" """Gets the next node ready to execute."""
@ -910,7 +912,7 @@ class GraphExecutionState(BaseModel):
input_collection = getattr(input_collection_prepared_node_output, input_collection_edge.source.field) input_collection = getattr(input_collection_prepared_node_output, input_collection_edge.source.field)
self_iteration_count = len(input_collection) self_iteration_count = len(input_collection)
new_nodes = list() new_nodes: list[str] = list()
if self_iteration_count == 0: if self_iteration_count == 0:
# TODO: should this raise a warning? It might just happen if an empty collection is input, and should be valid. # TODO: should this raise a warning? It might just happen if an empty collection is input, and should be valid.
return new_nodes return new_nodes
@ -920,7 +922,7 @@ class GraphExecutionState(BaseModel):
# Create new edges for this iteration # Create new edges for this iteration
# For collect nodes, this may contain multiple inputs to the same field # For collect nodes, this may contain multiple inputs to the same field
new_edges = list() new_edges: list[Edge] = list()
for edge in input_edges: for edge in input_edges:
for input_node_id in (n[1] for n in iteration_node_map if n[0] == edge.source.node_id): for input_node_id in (n[1] for n in iteration_node_map if n[0] == edge.source.node_id):
new_edge = Edge( new_edge = Edge(
@ -1179,18 +1181,18 @@ class LibraryGraph(BaseModel):
description="The outputs exposed by this graph", default_factory=list description="The outputs exposed by this graph", default_factory=list
) )
@validator("exposed_inputs", "exposed_outputs") @field_validator("exposed_inputs", "exposed_outputs")
def validate_exposed_aliases(cls, v): def validate_exposed_aliases(cls, v: list[Union[ExposedNodeInput, ExposedNodeOutput]]):
if len(v) != len(set(i.alias for i in v)): if len(v) != len(set(i.alias for i in v)):
raise ValueError("Duplicate exposed alias") raise ValueError("Duplicate exposed alias")
return v return v
@root_validator @model_validator(mode="after")
def validate_exposed_nodes(cls, values): def validate_exposed_nodes(cls, values):
graph = values["graph"] graph = values.graph
# Validate exposed inputs # Validate exposed inputs
for exposed_input in values["exposed_inputs"]: for exposed_input in values.exposed_inputs:
if not graph.has_node(exposed_input.node_path): if not graph.has_node(exposed_input.node_path):
raise ValueError(f"Exposed input node {exposed_input.node_path} does not exist") raise ValueError(f"Exposed input node {exposed_input.node_path} does not exist")
node = graph.get_node(exposed_input.node_path) node = graph.get_node(exposed_input.node_path)
@ -1200,7 +1202,7 @@ class LibraryGraph(BaseModel):
) )
# Validate exposed outputs # Validate exposed outputs
for exposed_output in values["exposed_outputs"]: for exposed_output in values.exposed_outputs:
if not graph.has_node(exposed_output.node_path): if not graph.has_node(exposed_output.node_path):
raise ValueError(f"Exposed output node {exposed_output.node_path} does not exist") raise ValueError(f"Exposed output node {exposed_output.node_path} does not exist")
node = graph.get_node(exposed_output.node_path) node = graph.get_node(exposed_output.node_path)
@ -1212,4 +1214,6 @@ class LibraryGraph(BaseModel):
return values return values
GraphInvocation.update_forward_refs() GraphInvocation.model_rebuild(force=True)
Graph.model_rebuild(force=True)
GraphExecutionState.model_rebuild(force=True)

View File

@ -1,12 +1,11 @@
from typing import Generic, TypeVar from typing import Generic, TypeVar
from pydantic import BaseModel, Field from pydantic import BaseModel, Field
from pydantic.generics import GenericModel
GenericBaseModel = TypeVar("GenericBaseModel", bound=BaseModel) GenericBaseModel = TypeVar("GenericBaseModel", bound=BaseModel)
class CursorPaginatedResults(GenericModel, Generic[GenericBaseModel]): class CursorPaginatedResults(BaseModel, Generic[GenericBaseModel]):
""" """
Cursor-paginated results Cursor-paginated results
Generic must be a Pydantic model Generic must be a Pydantic model
@ -17,7 +16,7 @@ class CursorPaginatedResults(GenericModel, Generic[GenericBaseModel]):
items: list[GenericBaseModel] = Field(..., description="Items") items: list[GenericBaseModel] = Field(..., description="Items")
class OffsetPaginatedResults(GenericModel, Generic[GenericBaseModel]): class OffsetPaginatedResults(BaseModel, Generic[GenericBaseModel]):
""" """
Offset-paginated results Offset-paginated results
Generic must be a Pydantic model Generic must be a Pydantic model
@ -29,7 +28,7 @@ class OffsetPaginatedResults(GenericModel, Generic[GenericBaseModel]):
items: list[GenericBaseModel] = Field(description="Items") items: list[GenericBaseModel] = Field(description="Items")
class PaginatedResults(GenericModel, Generic[GenericBaseModel]): class PaginatedResults(BaseModel, Generic[GenericBaseModel]):
""" """
Paginated results Paginated results
Generic must be a Pydantic model Generic must be a Pydantic model

View File

@ -265,7 +265,7 @@ def np_img_resize(np_img: np.ndarray, resize_mode: str, h: int, w: int, device:
def prepare_control_image( def prepare_control_image(
image: Image, image: Image.Image,
width: int, width: int,
height: int, height: int,
num_channels: int = 3, num_channels: int = 3,

View File

@ -1,4 +1,5 @@
import datetime import datetime
import typing
import uuid import uuid
import numpy as np import numpy as np
@ -27,3 +28,8 @@ def get_random_seed():
def uuid_string(): def uuid_string():
res = uuid.uuid4() res = uuid.uuid4()
return str(res) return str(res)
def is_optional(value: typing.Any):
"""Checks if a value is typed as Optional. Note that Optional is sugar for Union[x, None]."""
return typing.get_origin(value) is typing.Union and type(None) in typing.get_args(value)

View File

@ -13,11 +13,11 @@ From https://github.com/tiangolo/fastapi/discussions/8882#discussioncomment-5154
class BaseModelExcludeNull(BaseModel): class BaseModelExcludeNull(BaseModel):
def dict(self, *args, **kwargs) -> dict[str, Any]: def model_dump(self, *args, **kwargs) -> dict[str, Any]:
""" """
Override the default dict method to exclude None values in the response Override the default dict method to exclude None values in the response
""" """
kwargs.pop("exclude_none", None) kwargs.pop("exclude_none", None)
return super().dict(*args, exclude_none=True, **kwargs) return super().model_dump(*args, exclude_none=True, **kwargs)
pass pass

View File

View File

@ -41,18 +41,18 @@ config = InvokeAIAppConfig.get_config()
class SegmentedGrayscale(object): class SegmentedGrayscale(object):
def __init__(self, image: Image, heatmap: torch.Tensor): def __init__(self, image: Image.Image, heatmap: torch.Tensor):
self.heatmap = heatmap self.heatmap = heatmap
self.image = image self.image = image
def to_grayscale(self, invert: bool = False) -> Image: def to_grayscale(self, invert: bool = False) -> Image.Image:
return self._rescale(Image.fromarray(np.uint8(255 - self.heatmap * 255 if invert else self.heatmap * 255))) return self._rescale(Image.fromarray(np.uint8(255 - self.heatmap * 255 if invert else self.heatmap * 255)))
def to_mask(self, threshold: float = 0.5) -> Image: def to_mask(self, threshold: float = 0.5) -> Image.Image:
discrete_heatmap = self.heatmap.lt(threshold).int() discrete_heatmap = self.heatmap.lt(threshold).int()
return self._rescale(Image.fromarray(np.uint8(discrete_heatmap * 255), mode="L")) return self._rescale(Image.fromarray(np.uint8(discrete_heatmap * 255), mode="L"))
def to_transparent(self, invert: bool = False) -> Image: def to_transparent(self, invert: bool = False) -> Image.Image:
transparent_image = self.image.copy() transparent_image = self.image.copy()
# For img2img, we want the selected regions to be transparent, # For img2img, we want the selected regions to be transparent,
# but to_grayscale() returns the opposite. Thus invert. # but to_grayscale() returns the opposite. Thus invert.
@ -61,7 +61,7 @@ class SegmentedGrayscale(object):
return transparent_image return transparent_image
# unscales and uncrops the 352x352 heatmap so that it matches the image again # unscales and uncrops the 352x352 heatmap so that it matches the image again
def _rescale(self, heatmap: Image) -> Image: def _rescale(self, heatmap: Image.Image) -> Image.Image:
size = self.image.width if (self.image.width > self.image.height) else self.image.height size = self.image.width if (self.image.width > self.image.height) else self.image.height
resized_image = heatmap.resize((size, size), resample=Image.Resampling.LANCZOS) resized_image = heatmap.resize((size, size), resample=Image.Resampling.LANCZOS)
return resized_image.crop((0, 0, self.image.width, self.image.height)) return resized_image.crop((0, 0, self.image.width, self.image.height))
@ -82,7 +82,7 @@ class Txt2Mask(object):
self.model = CLIPSegForImageSegmentation.from_pretrained(CLIPSEG_MODEL, cache_dir=config.cache_dir) self.model = CLIPSegForImageSegmentation.from_pretrained(CLIPSEG_MODEL, cache_dir=config.cache_dir)
@torch.no_grad() @torch.no_grad()
def segment(self, image, prompt: str) -> SegmentedGrayscale: def segment(self, image: Image.Image, prompt: str) -> SegmentedGrayscale:
""" """
Given a prompt string such as "a bagel", tries to identify the object in the Given a prompt string such as "a bagel", tries to identify the object in the
provided image and returns a SegmentedGrayscale object in which the brighter provided image and returns a SegmentedGrayscale object in which the brighter
@ -99,7 +99,7 @@ class Txt2Mask(object):
heatmap = torch.sigmoid(outputs.logits) heatmap = torch.sigmoid(outputs.logits)
return SegmentedGrayscale(image, heatmap) return SegmentedGrayscale(image, heatmap)
def _scale_and_crop(self, image: Image) -> Image: def _scale_and_crop(self, image: Image.Image) -> Image.Image:
scaled_image = Image.new("RGB", (CLIPSEG_SIZE, CLIPSEG_SIZE)) scaled_image = Image.new("RGB", (CLIPSEG_SIZE, CLIPSEG_SIZE))
if image.width > image.height: # width is constraint if image.width > image.height: # width is constraint
scale = CLIPSEG_SIZE / image.width scale = CLIPSEG_SIZE / image.width

View File

@ -9,7 +9,7 @@ class InitImageResizer:
def __init__(self, Image): def __init__(self, Image):
self.image = Image self.image = Image
def resize(self, width=None, height=None) -> Image: def resize(self, width=None, height=None) -> Image.Image:
""" """
Return a copy of the image resized to fit within Return a copy of the image resized to fit within
a box width x height. The aspect ratio is a box width x height. The aspect ratio is

View File

@ -793,7 +793,11 @@ def migrate_init_file(legacy_format: Path):
old = legacy_parser.parse_args([f"@{str(legacy_format)}"]) old = legacy_parser.parse_args([f"@{str(legacy_format)}"])
new = InvokeAIAppConfig.get_config() new = InvokeAIAppConfig.get_config()
fields = [x for x, y in InvokeAIAppConfig.__fields__.items() if y.field_info.extra.get("category") != "DEPRECATED"] fields = [
x
for x, y in InvokeAIAppConfig.model_fields.items()
if (y.json_schema_extra.get("category", None) if y.json_schema_extra else None) != "DEPRECATED"
]
for attr in fields: for attr in fields:
if hasattr(old, attr): if hasattr(old, attr):
try: try:

View File

@ -236,13 +236,13 @@ import types
from dataclasses import dataclass from dataclasses import dataclass
from pathlib import Path from pathlib import Path
from shutil import move, rmtree from shutil import move, rmtree
from typing import Callable, Dict, List, Literal, Optional, Set, Tuple, Union from typing import Callable, Dict, List, Literal, Optional, Set, Tuple, Union, cast
import torch import torch
import yaml import yaml
from omegaconf import OmegaConf from omegaconf import OmegaConf
from omegaconf.dictconfig import DictConfig from omegaconf.dictconfig import DictConfig
from pydantic import BaseModel, Field from pydantic import BaseModel, ConfigDict, Field
import invokeai.backend.util.logging as logger import invokeai.backend.util.logging as logger
from invokeai.app.services.config import InvokeAIAppConfig from invokeai.app.services.config import InvokeAIAppConfig
@ -294,6 +294,8 @@ class AddModelResult(BaseModel):
base_model: BaseModelType = Field(description="The base model") base_model: BaseModelType = Field(description="The base model")
config: ModelConfigBase = Field(description="The configuration of the model") config: ModelConfigBase = Field(description="The configuration of the model")
model_config = ConfigDict(protected_namespaces=())
MAX_CACHE_SIZE = 6.0 # GB MAX_CACHE_SIZE = 6.0 # GB
@ -576,7 +578,7 @@ class ModelManager(object):
""" """
model_key = self.create_key(model_name, base_model, model_type) model_key = self.create_key(model_name, base_model, model_type)
if model_key in self.models: if model_key in self.models:
return self.models[model_key].dict(exclude_defaults=True) return self.models[model_key].model_dump(exclude_defaults=True)
else: else:
return None # TODO: None or empty dict on not found return None # TODO: None or empty dict on not found
@ -632,7 +634,7 @@ class ModelManager(object):
continue continue
model_dict = dict( model_dict = dict(
**model_config.dict(exclude_defaults=True), **model_config.model_dump(exclude_defaults=True),
# OpenAPIModelInfoBase # OpenAPIModelInfoBase
model_name=cur_model_name, model_name=cur_model_name,
base_model=cur_base_model, base_model=cur_base_model,
@ -900,14 +902,16 @@ class ModelManager(object):
Write current configuration out to the indicated file. Write current configuration out to the indicated file.
""" """
data_to_save = dict() data_to_save = dict()
data_to_save["__metadata__"] = self.config_meta.dict() data_to_save["__metadata__"] = self.config_meta.model_dump()
for model_key, model_config in self.models.items(): for model_key, model_config in self.models.items():
model_name, base_model, model_type = self.parse_key(model_key) model_name, base_model, model_type = self.parse_key(model_key)
model_class = self._get_implementation(base_model, model_type) model_class = self._get_implementation(base_model, model_type)
if model_class.save_to_config: if model_class.save_to_config:
# TODO: or exclude_unset better fits here? # TODO: or exclude_unset better fits here?
data_to_save[model_key] = model_config.dict(exclude_defaults=True, exclude={"error"}) data_to_save[model_key] = cast(BaseModel, model_config).model_dump(
exclude_defaults=True, exclude={"error"}, mode="json"
)
# alias for config file # alias for config file
data_to_save[model_key]["format"] = data_to_save[model_key].pop("model_format") data_to_save[model_key]["format"] = data_to_save[model_key].pop("model_format")

View File

@ -2,7 +2,7 @@ import inspect
from enum import Enum from enum import Enum
from typing import Literal, get_origin from typing import Literal, get_origin
from pydantic import BaseModel from pydantic import BaseModel, ConfigDict, create_model
from .base import ( # noqa: F401 from .base import ( # noqa: F401
BaseModelType, BaseModelType,
@ -106,6 +106,8 @@ class OpenAPIModelInfoBase(BaseModel):
base_model: BaseModelType base_model: BaseModelType
model_type: ModelType model_type: ModelType
model_config = ConfigDict(protected_namespaces=())
for base_model, models in MODEL_CLASSES.items(): for base_model, models in MODEL_CLASSES.items():
for model_type, model_class in models.items(): for model_type, model_class in models.items():
@ -121,17 +123,11 @@ for base_model, models in MODEL_CLASSES.items():
if openapi_cfg_name in vars(): if openapi_cfg_name in vars():
continue continue
api_wrapper = type( api_wrapper = create_model(
openapi_cfg_name, openapi_cfg_name,
(cfg, OpenAPIModelInfoBase), __base__=(cfg, OpenAPIModelInfoBase),
dict( model_type=(Literal[model_type], model_type), # type: ignore
__annotations__=dict(
model_type=Literal[model_type.value],
),
),
) )
# globals()[openapi_cfg_name] = api_wrapper
vars()[openapi_cfg_name] = api_wrapper vars()[openapi_cfg_name] = api_wrapper
OPENAPI_MODEL_CONFIGS.append(api_wrapper) OPENAPI_MODEL_CONFIGS.append(api_wrapper)

View File

@ -19,7 +19,7 @@ from diffusers import logging as diffusers_logging
from onnx import numpy_helper from onnx import numpy_helper
from onnxruntime import InferenceSession, SessionOptions, get_available_providers from onnxruntime import InferenceSession, SessionOptions, get_available_providers
from picklescan.scanner import scan_file_path from picklescan.scanner import scan_file_path
from pydantic import BaseModel, Field from pydantic import BaseModel, ConfigDict, Field
from transformers import logging as transformers_logging from transformers import logging as transformers_logging
@ -86,14 +86,21 @@ class ModelError(str, Enum):
NotFound = "not_found" NotFound = "not_found"
def model_config_json_schema_extra(schema: dict[str, Any]) -> None:
if "required" not in schema:
schema["required"] = []
schema["required"].append("model_type")
class ModelConfigBase(BaseModel): class ModelConfigBase(BaseModel):
path: str # or Path path: str # or Path
description: Optional[str] = Field(None) description: Optional[str] = Field(None)
model_format: Optional[str] = Field(None) model_format: Optional[str] = Field(None)
error: Optional[ModelError] = Field(None) error: Optional[ModelError] = Field(None)
class Config: model_config = ConfigDict(
use_enum_values = True use_enum_values=True, protected_namespaces=(), json_schema_extra=model_config_json_schema_extra
)
class EmptyConfigLoader(ConfigMixin): class EmptyConfigLoader(ConfigMixin):

View File

@ -58,14 +58,16 @@ class IPAdapterModel(ModelBase):
def get_model( def get_model(
self, self,
torch_dtype: Optional[torch.dtype], torch_dtype: torch.dtype,
child_type: Optional[SubModelType] = None, child_type: Optional[SubModelType] = None,
) -> typing.Union[IPAdapter, IPAdapterPlus]: ) -> typing.Union[IPAdapter, IPAdapterPlus]:
if child_type is not None: if child_type is not None:
raise ValueError("There are no child models in an IP-Adapter model.") raise ValueError("There are no child models in an IP-Adapter model.")
model = build_ip_adapter( model = build_ip_adapter(
ip_adapter_ckpt_path=os.path.join(self.model_path, "ip_adapter.bin"), device="cpu", dtype=torch_dtype ip_adapter_ckpt_path=os.path.join(self.model_path, "ip_adapter.bin"),
device=torch.device("cpu"),
dtype=torch_dtype,
) )
self.model_size = model.calc_size() self.model_size = model.calc_size()

View File

@ -96,7 +96,7 @@ def set_seamless(model: Union[UNet2DConditionModel, AutoencoderKL], seamless_axe
finally: finally:
for module, orig_conv_forward in to_restore: for module, orig_conv_forward in to_restore:
module._conv_forward = orig_conv_forward module._conv_forward = orig_conv_forward
if hasattr(m, "asymmetric_padding_mode"): if hasattr(module, "asymmetric_padding_mode"):
del m.asymmetric_padding_mode del module.asymmetric_padding_mode
if hasattr(m, "asymmetric_padding"): if hasattr(module, "asymmetric_padding"):
del m.asymmetric_padding del module.asymmetric_padding

View File

@ -1,7 +1,8 @@
import math import math
from typing import Optional
import PIL
import torch import torch
from PIL import Image
from torchvision.transforms.functional import InterpolationMode from torchvision.transforms.functional import InterpolationMode
from torchvision.transforms.functional import resize as tv_resize from torchvision.transforms.functional import resize as tv_resize
@ -11,7 +12,7 @@ class AttentionMapSaver:
self.token_ids = token_ids self.token_ids = token_ids
self.latents_shape = latents_shape self.latents_shape = latents_shape
# self.collated_maps = #torch.zeros([len(token_ids), latents_shape[0], latents_shape[1]]) # self.collated_maps = #torch.zeros([len(token_ids), latents_shape[0], latents_shape[1]])
self.collated_maps = {} self.collated_maps: dict[str, torch.Tensor] = {}
def clear_maps(self): def clear_maps(self):
self.collated_maps = {} self.collated_maps = {}
@ -38,9 +39,10 @@ class AttentionMapSaver:
def write_maps_to_disk(self, path: str): def write_maps_to_disk(self, path: str):
pil_image = self.get_stacked_maps_image() pil_image = self.get_stacked_maps_image()
pil_image.save(path, "PNG") if pil_image is not None:
pil_image.save(path, "PNG")
def get_stacked_maps_image(self) -> PIL.Image: def get_stacked_maps_image(self) -> Optional[Image.Image]:
""" """
Scale all collected attention maps to the same size, blend them together and return as an image. Scale all collected attention maps to the same size, blend them together and return as an image.
:return: An image containing a vertical stack of blended attention maps, one for each requested token. :return: An image containing a vertical stack of blended attention maps, one for each requested token.
@ -95,4 +97,4 @@ class AttentionMapSaver:
return None return None
merged_bytes = merged.mul(0xFF).byte() merged_bytes = merged.mul(0xFF).byte()
return PIL.Image.fromarray(merged_bytes.numpy(), mode="L") return Image.fromarray(merged_bytes.numpy(), mode="L")

View File

@ -151,7 +151,9 @@ export const addRequestedSingleImageDeletionListener = () => {
if (wasImageDeleted) { if (wasImageDeleted) {
dispatch( dispatch(
api.util.invalidateTags([{ type: 'Board', id: imageDTO.board_id }]) api.util.invalidateTags([
{ type: 'Board', id: imageDTO.board_id ?? 'none' },
])
); );
} }
}, },

View File

@ -6,7 +6,7 @@ import { useMantineMultiSelectStyles } from 'mantine-theme/hooks/useMantineMulti
import { KeyboardEvent, RefObject, memo, useCallback } from 'react'; import { KeyboardEvent, RefObject, memo, useCallback } from 'react';
type IAIMultiSelectProps = Omit<MultiSelectProps, 'label'> & { type IAIMultiSelectProps = Omit<MultiSelectProps, 'label'> & {
tooltip?: string; tooltip?: string | null;
inputRef?: RefObject<HTMLInputElement>; inputRef?: RefObject<HTMLInputElement>;
label?: string; label?: string;
}; };

View File

@ -12,7 +12,7 @@ export type IAISelectDataType = {
}; };
type IAISelectProps = Omit<SelectProps, 'label'> & { type IAISelectProps = Omit<SelectProps, 'label'> & {
tooltip?: string; tooltip?: string | null;
label?: string; label?: string;
inputRef?: RefObject<HTMLInputElement>; inputRef?: RefObject<HTMLInputElement>;
}; };

View File

@ -10,7 +10,7 @@ export type IAISelectDataType = {
}; };
export type IAISelectProps = Omit<SelectProps, 'label'> & { export type IAISelectProps = Omit<SelectProps, 'label'> & {
tooltip?: string; tooltip?: string | null;
inputRef?: RefObject<HTMLInputElement>; inputRef?: RefObject<HTMLInputElement>;
label?: string; label?: string;
}; };

View File

@ -39,7 +39,10 @@ export const dynamicPromptsSlice = createSlice({
promptsChanged: (state, action: PayloadAction<string[]>) => { promptsChanged: (state, action: PayloadAction<string[]>) => {
state.prompts = action.payload; state.prompts = action.payload;
}, },
parsingErrorChanged: (state, action: PayloadAction<string | undefined>) => { parsingErrorChanged: (
state,
action: PayloadAction<string | null | undefined>
) => {
state.parsingError = action.payload; state.parsingError = action.payload;
}, },
isErrorChanged: (state, action: PayloadAction<boolean>) => { isErrorChanged: (state, action: PayloadAction<boolean>) => {

View File

@ -10,7 +10,7 @@ import {
} from 'features/parameters/types/parameterSchemas'; } from 'features/parameters/types/parameterSchemas';
import i18n from 'i18next'; import i18n from 'i18next';
import { has, keyBy } from 'lodash-es'; import { has, keyBy } from 'lodash-es';
import { OpenAPIV3 } from 'openapi-types'; import { OpenAPIV3_1 } from 'openapi-types';
import { RgbaColor } from 'react-colorful'; import { RgbaColor } from 'react-colorful';
import { Node } from 'reactflow'; import { Node } from 'reactflow';
import { Graph, _InputField, _OutputField } from 'services/api/types'; import { Graph, _InputField, _OutputField } from 'services/api/types';
@ -791,9 +791,9 @@ export type IntegerInputFieldTemplate = InputFieldTemplateBase & {
default: number; default: number;
multipleOf?: number; multipleOf?: number;
maximum?: number; maximum?: number;
exclusiveMaximum?: boolean; exclusiveMaximum?: number;
minimum?: number; minimum?: number;
exclusiveMinimum?: boolean; exclusiveMinimum?: number;
}; };
export type IntegerCollectionInputFieldTemplate = InputFieldTemplateBase & { export type IntegerCollectionInputFieldTemplate = InputFieldTemplateBase & {
@ -814,9 +814,9 @@ export type FloatInputFieldTemplate = InputFieldTemplateBase & {
default: number; default: number;
multipleOf?: number; multipleOf?: number;
maximum?: number; maximum?: number;
exclusiveMaximum?: boolean; exclusiveMaximum?: number;
minimum?: number; minimum?: number;
exclusiveMinimum?: boolean; exclusiveMinimum?: number;
}; };
export type FloatCollectionInputFieldTemplate = InputFieldTemplateBase & { export type FloatCollectionInputFieldTemplate = InputFieldTemplateBase & {
@ -1163,20 +1163,20 @@ export type TypeHints = {
}; };
export type InvocationSchemaExtra = { export type InvocationSchemaExtra = {
output: OpenAPIV3.ReferenceObject; // the output of the invocation output: OpenAPIV3_1.ReferenceObject; // the output of the invocation
title: string; title: string;
category?: string; category?: string;
tags?: string[]; tags?: string[];
version?: string; version?: string;
properties: Omit< properties: Omit<
NonNullable<OpenAPIV3.SchemaObject['properties']> & NonNullable<OpenAPIV3_1.SchemaObject['properties']> &
(_InputField | _OutputField), (_InputField | _OutputField),
'type' 'type'
> & { > & {
type: Omit<OpenAPIV3.SchemaObject, 'default'> & { type: Omit<OpenAPIV3_1.SchemaObject, 'default'> & {
default: AnyInvocationType; default: AnyInvocationType;
}; };
use_cache: Omit<OpenAPIV3.SchemaObject, 'default'> & { use_cache: Omit<OpenAPIV3_1.SchemaObject, 'default'> & {
default: boolean; default: boolean;
}; };
}; };
@ -1187,17 +1187,17 @@ export type InvocationSchemaType = {
}; };
export type InvocationBaseSchemaObject = Omit< export type InvocationBaseSchemaObject = Omit<
OpenAPIV3.BaseSchemaObject, OpenAPIV3_1.BaseSchemaObject,
'title' | 'type' | 'properties' 'title' | 'type' | 'properties'
> & > &
InvocationSchemaExtra; InvocationSchemaExtra;
export type InvocationOutputSchemaObject = Omit< export type InvocationOutputSchemaObject = Omit<
OpenAPIV3.SchemaObject, OpenAPIV3_1.SchemaObject,
'properties' 'properties'
> & { > & {
properties: OpenAPIV3.SchemaObject['properties'] & { properties: OpenAPIV3_1.SchemaObject['properties'] & {
type: Omit<OpenAPIV3.SchemaObject, 'default'> & { type: Omit<OpenAPIV3_1.SchemaObject, 'default'> & {
default: string; default: string;
}; };
} & { } & {
@ -1205,14 +1205,18 @@ export type InvocationOutputSchemaObject = Omit<
}; };
}; };
export type InvocationFieldSchema = OpenAPIV3.SchemaObject & _InputField; export type InvocationFieldSchema = OpenAPIV3_1.SchemaObject & _InputField;
export type OpenAPIV3_1SchemaOrRef =
| OpenAPIV3_1.ReferenceObject
| OpenAPIV3_1.SchemaObject;
export interface ArraySchemaObject extends InvocationBaseSchemaObject { export interface ArraySchemaObject extends InvocationBaseSchemaObject {
type: OpenAPIV3.ArraySchemaObjectType; type: OpenAPIV3_1.ArraySchemaObjectType;
items: OpenAPIV3.ReferenceObject | OpenAPIV3.SchemaObject; items: OpenAPIV3_1.ReferenceObject | OpenAPIV3_1.SchemaObject;
} }
export interface NonArraySchemaObject extends InvocationBaseSchemaObject { export interface NonArraySchemaObject extends InvocationBaseSchemaObject {
type?: OpenAPIV3.NonArraySchemaObjectType; type?: OpenAPIV3_1.NonArraySchemaObjectType;
} }
export type InvocationSchemaObject = ( export type InvocationSchemaObject = (
@ -1221,41 +1225,41 @@ export type InvocationSchemaObject = (
) & { class: 'invocation' }; ) & { class: 'invocation' };
export const isSchemaObject = ( export const isSchemaObject = (
obj: OpenAPIV3.ReferenceObject | OpenAPIV3.SchemaObject | undefined obj: OpenAPIV3_1.ReferenceObject | OpenAPIV3_1.SchemaObject | undefined
): obj is OpenAPIV3.SchemaObject => Boolean(obj && !('$ref' in obj)); ): obj is OpenAPIV3_1.SchemaObject => Boolean(obj && !('$ref' in obj));
export const isArraySchemaObject = ( export const isArraySchemaObject = (
obj: OpenAPIV3.ReferenceObject | OpenAPIV3.SchemaObject | undefined obj: OpenAPIV3_1.ReferenceObject | OpenAPIV3_1.SchemaObject | undefined
): obj is OpenAPIV3.ArraySchemaObject => ): obj is OpenAPIV3_1.ArraySchemaObject =>
Boolean(obj && !('$ref' in obj) && obj.type === 'array'); Boolean(obj && !('$ref' in obj) && obj.type === 'array');
export const isNonArraySchemaObject = ( export const isNonArraySchemaObject = (
obj: OpenAPIV3.ReferenceObject | OpenAPIV3.SchemaObject | undefined obj: OpenAPIV3_1.ReferenceObject | OpenAPIV3_1.SchemaObject | undefined
): obj is OpenAPIV3.NonArraySchemaObject => ): obj is OpenAPIV3_1.NonArraySchemaObject =>
Boolean(obj && !('$ref' in obj) && obj.type !== 'array'); Boolean(obj && !('$ref' in obj) && obj.type !== 'array');
export const isRefObject = ( export const isRefObject = (
obj: OpenAPIV3.ReferenceObject | OpenAPIV3.SchemaObject | undefined obj: OpenAPIV3_1.ReferenceObject | OpenAPIV3_1.SchemaObject | undefined
): obj is OpenAPIV3.ReferenceObject => Boolean(obj && '$ref' in obj); ): obj is OpenAPIV3_1.ReferenceObject => Boolean(obj && '$ref' in obj);
export const isInvocationSchemaObject = ( export const isInvocationSchemaObject = (
obj: obj:
| OpenAPIV3.ReferenceObject | OpenAPIV3_1.ReferenceObject
| OpenAPIV3.SchemaObject | OpenAPIV3_1.SchemaObject
| InvocationSchemaObject | InvocationSchemaObject
): obj is InvocationSchemaObject => ): obj is InvocationSchemaObject =>
'class' in obj && obj.class === 'invocation'; 'class' in obj && obj.class === 'invocation';
export const isInvocationOutputSchemaObject = ( export const isInvocationOutputSchemaObject = (
obj: obj:
| OpenAPIV3.ReferenceObject | OpenAPIV3_1.ReferenceObject
| OpenAPIV3.SchemaObject | OpenAPIV3_1.SchemaObject
| InvocationOutputSchemaObject | InvocationOutputSchemaObject
): obj is InvocationOutputSchemaObject => ): obj is InvocationOutputSchemaObject =>
'class' in obj && obj.class === 'output'; 'class' in obj && obj.class === 'output';
export const isInvocationFieldSchema = ( export const isInvocationFieldSchema = (
obj: OpenAPIV3.ReferenceObject | OpenAPIV3.SchemaObject obj: OpenAPIV3_1.ReferenceObject | OpenAPIV3_1.SchemaObject
): obj is InvocationFieldSchema => !('$ref' in obj); ): obj is InvocationFieldSchema => !('$ref' in obj);
export type InvocationEdgeExtra = { type: 'default' | 'collapsed' }; export type InvocationEdgeExtra = { type: 'default' | 'collapsed' };

View File

@ -1,5 +1,12 @@
import { isBoolean, isInteger, isNumber, isString } from 'lodash-es'; import {
import { OpenAPIV3 } from 'openapi-types'; isArray,
isBoolean,
isInteger,
isNumber,
isString,
startCase,
} from 'lodash-es';
import { OpenAPIV3_1 } from 'openapi-types';
import { import {
COLLECTION_MAP, COLLECTION_MAP,
POLYMORPHIC_TYPES, POLYMORPHIC_TYPES,
@ -72,6 +79,7 @@ import {
T2IAdapterCollectionInputFieldTemplate, T2IAdapterCollectionInputFieldTemplate,
BoardInputFieldTemplate, BoardInputFieldTemplate,
InputFieldTemplate, InputFieldTemplate,
OpenAPIV3_1SchemaOrRef,
} from '../types/types'; } from '../types/types';
import { ControlField } from 'services/api/types'; import { ControlField } from 'services/api/types';
@ -90,7 +98,7 @@ export type BuildInputFieldArg = {
* @example * @example
* refObjectToFieldType({ "$ref": "#/components/schemas/ImageField" }) --> 'ImageField' * refObjectToFieldType({ "$ref": "#/components/schemas/ImageField" }) --> 'ImageField'
*/ */
export const refObjectToSchemaName = (refObject: OpenAPIV3.ReferenceObject) => export const refObjectToSchemaName = (refObject: OpenAPIV3_1.ReferenceObject) =>
refObject.$ref.split('/').slice(-1)[0]; refObject.$ref.split('/').slice(-1)[0];
const buildIntegerInputFieldTemplate = ({ const buildIntegerInputFieldTemplate = ({
@ -111,7 +119,10 @@ const buildIntegerInputFieldTemplate = ({
template.maximum = schemaObject.maximum; template.maximum = schemaObject.maximum;
} }
if (schemaObject.exclusiveMaximum !== undefined) { if (
schemaObject.exclusiveMaximum !== undefined &&
isNumber(schemaObject.exclusiveMaximum)
) {
template.exclusiveMaximum = schemaObject.exclusiveMaximum; template.exclusiveMaximum = schemaObject.exclusiveMaximum;
} }
@ -119,7 +130,10 @@ const buildIntegerInputFieldTemplate = ({
template.minimum = schemaObject.minimum; template.minimum = schemaObject.minimum;
} }
if (schemaObject.exclusiveMinimum !== undefined) { if (
schemaObject.exclusiveMinimum !== undefined &&
isNumber(schemaObject.exclusiveMinimum)
) {
template.exclusiveMinimum = schemaObject.exclusiveMinimum; template.exclusiveMinimum = schemaObject.exclusiveMinimum;
} }
@ -144,7 +158,10 @@ const buildIntegerPolymorphicInputFieldTemplate = ({
template.maximum = schemaObject.maximum; template.maximum = schemaObject.maximum;
} }
if (schemaObject.exclusiveMaximum !== undefined) { if (
schemaObject.exclusiveMaximum !== undefined &&
isNumber(schemaObject.exclusiveMaximum)
) {
template.exclusiveMaximum = schemaObject.exclusiveMaximum; template.exclusiveMaximum = schemaObject.exclusiveMaximum;
} }
@ -152,7 +169,10 @@ const buildIntegerPolymorphicInputFieldTemplate = ({
template.minimum = schemaObject.minimum; template.minimum = schemaObject.minimum;
} }
if (schemaObject.exclusiveMinimum !== undefined) { if (
schemaObject.exclusiveMinimum !== undefined &&
isNumber(schemaObject.exclusiveMinimum)
) {
template.exclusiveMinimum = schemaObject.exclusiveMinimum; template.exclusiveMinimum = schemaObject.exclusiveMinimum;
} }
@ -195,7 +215,10 @@ const buildFloatInputFieldTemplate = ({
template.maximum = schemaObject.maximum; template.maximum = schemaObject.maximum;
} }
if (schemaObject.exclusiveMaximum !== undefined) { if (
schemaObject.exclusiveMaximum !== undefined &&
isNumber(schemaObject.exclusiveMaximum)
) {
template.exclusiveMaximum = schemaObject.exclusiveMaximum; template.exclusiveMaximum = schemaObject.exclusiveMaximum;
} }
@ -203,7 +226,10 @@ const buildFloatInputFieldTemplate = ({
template.minimum = schemaObject.minimum; template.minimum = schemaObject.minimum;
} }
if (schemaObject.exclusiveMinimum !== undefined) { if (
schemaObject.exclusiveMinimum !== undefined &&
isNumber(schemaObject.exclusiveMinimum)
) {
template.exclusiveMinimum = schemaObject.exclusiveMinimum; template.exclusiveMinimum = schemaObject.exclusiveMinimum;
} }
@ -227,7 +253,10 @@ const buildFloatPolymorphicInputFieldTemplate = ({
template.maximum = schemaObject.maximum; template.maximum = schemaObject.maximum;
} }
if (schemaObject.exclusiveMaximum !== undefined) { if (
schemaObject.exclusiveMaximum !== undefined &&
isNumber(schemaObject.exclusiveMaximum)
) {
template.exclusiveMaximum = schemaObject.exclusiveMaximum; template.exclusiveMaximum = schemaObject.exclusiveMaximum;
} }
@ -235,7 +264,10 @@ const buildFloatPolymorphicInputFieldTemplate = ({
template.minimum = schemaObject.minimum; template.minimum = schemaObject.minimum;
} }
if (schemaObject.exclusiveMinimum !== undefined) { if (
schemaObject.exclusiveMinimum !== undefined &&
isNumber(schemaObject.exclusiveMinimum)
) {
template.exclusiveMinimum = schemaObject.exclusiveMinimum; template.exclusiveMinimum = schemaObject.exclusiveMinimum;
} }
return template; return template;
@ -872,84 +904,106 @@ const buildSchedulerInputFieldTemplate = ({
}; };
export const getFieldType = ( export const getFieldType = (
schemaObject: InvocationFieldSchema schemaObject: OpenAPIV3_1SchemaOrRef
): string | undefined => { ): string | undefined => {
if (schemaObject?.ui_type) { if (isSchemaObject(schemaObject)) {
return schemaObject.ui_type; if (!schemaObject.type) {
} else if (!schemaObject.type) { // if schemaObject has no type, then it should have one of allOf, anyOf, oneOf
// if schemaObject has no type, then it should have one of allOf, anyOf, oneOf
if (schemaObject.allOf) { if (schemaObject.allOf) {
const allOf = schemaObject.allOf; const allOf = schemaObject.allOf;
if (allOf && allOf[0] && isRefObject(allOf[0])) { if (allOf && allOf[0] && isRefObject(allOf[0])) {
return refObjectToSchemaName(allOf[0]); return refObjectToSchemaName(allOf[0]);
}
} else if (schemaObject.anyOf) {
const anyOf = schemaObject.anyOf;
/**
* Handle Polymorphic inputs, eg string | string[]. In OpenAPI, this is:
* - an `anyOf` with two items
* - one is an `ArraySchemaObject` with a single `SchemaObject or ReferenceObject` of type T in its `items`
* - the other is a `SchemaObject` or `ReferenceObject` of type T
*
* Any other cases we ignore.
*/
let firstType: string | undefined;
let secondType: string | undefined;
if (isArraySchemaObject(anyOf[0])) {
// first is array, second is not
const first = anyOf[0].items;
const second = anyOf[1];
if (isRefObject(first) && isRefObject(second)) {
firstType = refObjectToSchemaName(first);
secondType = refObjectToSchemaName(second);
} else if (
isNonArraySchemaObject(first) &&
isNonArraySchemaObject(second)
) {
firstType = first.type;
secondType = second.type;
} }
} else if (isArraySchemaObject(anyOf[1])) { } else if (schemaObject.anyOf) {
// first is not array, second is // ignore null types
const first = anyOf[0]; const anyOf = schemaObject.anyOf.filter((i) => {
const second = anyOf[1].items; if (isSchemaObject(i)) {
if (isRefObject(first) && isRefObject(second)) { if (i.type === 'null') {
firstType = refObjectToSchemaName(first); return false;
secondType = refObjectToSchemaName(second); }
} else if ( }
isNonArraySchemaObject(first) && return true;
isNonArraySchemaObject(second) });
) { if (anyOf.length === 1) {
firstType = first.type; if (isRefObject(anyOf[0])) {
secondType = second.type; return refObjectToSchemaName(anyOf[0]);
} else if (isSchemaObject(anyOf[0])) {
return getFieldType(anyOf[0]);
}
}
/**
* Handle Polymorphic inputs, eg string | string[]. In OpenAPI, this is:
* - an `anyOf` with two items
* - one is an `ArraySchemaObject` with a single `SchemaObject or ReferenceObject` of type T in its `items`
* - the other is a `SchemaObject` or `ReferenceObject` of type T
*
* Any other cases we ignore.
*/
let firstType: string | undefined;
let secondType: string | undefined;
if (isArraySchemaObject(anyOf[0])) {
// first is array, second is not
const first = anyOf[0].items;
const second = anyOf[1];
if (isRefObject(first) && isRefObject(second)) {
firstType = refObjectToSchemaName(first);
secondType = refObjectToSchemaName(second);
} else if (
isNonArraySchemaObject(first) &&
isNonArraySchemaObject(second)
) {
firstType = first.type;
secondType = second.type;
}
} else if (isArraySchemaObject(anyOf[1])) {
// first is not array, second is
const first = anyOf[0];
const second = anyOf[1].items;
if (isRefObject(first) && isRefObject(second)) {
firstType = refObjectToSchemaName(first);
secondType = refObjectToSchemaName(second);
} else if (
isNonArraySchemaObject(first) &&
isNonArraySchemaObject(second)
) {
firstType = first.type;
secondType = second.type;
}
}
if (firstType === secondType && isPolymorphicItemType(firstType)) {
return SINGLE_TO_POLYMORPHIC_MAP[firstType];
} }
} }
if (firstType === secondType && isPolymorphicItemType(firstType)) { } else if (schemaObject.enum) {
return SINGLE_TO_POLYMORPHIC_MAP[firstType]; return 'enum';
} else if (schemaObject.type) {
if (schemaObject.type === 'number') {
// floats are "number" in OpenAPI, while ints are "integer" - we need to distinguish them
return 'float';
} else if (schemaObject.type === 'array') {
const itemType = isSchemaObject(schemaObject.items)
? schemaObject.items.type
: refObjectToSchemaName(schemaObject.items);
if (isArray(itemType)) {
// This is a nested array, which we don't support
return;
}
if (isCollectionItemType(itemType)) {
return COLLECTION_MAP[itemType];
}
return;
} else if (!isArray(schemaObject.type)) {
return schemaObject.type;
} }
} }
} else if (schemaObject.enum) { } else if (isRefObject(schemaObject)) {
return 'enum'; return refObjectToSchemaName(schemaObject);
} else if (schemaObject.type) {
if (schemaObject.type === 'number') {
// floats are "number" in OpenAPI, while ints are "integer" - we need to distinguish them
return 'float';
} else if (schemaObject.type === 'array') {
const itemType = isSchemaObject(schemaObject.items)
? schemaObject.items.type
: refObjectToSchemaName(schemaObject.items);
if (isCollectionItemType(itemType)) {
return COLLECTION_MAP[itemType];
}
return;
} else {
return schemaObject.type;
}
} }
return; return;
}; };
@ -1025,7 +1079,15 @@ export const buildInputFieldTemplate = (
name: string, name: string,
fieldType: FieldType fieldType: FieldType
) => { ) => {
const { input, ui_hidden, ui_component, ui_type, ui_order } = fieldSchema; const {
input,
ui_hidden,
ui_component,
ui_type,
ui_order,
ui_choice_labels,
item_default,
} = fieldSchema;
const extra = { const extra = {
// TODO: Can we support polymorphic inputs in the UI? // TODO: Can we support polymorphic inputs in the UI?
@ -1035,11 +1097,13 @@ export const buildInputFieldTemplate = (
ui_type, ui_type,
required: nodeSchema.required?.includes(name) ?? false, required: nodeSchema.required?.includes(name) ?? false,
ui_order, ui_order,
ui_choice_labels,
item_default,
}; };
const baseField = { const baseField = {
name, name,
title: fieldSchema.title ?? '', title: fieldSchema.title ?? (name ? startCase(name) : ''),
description: fieldSchema.description ?? '', description: fieldSchema.description ?? '',
fieldKind: 'input' as const, fieldKind: 'input' as const,
...extra, ...extra,

View File

@ -1,7 +1,7 @@
import { logger } from 'app/logging/logger'; import { logger } from 'app/logging/logger';
import { parseify } from 'common/util/serialize'; import { parseify } from 'common/util/serialize';
import { reduce } from 'lodash-es'; import { reduce, startCase } from 'lodash-es';
import { OpenAPIV3 } from 'openapi-types'; import { OpenAPIV3_1 } from 'openapi-types';
import { AnyInvocationType } from 'services/events/types'; import { AnyInvocationType } from 'services/events/types';
import { import {
FieldType, FieldType,
@ -60,7 +60,7 @@ const isNotInDenylist = (schema: InvocationSchemaObject) =>
!invocationDenylist.includes(schema.properties.type.default); !invocationDenylist.includes(schema.properties.type.default);
export const parseSchema = ( export const parseSchema = (
openAPI: OpenAPIV3.Document, openAPI: OpenAPIV3_1.Document,
nodesAllowlistExtra: string[] | undefined = undefined, nodesAllowlistExtra: string[] | undefined = undefined,
nodesDenylistExtra: string[] | undefined = undefined nodesDenylistExtra: string[] | undefined = undefined
): Record<string, InvocationTemplate> => { ): Record<string, InvocationTemplate> => {
@ -110,7 +110,7 @@ export const parseSchema = (
return inputsAccumulator; return inputsAccumulator;
} }
const fieldType = getFieldType(property); const fieldType = property.ui_type ?? getFieldType(property);
if (!isFieldType(fieldType)) { if (!isFieldType(fieldType)) {
logger('nodes').warn( logger('nodes').warn(
@ -209,7 +209,7 @@ export const parseSchema = (
return outputsAccumulator; return outputsAccumulator;
} }
const fieldType = getFieldType(property); const fieldType = property.ui_type ?? getFieldType(property);
if (!isFieldType(fieldType)) { if (!isFieldType(fieldType)) {
logger('nodes').warn( logger('nodes').warn(
@ -222,7 +222,8 @@ export const parseSchema = (
outputsAccumulator[propertyName] = { outputsAccumulator[propertyName] = {
fieldKind: 'output', fieldKind: 'output',
name: propertyName, name: propertyName,
title: property.title ?? '', title:
property.title ?? (propertyName ? startCase(propertyName) : ''),
description: property.description ?? '', description: property.description ?? '',
type: fieldType, type: fieldType,
ui_hidden: property.ui_hidden ?? false, ui_hidden: property.ui_hidden ?? false,

View File

@ -7,7 +7,7 @@ const QueueItemCard = ({
session_queue_item, session_queue_item,
label, label,
}: { }: {
session_queue_item?: components['schemas']['SessionQueueItem']; session_queue_item?: components['schemas']['SessionQueueItem'] | null;
label: string; label: string;
}) => { }) => {
return ( return (

View File

@ -112,7 +112,7 @@ export default function MergeModelsPanel() {
} }
}); });
const mergeModelsInfo: MergeModelConfig = { const mergeModelsInfo: MergeModelConfig['body'] = {
model_names: models_names, model_names: models_names,
merged_model_name: merged_model_name:
mergedModelName !== '' ? mergedModelName : models_names.join('-'), mergedModelName !== '' ? mergedModelName : models_names.join('-'),
@ -125,7 +125,7 @@ export default function MergeModelsPanel() {
mergeModels({ mergeModels({
base_model: baseModel, base_model: baseModel,
body: mergeModelsInfo, body: { body: mergeModelsInfo },
}) })
.unwrap() .unwrap()
.then((_) => { .then((_) => {

View File

@ -520,7 +520,7 @@ export const imagesApi = api.injectEndpoints({
// assume all images are on the same board/category // assume all images are on the same board/category
if (images[0]) { if (images[0]) {
const categories = getCategories(images[0]); const categories = getCategories(images[0]);
const boardId = images[0].board_id; const boardId = images[0].board_id ?? undefined;
return [ return [
{ {
@ -637,7 +637,7 @@ export const imagesApi = api.injectEndpoints({
// assume all images are on the same board/category // assume all images are on the same board/category
if (images[0]) { if (images[0]) {
const categories = getCategories(images[0]); const categories = getCategories(images[0]);
const boardId = images[0].board_id; const boardId = images[0].board_id ?? undefined;
return [ return [
{ {
type: 'ImageList', type: 'ImageList',

File diff suppressed because one or more lines are too long

View File

@ -35,10 +35,10 @@ dependencies = [
"accelerate~=0.23.0", "accelerate~=0.23.0",
"albumentations", "albumentations",
"click", "click",
"clip_anytorch", # replacing "clip @ https://github.com/openai/CLIP/archive/eaa22acb90a5876642d0507623e859909230a52d.zip", "clip_anytorch", # replacing "clip @ https://github.com/openai/CLIP/archive/eaa22acb90a5876642d0507623e859909230a52d.zip",
"compel~=2.0.2", "compel~=2.0.2",
"controlnet-aux>=0.0.6", "controlnet-aux>=0.0.6",
"timm==0.6.13", # needed to override timm latest in controlnet_aux, see https://github.com/isl-org/ZoeDepth/issues/26 "timm==0.6.13", # needed to override timm latest in controlnet_aux, see https://github.com/isl-org/ZoeDepth/issues/26
"datasets", "datasets",
# When bumping diffusers beyond 0.21, make sure to address this: # When bumping diffusers beyond 0.21, make sure to address this:
# https://github.com/invoke-ai/InvokeAI/blob/fc09ab7e13cb7ca5389100d149b6422ace7b8ed3/invokeai/app/invocations/latent.py#L513 # https://github.com/invoke-ai/InvokeAI/blob/fc09ab7e13cb7ca5389100d149b6422ace7b8ed3/invokeai/app/invocations/latent.py#L513
@ -48,19 +48,20 @@ dependencies = [
"easing-functions", "easing-functions",
"einops", "einops",
"facexlib", "facexlib",
"fastapi==0.88.0", "fastapi~=0.103.2",
"fastapi-events==0.8.0", "fastapi-events~=0.9.1",
"huggingface-hub~=0.16.4", "huggingface-hub~=0.16.4",
"invisible-watermark~=0.2.0", # needed to install SDXL base and refiner using their repo_ids "invisible-watermark~=0.2.0", # needed to install SDXL base and refiner using their repo_ids
"matplotlib", # needed for plotting of Penner easing functions "matplotlib", # needed for plotting of Penner easing functions
"mediapipe", # needed for "mediapipeface" controlnet model "mediapipe", # needed for "mediapipeface" controlnet model
"numpy", "numpy",
"npyscreen", "npyscreen",
"omegaconf", "omegaconf",
"onnx", "onnx",
"onnxruntime", "onnxruntime",
"opencv-python", "opencv-python",
"pydantic==1.*", "pydantic~=2.4.2",
"pydantic-settings~=2.0.3",
"picklescan", "picklescan",
"pillow", "pillow",
"prompt-toolkit", "prompt-toolkit",
@ -95,33 +96,25 @@ dependencies = [
"mkdocs-git-revision-date-localized-plugin", "mkdocs-git-revision-date-localized-plugin",
"mkdocs-redirects==1.2.0", "mkdocs-redirects==1.2.0",
] ]
"dev" = [ "dev" = ["jurigged", "pudb"]
"jurigged",
"pudb",
]
"test" = [ "test" = [
"black", "black",
"flake8", "flake8",
"Flake8-pyproject", "Flake8-pyproject",
"isort", "isort",
"mypy",
"pre-commit", "pre-commit",
"pytest>6.0.0", "pytest>6.0.0",
"pytest-cov", "pytest-cov",
"pytest-datadir", "pytest-datadir",
] ]
"xformers" = [ "xformers" = [
"xformers~=0.0.19; sys_platform!='darwin'", "xformers~=0.0.19; sys_platform!='darwin'",
"triton; sys_platform=='linux'", "triton; sys_platform=='linux'",
]
"onnx" = [
"onnxruntime",
]
"onnx-cuda" = [
"onnxruntime-gpu",
]
"onnx-directml" = [
"onnxruntime-directml",
] ]
"onnx" = ["onnxruntime"]
"onnx-cuda" = ["onnxruntime-gpu"]
"onnx-directml" = ["onnxruntime-directml"]
[project.scripts] [project.scripts]
@ -163,12 +156,15 @@ version = { attr = "invokeai.version.__version__" }
[tool.setuptools.packages.find] [tool.setuptools.packages.find]
"where" = ["."] "where" = ["."]
"include" = [ "include" = [
"invokeai.assets.fonts*","invokeai.version*", "invokeai.assets.fonts*",
"invokeai.generator*","invokeai.backend*", "invokeai.version*",
"invokeai.frontend*", "invokeai.frontend.web.dist*", "invokeai.generator*",
"invokeai.frontend.web.static*", "invokeai.backend*",
"invokeai.configs*", "invokeai.frontend*",
"invokeai.app*", "invokeai.frontend.web.dist*",
"invokeai.frontend.web.static*",
"invokeai.configs*",
"invokeai.app*",
] ]
[tool.setuptools.package-data] [tool.setuptools.package-data]
@ -182,7 +178,7 @@ version = { attr = "invokeai.version.__version__" }
[tool.pytest.ini_options] [tool.pytest.ini_options]
addopts = "--cov-report term --cov-report html --cov-report xml --strict-markers -m \"not slow\"" addopts = "--cov-report term --cov-report html --cov-report xml --strict-markers -m \"not slow\""
markers = [ markers = [
"slow: Marks tests as slow. Disabled by default. To run all tests, use -m \"\". To run only slow tests, use -m \"slow\"." "slow: Marks tests as slow. Disabled by default. To run all tests, use -m \"\". To run only slow tests, use -m \"slow\".",
] ]
[tool.coverage.run] [tool.coverage.run]
branch = true branch = true
@ -190,7 +186,7 @@ source = ["invokeai"]
omit = ["*tests*", "*migrations*", ".venv/*", "*.env"] omit = ["*tests*", "*migrations*", ".venv/*", "*.env"]
[tool.coverage.report] [tool.coverage.report]
show_missing = true show_missing = true
fail_under = 85 # let's set something sensible on Day 1 ... fail_under = 85 # let's set something sensible on Day 1 ...
[tool.coverage.json] [tool.coverage.json]
output = "coverage/coverage.json" output = "coverage/coverage.json"
pretty_print = true pretty_print = true
@ -209,7 +205,7 @@ exclude = [
"__pycache__", "__pycache__",
"build", "build",
"dist", "dist",
"invokeai/frontend/web/node_modules/" "invokeai/frontend/web/node_modules/",
] ]
[tool.black] [tool.black]
@ -218,3 +214,53 @@ line-length = 120
[tool.isort] [tool.isort]
profile = "black" profile = "black"
line_length = 120 line_length = 120
[tool.mypy]
ignore_missing_imports = true # ignores missing types in third-party libraries
[[tool.mypy.overrides]]
follow_imports = "skip"
module = [
"invokeai.app.api.routers.models",
"invokeai.app.invocations.compel",
"invokeai.app.invocations.latent",
"invokeai.app.services.config.config_base",
"invokeai.app.services.config.config_default",
"invokeai.app.services.invocation_stats.invocation_stats_default",
"invokeai.app.services.model_manager.model_manager_base",
"invokeai.app.services.model_manager.model_manager_default",
"invokeai.app.util.controlnet_utils",
"invokeai.backend.image_util.txt2mask",
"invokeai.backend.image_util.safety_checker",
"invokeai.backend.image_util.patchmatch",
"invokeai.backend.image_util.invisible_watermark",
"invokeai.backend.install.model_install_backend",
"invokeai.backend.ip_adapter.ip_adapter",
"invokeai.backend.ip_adapter.resampler",
"invokeai.backend.ip_adapter.unet_patcher",
"invokeai.backend.model_management.convert_ckpt_to_diffusers",
"invokeai.backend.model_management.lora",
"invokeai.backend.model_management.model_cache",
"invokeai.backend.model_management.model_manager",
"invokeai.backend.model_management.model_merge",
"invokeai.backend.model_management.model_probe",
"invokeai.backend.model_management.model_search",
"invokeai.backend.model_management.models.*", # this is needed to ignore the module's `__init__.py`
"invokeai.backend.model_management.models.base",
"invokeai.backend.model_management.models.controlnet",
"invokeai.backend.model_management.models.ip_adapter",
"invokeai.backend.model_management.models.lora",
"invokeai.backend.model_management.models.sdxl",
"invokeai.backend.model_management.models.stable_diffusion",
"invokeai.backend.model_management.models.vae",
"invokeai.backend.model_management.seamless",
"invokeai.backend.model_management.util",
"invokeai.backend.stable_diffusion.diffusers_pipeline",
"invokeai.backend.stable_diffusion.diffusion.cross_attention_control",
"invokeai.backend.stable_diffusion.diffusion.shared_invokeai_diffusion",
"invokeai.backend.util.hotfixes",
"invokeai.backend.util.logging",
"invokeai.backend.util.mps_fixes",
"invokeai.backend.util.util",
"invokeai.frontend.install.model_install",
]

View File

@ -1,4 +1,5 @@
import pytest import pytest
from pydantic import TypeAdapter
from invokeai.app.invocations.baseinvocation import ( from invokeai.app.invocations.baseinvocation import (
BaseInvocation, BaseInvocation,
@ -593,20 +594,21 @@ def test_graph_can_serialize():
g.add_edge(e) g.add_edge(e)
# Not throwing on this line is sufficient # Not throwing on this line is sufficient
_ = g.json() _ = g.model_dump_json()
def test_graph_can_deserialize(): def test_graph_can_deserialize():
g = Graph() g = Graph()
n1 = TextToImageTestInvocation(id="1", prompt="Banana sushi") n1 = TextToImageTestInvocation(id="1", prompt="Banana sushi")
n2 = ESRGANInvocation(id="2") n2 = ImageToImageTestInvocation(id="2")
g.add_node(n1) g.add_node(n1)
g.add_node(n2) g.add_node(n2)
e = create_edge(n1.id, "image", n2.id, "image") e = create_edge(n1.id, "image", n2.id, "image")
g.add_edge(e) g.add_edge(e)
json = g.json() json = g.model_dump_json()
g2 = Graph.parse_raw(json) adapter_graph = TypeAdapter(Graph)
g2 = adapter_graph.validate_json(json)
assert g2 is not None assert g2 is not None
assert g2.nodes["1"] is not None assert g2.nodes["1"] is not None
@ -619,7 +621,7 @@ def test_graph_can_deserialize():
def test_invocation_decorator(): def test_invocation_decorator():
invocation_type = "test_invocation" invocation_type = "test_invocation_decorator"
title = "Test Invocation" title = "Test Invocation"
tags = ["first", "second", "third"] tags = ["first", "second", "third"]
category = "category" category = "category"
@ -630,7 +632,7 @@ def test_invocation_decorator():
def invoke(self): def invoke(self):
pass pass
schema = TestInvocation.schema() schema = TestInvocation.model_json_schema()
assert schema.get("title") == title assert schema.get("title") == title
assert schema.get("tags") == tags assert schema.get("tags") == tags
@ -640,18 +642,17 @@ def test_invocation_decorator():
def test_invocation_version_must_be_semver(): def test_invocation_version_must_be_semver():
invocation_type = "test_invocation"
valid_version = "1.0.0" valid_version = "1.0.0"
invalid_version = "not_semver" invalid_version = "not_semver"
@invocation(invocation_type, version=valid_version) @invocation("test_invocation_version_valid", version=valid_version)
class ValidVersionInvocation(BaseInvocation): class ValidVersionInvocation(BaseInvocation):
def invoke(self): def invoke(self):
pass pass
with pytest.raises(InvalidVersionError): with pytest.raises(InvalidVersionError):
@invocation(invocation_type, version=invalid_version) @invocation("test_invocation_version_invalid", version=invalid_version)
class InvalidVersionInvocation(BaseInvocation): class InvalidVersionInvocation(BaseInvocation):
def invoke(self): def invoke(self):
pass pass
@ -694,4 +695,4 @@ def test_ints_do_not_accept_floats():
def test_graph_can_generate_schema(): def test_graph_can_generate_schema():
# Not throwing on this line is sufficient # Not throwing on this line is sufficient
# NOTE: if this test fails, it's PROBABLY because a new invocation type is breaking schema generation # NOTE: if this test fails, it's PROBABLY because a new invocation type is breaking schema generation
_ = Graph.schema_json(indent=2) _ = Graph.model_json_schema()

View File

@ -1,5 +1,5 @@
import pytest import pytest
from pydantic import ValidationError, parse_raw_as from pydantic import TypeAdapter, ValidationError
from invokeai.app.services.session_queue.session_queue_common import ( from invokeai.app.services.session_queue.session_queue_common import (
Batch, Batch,
@ -150,8 +150,9 @@ def test_prepare_values_to_insert(batch_data_collection, batch_graph):
values = prepare_values_to_insert(queue_id="default", batch=b, priority=0, max_new_queue_items=1000) values = prepare_values_to_insert(queue_id="default", batch=b, priority=0, max_new_queue_items=1000)
assert len(values) == 8 assert len(values) == 8
session_adapter = TypeAdapter(GraphExecutionState)
# graph should be serialized # graph should be serialized
ges = parse_raw_as(GraphExecutionState, values[0].session) ges = session_adapter.validate_json(values[0].session)
# graph values should be populated # graph values should be populated
assert ges.graph.get_node("1").prompt == "Banana sushi" assert ges.graph.get_node("1").prompt == "Banana sushi"
@ -160,15 +161,16 @@ def test_prepare_values_to_insert(batch_data_collection, batch_graph):
assert ges.graph.get_node("4").prompt == "Nissan" assert ges.graph.get_node("4").prompt == "Nissan"
# session ids should match deserialized graph # session ids should match deserialized graph
assert [v.session_id for v in values] == [parse_raw_as(GraphExecutionState, v.session).id for v in values] assert [v.session_id for v in values] == [session_adapter.validate_json(v.session).id for v in values]
# should unique session ids # should unique session ids
sids = [v.session_id for v in values] sids = [v.session_id for v in values]
assert len(sids) == len(set(sids)) assert len(sids) == len(set(sids))
nfv_list_adapter = TypeAdapter(list[NodeFieldValue])
# should have 3 node field values # should have 3 node field values
assert type(values[0].field_values) is str assert type(values[0].field_values) is str
assert len(parse_raw_as(list[NodeFieldValue], values[0].field_values)) == 3 assert len(nfv_list_adapter.validate_json(values[0].field_values)) == 3
# should have batch id and priority # should have batch id and priority
assert all(v.batch_id == b.batch_id for v in values) assert all(v.batch_id == b.batch_id for v in values)

View File

@ -15,7 +15,8 @@ class TestModel(BaseModel):
@pytest.fixture @pytest.fixture
def db() -> SqliteItemStorage[TestModel]: def db() -> SqliteItemStorage[TestModel]:
sqlite_db = SqliteDatabase(InvokeAIAppConfig(use_memory_db=True), InvokeAILogger.get_logger()) sqlite_db = SqliteDatabase(InvokeAIAppConfig(use_memory_db=True), InvokeAILogger.get_logger())
return SqliteItemStorage[TestModel](db=sqlite_db, table_name="test", id_field="id") sqlite_item_storage = SqliteItemStorage[TestModel](db=sqlite_db, table_name="test", id_field="id")
return sqlite_item_storage
def test_sqlite_service_can_create_and_get(db: SqliteItemStorage[TestModel]): def test_sqlite_service_can_create_and_get(db: SqliteItemStorage[TestModel]):