mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
fix(nodes): fix cancel; fix callback for img2img, inpaint
This commit is contained in:
parent
5fe38f7c88
commit
c34ac91ff0
@ -4,15 +4,16 @@ from functools import partial
|
|||||||
from typing import Literal, Optional, Union
|
from typing import Literal, Optional, Union
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
from torch import Tensor
|
||||||
|
|
||||||
from pydantic import Field
|
from pydantic import Field
|
||||||
|
|
||||||
from ..services.image_storage import ImageType
|
from ..services.image_storage import ImageType
|
||||||
from .baseinvocation import BaseInvocation, InvocationContext
|
from .baseinvocation import BaseInvocation, InvocationContext
|
||||||
from .image import ImageField, ImageOutput
|
from .image import ImageField, ImageOutput
|
||||||
from ...backend.generator import Txt2Img, Img2Img, Inpaint, InvokeAIGenerator, Generator
|
from ...backend.generator import Txt2Img, Img2Img, Inpaint, InvokeAIGenerator
|
||||||
from ...backend.stable_diffusion import PipelineIntermediateState
|
from ...backend.stable_diffusion import PipelineIntermediateState
|
||||||
from ...backend.util.util import image_to_dataURL
|
from ..util.util import diffusers_step_callback_adapter, CanceledException
|
||||||
|
|
||||||
SAMPLER_NAME_VALUES = Literal[
|
SAMPLER_NAME_VALUES = Literal[
|
||||||
tuple(InvokeAIGenerator.schedulers())
|
tuple(InvokeAIGenerator.schedulers())
|
||||||
@ -43,33 +44,24 @@ class TextToImageInvocation(BaseInvocation):
|
|||||||
def dispatch_progress(
|
def dispatch_progress(
|
||||||
self, context: InvocationContext, intermediate_state: PipelineIntermediateState
|
self, context: InvocationContext, intermediate_state: PipelineIntermediateState
|
||||||
) -> None:
|
) -> None:
|
||||||
|
if (context.services.queue.is_canceled(context.graph_execution_state_id)):
|
||||||
|
raise CanceledException
|
||||||
|
|
||||||
step = intermediate_state.step
|
step = intermediate_state.step
|
||||||
if intermediate_state.predicted_original is not None:
|
if intermediate_state.predicted_original is not None:
|
||||||
# Some schedulers report not only the noisy latents at the current timestep,
|
# Some schedulers report not only the noisy latents at the current timestep,
|
||||||
# but also their estimate so far of what the de-noised latents will be.
|
# but also their estimate so far of what the de-noised latents will be.
|
||||||
|
|
||||||
sample = intermediate_state.predicted_original
|
sample = intermediate_state.predicted_original
|
||||||
else:
|
else:
|
||||||
sample = intermediate_state.latents
|
sample = intermediate_state.latents
|
||||||
|
|
||||||
image = Generator(context.services.model_manager.get_model()).sample_to_image(sample)
|
diffusers_step_callback_adapter(sample, step, steps=self.steps, id=self.id, context=context)
|
||||||
(width, height) = image.size
|
|
||||||
dataURL = image_to_dataURL(image, image_format="JPEG")
|
|
||||||
context.services.events.emit_generator_progress(
|
|
||||||
context.graph_execution_state_id,
|
|
||||||
self.id,
|
|
||||||
{
|
|
||||||
"width" : width,
|
|
||||||
"height": height,
|
|
||||||
"dataURL": dataURL,
|
|
||||||
},
|
|
||||||
step,
|
|
||||||
self.steps,
|
|
||||||
)
|
|
||||||
|
|
||||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||||
def step_callback(state: PipelineIntermediateState):
|
# def step_callback(state: PipelineIntermediateState):
|
||||||
self.dispatch_progress(context, state.latents, state.step)
|
# if (context.services.queue.is_canceled(context.graph_execution_state_id)):
|
||||||
|
# raise CanceledException
|
||||||
|
# self.dispatch_progress(context, state.latents, state.step)
|
||||||
|
|
||||||
# Handle invalid model parameter
|
# Handle invalid model parameter
|
||||||
# TODO: figure out if this can be done via a validator that uses the model_cache
|
# TODO: figure out if this can be done via a validator that uses the model_cache
|
||||||
@ -115,6 +107,22 @@ class ImageToImageInvocation(TextToImageInvocation):
|
|||||||
description="Whether or not the result should be fit to the aspect ratio of the input image",
|
description="Whether or not the result should be fit to the aspect ratio of the input image",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
def dispatch_progress(
|
||||||
|
self, context: InvocationContext, intermediate_state: PipelineIntermediateState
|
||||||
|
) -> None:
|
||||||
|
if (context.services.queue.is_canceled(context.graph_execution_state_id)):
|
||||||
|
raise CanceledException
|
||||||
|
|
||||||
|
step = intermediate_state.step
|
||||||
|
if intermediate_state.predicted_original is not None:
|
||||||
|
# Some schedulers report not only the noisy latents at the current timestep,
|
||||||
|
# but also their estimate so far of what the de-noised latents will be.
|
||||||
|
sample = intermediate_state.predicted_original
|
||||||
|
else:
|
||||||
|
sample = intermediate_state.latents
|
||||||
|
|
||||||
|
diffusers_step_callback_adapter(sample, step, steps=self.steps, id=self.id, context=context)
|
||||||
|
|
||||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||||
image = (
|
image = (
|
||||||
None
|
None
|
||||||
@ -129,17 +137,19 @@ class ImageToImageInvocation(TextToImageInvocation):
|
|||||||
# TODO: figure out if this can be done via a validator that uses the model_cache
|
# TODO: figure out if this can be done via a validator that uses the model_cache
|
||||||
# TODO: How to get the default model name now?
|
# TODO: How to get the default model name now?
|
||||||
model = context.services.model_manager.get_model()
|
model = context.services.model_manager.get_model()
|
||||||
generator_output = next(
|
outputs = Img2Img(model).generate(
|
||||||
Img2Img(model).generate(
|
|
||||||
prompt=self.prompt,
|
prompt=self.prompt,
|
||||||
init_image=image,
|
init_image=image,
|
||||||
init_mask=mask,
|
init_mask=mask,
|
||||||
step_callback=partial(self.dispatch_progress, context),
|
step_callback=partial(self.dispatch_progress, context),
|
||||||
**self.dict(
|
**self.dict(
|
||||||
exclude={"prompt", "image", "mask"}
|
exclude={"prompt", "image", "mask"}
|
||||||
), # Shorthand for passing all of the parameters above manually
|
), # Shorthand for passing all of the parameters above manually
|
||||||
)
|
)
|
||||||
)
|
|
||||||
|
# Outputs is an infinite iterator that will return a new InvokeAIGeneratorOutput object
|
||||||
|
# each time it is called. We only need the first one.
|
||||||
|
generator_output = next(outputs)
|
||||||
|
|
||||||
result_image = generator_output.image
|
result_image = generator_output.image
|
||||||
|
|
||||||
@ -169,6 +179,22 @@ class InpaintInvocation(ImageToImageInvocation):
|
|||||||
description="The amount by which to replace masked areas with latent noise",
|
description="The amount by which to replace masked areas with latent noise",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
def dispatch_progress(
|
||||||
|
self, context: InvocationContext, intermediate_state: PipelineIntermediateState
|
||||||
|
) -> None:
|
||||||
|
if (context.services.queue.is_canceled(context.graph_execution_state_id)):
|
||||||
|
raise CanceledException
|
||||||
|
|
||||||
|
step = intermediate_state.step
|
||||||
|
if intermediate_state.predicted_original is not None:
|
||||||
|
# Some schedulers report not only the noisy latents at the current timestep,
|
||||||
|
# but also their estimate so far of what the de-noised latents will be.
|
||||||
|
sample = intermediate_state.predicted_original
|
||||||
|
else:
|
||||||
|
sample = intermediate_state.latents
|
||||||
|
|
||||||
|
diffusers_step_callback_adapter(sample, step, steps=self.steps, id=self.id, context=context)
|
||||||
|
|
||||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||||
image = (
|
image = (
|
||||||
None
|
None
|
||||||
@ -187,8 +213,7 @@ class InpaintInvocation(ImageToImageInvocation):
|
|||||||
# TODO: figure out if this can be done via a validator that uses the model_cache
|
# TODO: figure out if this can be done via a validator that uses the model_cache
|
||||||
# TODO: How to get the default model name now?
|
# TODO: How to get the default model name now?
|
||||||
model = context.services.model_manager.get_model()
|
model = context.services.model_manager.get_model()
|
||||||
generator_output = next(
|
outputs = Inpaint(model).generate(
|
||||||
Inpaint(model).generate(
|
|
||||||
prompt=self.prompt,
|
prompt=self.prompt,
|
||||||
init_img=image,
|
init_img=image,
|
||||||
init_mask=mask,
|
init_mask=mask,
|
||||||
@ -197,7 +222,10 @@ class InpaintInvocation(ImageToImageInvocation):
|
|||||||
exclude={"prompt", "image", "mask"}
|
exclude={"prompt", "image", "mask"}
|
||||||
), # Shorthand for passing all of the parameters above manually
|
), # Shorthand for passing all of the parameters above manually
|
||||||
)
|
)
|
||||||
)
|
|
||||||
|
# Outputs is an infinite iterator that will return a new InvokeAIGeneratorOutput object
|
||||||
|
# each time it is called. We only need the first one.
|
||||||
|
generator_output = next(outputs)
|
||||||
|
|
||||||
result_image = generator_output.image
|
result_image = generator_output.image
|
||||||
|
|
||||||
|
@ -4,7 +4,7 @@ from threading import Event, Thread
|
|||||||
from ..invocations.baseinvocation import InvocationContext
|
from ..invocations.baseinvocation import InvocationContext
|
||||||
from .invocation_queue import InvocationQueueItem
|
from .invocation_queue import InvocationQueueItem
|
||||||
from .invoker import InvocationProcessorABC, Invoker
|
from .invoker import InvocationProcessorABC, Invoker
|
||||||
|
from ..util.util import CanceledException
|
||||||
|
|
||||||
class DefaultInvocationProcessor(InvocationProcessorABC):
|
class DefaultInvocationProcessor(InvocationProcessorABC):
|
||||||
__invoker_thread: Thread
|
__invoker_thread: Thread
|
||||||
@ -82,6 +82,9 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
|
|||||||
except KeyboardInterrupt:
|
except KeyboardInterrupt:
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
except CanceledException:
|
||||||
|
pass
|
||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
error = traceback.format_exc()
|
error = traceback.format_exc()
|
||||||
|
|
||||||
|
42
invokeai/app/util/util.py
Normal file
42
invokeai/app/util/util.py
Normal file
@ -0,0 +1,42 @@
|
|||||||
|
import torch
|
||||||
|
from PIL import Image
|
||||||
|
from ..invocations.baseinvocation import InvocationContext
|
||||||
|
from ...backend.util.util import image_to_dataURL
|
||||||
|
from ...backend.generator.base import Generator
|
||||||
|
from ...backend.stable_diffusion import PipelineIntermediateState
|
||||||
|
|
||||||
|
class CanceledException(Exception):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def fast_latents_step_callback(sample: torch.Tensor, step: int, steps: int, id: str, context: InvocationContext, ):
|
||||||
|
# TODO: only output a preview image when requested
|
||||||
|
image = Generator.sample_to_lowres_estimated_image(sample)
|
||||||
|
|
||||||
|
(width, height) = image.size
|
||||||
|
width *= 8
|
||||||
|
height *= 8
|
||||||
|
|
||||||
|
dataURL = image_to_dataURL(image, image_format="JPEG")
|
||||||
|
|
||||||
|
context.services.events.emit_generator_progress(
|
||||||
|
context.graph_execution_state_id,
|
||||||
|
id,
|
||||||
|
{
|
||||||
|
"width": width,
|
||||||
|
"height": height,
|
||||||
|
"dataURL": dataURL
|
||||||
|
},
|
||||||
|
step,
|
||||||
|
steps,
|
||||||
|
)
|
||||||
|
|
||||||
|
def diffusers_step_callback_adapter(*cb_args, **kwargs):
|
||||||
|
"""
|
||||||
|
txt2img gives us a Tensor in the step_callbak, while img2img gives us a PipelineIntermediateState.
|
||||||
|
This adapter grabs the needed data and passes it along to the callback function.
|
||||||
|
"""
|
||||||
|
if isinstance(cb_args[0], PipelineIntermediateState):
|
||||||
|
progress_state: PipelineIntermediateState = cb_args[0]
|
||||||
|
return fast_latents_step_callback(progress_state.latents, progress_state.step, **kwargs)
|
||||||
|
else:
|
||||||
|
return fast_latents_step_callback(*cb_args, **kwargs)
|
Loading…
Reference in New Issue
Block a user