feat: adaptation of Lineart Anime processor

Adapted from https://github.com/huggingface/controlnet_aux
This commit is contained in:
psychedelicious 2024-03-21 20:06:14 +11:00 committed by Kent Keirsey
parent c7f8fe4d5e
commit c36d12a50f
2 changed files with 207 additions and 4 deletions

View File

@ -9,7 +9,6 @@ import numpy as np
from controlnet_aux import ( from controlnet_aux import (
ContentShuffleDetector, ContentShuffleDetector,
LeresDetector, LeresDetector,
LineartAnimeDetector,
MediapipeFaceDetector, MediapipeFaceDetector,
MidasDetector, MidasDetector,
MLSDdetector, MLSDdetector,
@ -41,6 +40,7 @@ from invokeai.backend.image_util.depth_anything import DepthAnythingDetector
from invokeai.backend.image_util.dw_openpose import DWOpenposeDetector from invokeai.backend.image_util.dw_openpose import DWOpenposeDetector
from invokeai.backend.image_util.hed import HEDProcessor from invokeai.backend.image_util.hed import HEDProcessor
from invokeai.backend.image_util.lineart import LineartProcessor from invokeai.backend.image_util.lineart import LineartProcessor
from invokeai.backend.image_util.lineart_anime import LineartAnimeProcessor
from .baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output from .baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
@ -264,9 +264,9 @@ class LineartAnimeImageProcessorInvocation(ImageProcessorInvocation):
detect_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.detect_res) detect_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res) image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
def run_processor(self, image): def run_processor(self, image: Image.Image) -> Image.Image:
processor = LineartAnimeDetector.from_pretrained("lllyasviel/Annotators") processor = LineartAnimeProcessor()
processed_image = processor( processed_image = processor.run(
image, image,
detect_resolution=self.detect_resolution, detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution, image_resolution=self.image_resolution,

View File

@ -0,0 +1,203 @@
"""Adapted from https://github.com/huggingface/controlnet_aux (Apache-2.0 license)."""
import functools
from typing import Optional
import cv2
import numpy as np
import torch
import torch.nn as nn
from einops import rearrange
from huggingface_hub import hf_hub_download
from PIL import Image
from invokeai.backend.image_util.util import (
fit_image_to_resolution,
normalize_image_channel_count,
np_to_pil,
pil_to_np,
)
class UnetGenerator(nn.Module):
"""Create a Unet-based generator"""
def __init__(
self,
input_nc: int,
output_nc: int,
num_downs: int,
ngf: int = 64,
norm_layer=nn.BatchNorm2d,
use_dropout: bool = False,
):
"""Construct a Unet generator
Parameters:
input_nc (int) -- the number of channels in input images
output_nc (int) -- the number of channels in output images
num_downs (int) -- the number of downsamplings in UNet. For example, # if |num_downs| == 7,
image of size 128x128 will become of size 1x1 # at the bottleneck
ngf (int) -- the number of filters in the last conv layer
norm_layer -- normalization layer
We construct the U-Net from the innermost layer to the outermost layer.
It is a recursive process.
"""
super(UnetGenerator, self).__init__()
# construct unet structure
unet_block = UnetSkipConnectionBlock(
ngf * 8, ngf * 8, input_nc=None, submodule=None, norm_layer=norm_layer, innermost=True
) # add the innermost layer
for _ in range(num_downs - 5): # add intermediate layers with ngf * 8 filters
unet_block = UnetSkipConnectionBlock(
ngf * 8, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer, use_dropout=use_dropout
)
# gradually reduce the number of filters from ngf * 8 to ngf
unet_block = UnetSkipConnectionBlock(
ngf * 4, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer
)
unet_block = UnetSkipConnectionBlock(
ngf * 2, ngf * 4, input_nc=None, submodule=unet_block, norm_layer=norm_layer
)
unet_block = UnetSkipConnectionBlock(ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
self.model = UnetSkipConnectionBlock(
output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True, norm_layer=norm_layer
) # add the outermost layer
def forward(self, input):
"""Standard forward"""
return self.model(input)
class UnetSkipConnectionBlock(nn.Module):
"""Defines the Unet submodule with skip connection.
X -------------------identity----------------------
|-- downsampling -- |submodule| -- upsampling --|
"""
def __init__(
self,
outer_nc: int,
inner_nc: int,
input_nc: Optional[int] = None,
submodule=None,
outermost: bool = False,
innermost: bool = False,
norm_layer=nn.BatchNorm2d,
use_dropout: bool = False,
):
"""Construct a Unet submodule with skip connections.
Parameters:
outer_nc (int) -- the number of filters in the outer conv layer
inner_nc (int) -- the number of filters in the inner conv layer
input_nc (int) -- the number of channels in input images/features
submodule (UnetSkipConnectionBlock) -- previously defined submodules
outermost (bool) -- if this module is the outermost module
innermost (bool) -- if this module is the innermost module
norm_layer -- normalization layer
use_dropout (bool) -- if use dropout layers.
"""
super(UnetSkipConnectionBlock, self).__init__()
self.outermost = outermost
if type(norm_layer) == functools.partial:
use_bias = norm_layer.func == nn.InstanceNorm2d
else:
use_bias = norm_layer == nn.InstanceNorm2d
if input_nc is None:
input_nc = outer_nc
downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4, stride=2, padding=1, bias=use_bias)
downrelu = nn.LeakyReLU(0.2, True)
downnorm = norm_layer(inner_nc)
uprelu = nn.ReLU(True)
upnorm = norm_layer(outer_nc)
if outermost:
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, kernel_size=4, stride=2, padding=1)
down = [downconv]
up = [uprelu, upconv, nn.Tanh()]
model = down + [submodule] + up
elif innermost:
upconv = nn.ConvTranspose2d(inner_nc, outer_nc, kernel_size=4, stride=2, padding=1, bias=use_bias)
down = [downrelu, downconv]
up = [uprelu, upconv, upnorm]
model = down + up
else:
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, kernel_size=4, stride=2, padding=1, bias=use_bias)
down = [downrelu, downconv, downnorm]
up = [uprelu, upconv, upnorm]
if use_dropout:
model = down + [submodule] + up + [nn.Dropout(0.5)]
else:
model = down + [submodule] + up
self.model = nn.Sequential(*model)
def forward(self, x):
if self.outermost:
return self.model(x)
else: # add skip connections
return torch.cat([x, self.model(x)], 1)
class LineartAnimeProcessor:
"""Processes an image to detect lineart."""
def __init__(self):
model_path = hf_hub_download("lllyasviel/Annotators", "netG.pth")
norm_layer = functools.partial(nn.InstanceNorm2d, affine=False, track_running_stats=False)
self.model = UnetGenerator(3, 1, 8, 64, norm_layer=norm_layer, use_dropout=False)
ckpt = torch.load(model_path)
for key in list(ckpt.keys()):
if "module." in key:
ckpt[key.replace("module.", "")] = ckpt[key]
del ckpt[key]
self.model.load_state_dict(ckpt)
self.model.eval()
def to(self, device: torch.device):
self.model.to(device)
return self
def run(self, input_image: Image.Image, detect_resolution: int = 512, image_resolution: int = 512) -> Image.Image:
"""Processes an image to detect lineart.
Args:
input_image: The input image.
detect_resolution: The resolution to use for detection.
image_resolution: The resolution to use for the output image.
Returns:
The detected lineart.
"""
device = next(iter(self.model.parameters())).device
np_image = pil_to_np(input_image)
np_image = normalize_image_channel_count(np_image)
np_image = fit_image_to_resolution(np_image, detect_resolution)
H, W, C = np_image.shape
Hn = 256 * int(np.ceil(float(H) / 256.0))
Wn = 256 * int(np.ceil(float(W) / 256.0))
img = cv2.resize(np_image, (Wn, Hn), interpolation=cv2.INTER_CUBIC)
with torch.no_grad():
image_feed = torch.from_numpy(img).float().to(device)
image_feed = image_feed / 127.5 - 1.0
image_feed = rearrange(image_feed, "h w c -> 1 c h w")
line = self.model(image_feed)[0, 0] * 127.5 + 127.5
line = line.cpu().numpy()
line = cv2.resize(line, (W, H), interpolation=cv2.INTER_CUBIC)
line = line.clip(0, 255).astype(np.uint8)
detected_map = line
detected_map = normalize_image_channel_count(detected_map)
img = fit_image_to_resolution(np_image, image_resolution)
H, W, C = img.shape
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
detected_map = 255 - detected_map
return np_to_pil(detected_map)