Merge branch 'main' into install/force-torch-reinstall

This commit is contained in:
Lincoln Stein 2023-02-06 00:18:38 -05:00 committed by GitHub
commit c3807b044d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 145 additions and 127 deletions

View File

@ -47,7 +47,7 @@ jobs:
type=semver,pattern={{version}}
type=semver,pattern={{major}}.{{minor}}
type=semver,pattern={{major}}
type=raw,value='sha'-{{sha}}-${{ matrix.flavor}}
type=sha,enable=true,prefix=sha-,suffix=${{ matrix.flavor}},format=short
type=raw,value={{branch}}-${{ matrix.flavor }}
flavor: |
latest=${{ matrix.flavor == 'cuda' && github.ref == 'refs/heads/main' }}

View File

@ -1,28 +1,20 @@
# Stable Diffusion Web UI
# InvokeAI UI dev setup
## Run
The UI is in `invokeai/frontend`.
- `python scripts/dream.py --web` serves both frontend and backend at
http://localhost:9090
## Environment set up
## Evironment
Install [node](https://nodejs.org/en/download/) (includes npm) and optionally
Install [node](https://nodejs.org/en/download/) (includes npm) and
[yarn](https://yarnpkg.com/getting-started/install).
From `frontend/` run `npm install` / `yarn install` to install the frontend
packages.
From `invokeai/frontend/` run `yarn install` to get everything set up.
## Dev
1. From `frontend/`, run `npm dev` / `yarn dev` to start the dev server.
2. Run `python scripts/dream.py --web`.
3. Navigate to the dev server address e.g. `http://localhost:5173/`.
1. Start the dev server: `yarn dev`
2. Start the InvokeAI UI per usual: `invokeai --web`
3. Point your browser to the dev server address e.g. `http://localhost:5173/`
To build for dev: `npm build-dev` / `yarn build-dev`
To build for dev: `yarn build-dev`
To build for production: `npm build` / `yarn build`
## TODO
- Search repo for "TODO"
To build for production: `yarn build`

View File

@ -122,6 +122,10 @@ class Generator:
seed = self.new_seed()
# Free up memory from the last generation.
if self.model.device.type == 'cuda':
torch.cuda.empty_cache()
return results
def sample_to_image(self,samples)->Image.Image:
@ -240,7 +244,12 @@ class Generator:
def get_perlin_noise(self,width,height):
fixdevice = 'cpu' if (self.model.device.type == 'mps') else self.model.device
noise = torch.stack([rand_perlin_2d((height, width), (8, 8), device = self.model.device).to(fixdevice) for _ in range(self.latent_channels)], dim=0).to(self.model.device)
# limit noise to only the diffusion image channels, not the mask channels
input_channels = min(self.latent_channels, 4)
noise = torch.stack([
rand_perlin_2d((height, width),
(8, 8),
device = self.model.device).to(fixdevice) for _ in range(input_channels)], dim=0).to(self.model.device)
return noise
def new_seed(self):
@ -341,3 +350,27 @@ class Generator:
def torch_dtype(self)->torch.dtype:
return torch.float16 if self.precision == 'float16' else torch.float32
# returns a tensor filled with random numbers from a normal distribution
def get_noise(self,width,height):
device = self.model.device
# limit noise to only the diffusion image channels, not the mask channels
input_channels = min(self.latent_channels, 4)
if self.use_mps_noise or device.type == 'mps':
x = torch.randn([1,
input_channels,
height // self.downsampling_factor,
width // self.downsampling_factor],
dtype=self.torch_dtype(),
device='cpu').to(device)
else:
x = torch.randn([1,
input_channels,
height // self.downsampling_factor,
width // self.downsampling_factor],
dtype=self.torch_dtype(),
device=device)
if self.perlin > 0.0:
perlin_noise = self.get_perlin_noise(width // self.downsampling_factor, height // self.downsampling_factor)
x = (1-self.perlin)*x + self.perlin*perlin_noise
return x

View File

@ -63,22 +63,3 @@ class Img2Img(Generator):
shape = like.shape
x = (1-self.perlin)*x + self.perlin*self.get_perlin_noise(shape[3], shape[2])
return x
def get_noise(self,width,height):
# copy of the Txt2Img.get_noise
device = self.model.device
if self.use_mps_noise or device.type == 'mps':
x = torch.randn([1,
self.latent_channels,
height // self.downsampling_factor,
width // self.downsampling_factor],
device='cpu').to(device)
else:
x = torch.randn([1,
self.latent_channels,
height // self.downsampling_factor,
width // self.downsampling_factor],
device=device)
if self.perlin > 0.0:
x = (1-self.perlin)*x + self.perlin*self.get_perlin_noise(width // self.downsampling_factor, height // self.downsampling_factor)
return x

View File

@ -51,26 +51,4 @@ class Txt2Img(Generator):
return make_image
# returns a tensor filled with random numbers from a normal distribution
def get_noise(self,width,height):
device = self.model.device
# limit noise to only the diffusion image channels, not the mask channels
input_channels = min(self.latent_channels, 4)
if self.use_mps_noise or device.type == 'mps':
x = torch.randn([1,
input_channels,
height // self.downsampling_factor,
width // self.downsampling_factor],
dtype=self.torch_dtype(),
device='cpu').to(device)
else:
x = torch.randn([1,
input_channels,
height // self.downsampling_factor,
width // self.downsampling_factor],
dtype=self.torch_dtype(),
device=device)
if self.perlin > 0.0:
x = (1-self.perlin)*x + self.perlin*self.get_perlin_noise(width // self.downsampling_factor, height // self.downsampling_factor)
return x

View File

@ -15,20 +15,18 @@ from pathlib import Path
from typing import List, Union
import npyscreen
from diffusers import DiffusionPipeline, logging as dlogging
from diffusers import DiffusionPipeline
from diffusers import logging as dlogging
from npyscreen import widget
from omegaconf import OmegaConf
from ldm.invoke.globals import (
Globals,
global_cache_dir,
global_config_file,
global_models_dir,
global_set_root,
)
from ldm.invoke.globals import (Globals, global_cache_dir, global_config_file,
global_models_dir, global_set_root)
from ldm.invoke.model_manager import ModelManager
DEST_MERGED_MODEL_DIR = "merged_models"
def merge_diffusion_models(
model_ids_or_paths: List[Union[str, Path]],
alpha: float = 0.5,
@ -48,10 +46,10 @@ def merge_diffusion_models(
cache_dir, resume_download, force_download, proxies, local_files_only, use_auth_token, revision, torch_dtype, device_map
"""
with warnings.catch_warnings():
warnings.simplefilter('ignore')
warnings.simplefilter("ignore")
verbosity = dlogging.get_verbosity()
dlogging.set_verbosity_error()
pipe = DiffusionPipeline.from_pretrained(
model_ids_or_paths[0],
cache_dir=kwargs.get("cache_dir", global_cache_dir()),
@ -188,13 +186,12 @@ class FloatTitleSlider(npyscreen.TitleText):
class mergeModelsForm(npyscreen.FormMultiPageAction):
interpolations = ["weighted_sum", "sigmoid", "inv_sigmoid", "add_difference"]
def __init__(self, parentApp, name):
self.parentApp = parentApp
self.ALLOW_RESIZE=True
self.FIX_MINIMUM_SIZE_WHEN_CREATED=False
self.ALLOW_RESIZE = True
self.FIX_MINIMUM_SIZE_WHEN_CREATED = False
super().__init__(parentApp, name)
@property
@ -205,29 +202,29 @@ class mergeModelsForm(npyscreen.FormMultiPageAction):
self.parentApp.setNextForm(None)
def create(self):
window_height,window_width=curses.initscr().getmaxyx()
window_height, window_width = curses.initscr().getmaxyx()
self.model_names = self.get_model_names()
max_width = max([len(x) for x in self.model_names])
max_width += 6
horizontal_layout = max_width*3 < window_width
horizontal_layout = max_width * 3 < window_width
self.add_widget_intelligent(
npyscreen.FixedText,
color='CONTROL',
color="CONTROL",
value=f"Select two models to merge and optionally a third.",
editable=False,
)
self.add_widget_intelligent(
npyscreen.FixedText,
color='CONTROL',
color="CONTROL",
value=f"Use up and down arrows to move, <space> to select an item, <tab> and <shift-tab> to move from one field to the next.",
editable=False,
)
self.add_widget_intelligent(
npyscreen.FixedText,
value='MODEL 1',
color='GOOD',
value="MODEL 1",
color="GOOD",
editable=False,
rely=4 if horizontal_layout else None,
)
@ -242,57 +239,57 @@ class mergeModelsForm(npyscreen.FormMultiPageAction):
)
self.add_widget_intelligent(
npyscreen.FixedText,
value='MODEL 2',
color='GOOD',
value="MODEL 2",
color="GOOD",
editable=False,
relx=max_width+3 if horizontal_layout else None,
relx=max_width + 3 if horizontal_layout else None,
rely=4 if horizontal_layout else None,
)
self.model2 = self.add_widget_intelligent(
npyscreen.SelectOne,
name='(2)',
name="(2)",
values=self.model_names,
value=1,
max_height=len(self.model_names),
max_width=max_width,
relx=max_width+3 if horizontal_layout else None,
relx=max_width + 3 if horizontal_layout else None,
rely=5 if horizontal_layout else None,
scroll_exit=True,
)
self.add_widget_intelligent(
npyscreen.FixedText,
value='MODEL 3',
color='GOOD',
value="MODEL 3",
color="GOOD",
editable=False,
relx=max_width*2+3 if horizontal_layout else None,
relx=max_width * 2 + 3 if horizontal_layout else None,
rely=4 if horizontal_layout else None,
)
models_plus_none = self.model_names.copy()
models_plus_none.insert(0,'None')
models_plus_none.insert(0, "None")
self.model3 = self.add_widget_intelligent(
npyscreen.SelectOne,
name='(3)',
name="(3)",
values=models_plus_none,
value=0,
max_height=len(self.model_names)+1,
max_height=len(self.model_names) + 1,
max_width=max_width,
scroll_exit=True,
relx=max_width*2+3 if horizontal_layout else None,
relx=max_width * 2 + 3 if horizontal_layout else None,
rely=5 if horizontal_layout else None,
)
for m in [self.model1,self.model2,self.model3]:
for m in [self.model1, self.model2, self.model3]:
m.when_value_edited = self.models_changed
self.merged_model_name = self.add_widget_intelligent(
npyscreen.TitleText,
name="Name for merged model:",
labelColor='CONTROL',
labelColor="CONTROL",
value="",
scroll_exit=True,
)
self.force = self.add_widget_intelligent(
npyscreen.Checkbox,
name="Force merge of incompatible models",
labelColor='CONTROL',
labelColor="CONTROL",
value=False,
scroll_exit=True,
)
@ -301,7 +298,7 @@ class mergeModelsForm(npyscreen.FormMultiPageAction):
name="Merge Method:",
values=self.interpolations,
value=0,
labelColor='CONTROL',
labelColor="CONTROL",
max_height=len(self.interpolations) + 1,
scroll_exit=True,
)
@ -312,7 +309,7 @@ class mergeModelsForm(npyscreen.FormMultiPageAction):
step=0.05,
lowest=0,
value=0.5,
labelColor='CONTROL',
labelColor="CONTROL",
scroll_exit=True,
)
self.model1.editing = True
@ -322,43 +319,43 @@ class mergeModelsForm(npyscreen.FormMultiPageAction):
selected_model1 = self.model1.value[0]
selected_model2 = self.model2.value[0]
selected_model3 = self.model3.value[0]
merged_model_name = f'{models[selected_model1]}+{models[selected_model2]}'
merged_model_name = f"{models[selected_model1]}+{models[selected_model2]}"
self.merged_model_name.value = merged_model_name
if selected_model3 > 0:
self.merge_method.values=['add_difference'],
self.merged_model_name.value += f'+{models[selected_model3]}'
self.merge_method.values = (["add_difference"],)
self.merged_model_name.value += f"+{models[selected_model3]}"
else:
self.merge_method.values=self.interpolations
self.merge_method.value=0
self.merge_method.values = self.interpolations
self.merge_method.value = 0
def on_ok(self):
if self.validate_field_values() and self.check_for_overwrite():
self.parentApp.setNextForm(None)
self.editing = False
self.parentApp.merge_arguments = self.marshall_arguments()
npyscreen.notify('Starting the merge...')
npyscreen.notify("Starting the merge...")
else:
self.editing = True
def on_cancel(self):
sys.exit(0)
def marshall_arguments(self)->dict:
def marshall_arguments(self) -> dict:
model_names = self.model_names
models = [
model_names[self.model1.value[0]],
model_names[self.model2.value[0]],
]
]
if self.model3.value[0] > 0:
models.append(model_names[self.model3.value[0]-1])
models.append(model_names[self.model3.value[0] - 1])
args = dict(
models=models,
alpha = self.alpha.value,
interp = self.interpolations[self.merge_method.value[0]],
force = self.force.value,
merged_model_name = self.merged_model_name.value,
alpha=self.alpha.value,
interp=self.interpolations[self.merge_method.value[0]],
force=self.force.value,
merged_model_name=self.merged_model_name.value,
)
return args
@ -371,18 +368,22 @@ class mergeModelsForm(npyscreen.FormMultiPageAction):
f"The chosen merged model destination, {model_out}, is already in use. Overwrite?"
)
def validate_field_values(self)->bool:
def validate_field_values(self) -> bool:
bad_fields = []
model_names = self.model_names
selected_models = set((model_names[self.model1.value[0]],model_names[self.model2.value[0]]))
selected_models = set(
(model_names[self.model1.value[0]], model_names[self.model2.value[0]])
)
if self.model3.value[0] > 0:
selected_models.add(model_names[self.model3.value[0]-1])
selected_models.add(model_names[self.model3.value[0] - 1])
if len(selected_models) < 2:
bad_fields.append(f'Please select two or three DIFFERENT models to compare. You selected {selected_models}')
bad_fields.append(
f"Please select two or three DIFFERENT models to compare. You selected {selected_models}"
)
if len(bad_fields) > 0:
message = 'The following problems were detected and must be corrected:'
message = "The following problems were detected and must be corrected:"
for problem in bad_fields:
message += f'\n* {problem}'
message += f"\n* {problem}"
npyscreen.notify_confirm(message)
return False
else:
@ -410,6 +411,7 @@ class Mergeapp(npyscreen.NPSAppManaged):
npyscreen.setTheme(npyscreen.Themes.ElegantTheme)
self.main = self.addForm("MAIN", mergeModelsForm, name="Merge Models Settings")
def run_gui(args: Namespace):
mergeapp = Mergeapp()
mergeapp.run()
@ -450,5 +452,27 @@ def main():
] = cache_dir # because not clear the merge pipeline is honoring cache_dir
args.cache_dir = cache_dir
try:
if args.front_end:
run_gui(args)
else:
run_cli(args)
print(f">> Conversion successful. New model is named {args.merged_model_name}")
except widget.NotEnoughSpaceForWidget as e:
if str(e).startswith("Height of 1 allocated"):
print(
"** You need to have at least two diffusers models defined in models.yaml in order to merge"
)
else:
print(f"** A layout error has occurred: {str(e)}")
sys.exit(-1)
except Exception as e:
print(">> An error occurred:")
traceback.print_exc()
sys.exit(-1)
except KeyboardInterrupt:
sys.exit(-1)
if __name__ == "__main__":
main()

View File

@ -17,6 +17,7 @@ from pathlib import Path
from typing import List, Tuple
import npyscreen
from npyscreen import widget
from omegaconf import OmegaConf
from ldm.invoke.globals import Globals, global_set_root
@ -295,7 +296,7 @@ class textualInversionForm(npyscreen.FormMultiPageAction):
for idx in range(len(model_names))
if "default" in conf[model_names[idx]]
]
default = defaults[0] if len(defaults)>0 else 0
default = defaults[0] if len(defaults) > 0 else 0
return (model_names, default)
def marshall_arguments(self) -> dict:
@ -438,11 +439,20 @@ def main():
do_front_end(args)
else:
do_textual_inversion_training(**vars(args))
except widget.NotEnoughSpaceForWidget as e:
if str(e).startswith("Height of 1 allocated"):
print(
"** You need to have at least one diffusers models defined in models.yaml in order to train"
)
else:
print(f"** A layout error has occurred: {str(e)}")
sys.exit(-1)
except AssertionError as e:
print(str(e))
sys.exit(-1)
except KeyboardInterrupt:
pass
if __name__ == "__main__":
main()

View File

@ -1,26 +1,26 @@
import requests as request
import requests
import ldm.invoke._version as version
from ldm.invoke import __app_name__, __version__
local_version = str(version.__version__)
local_version = str(__version__).replace("-", "")
package_name = str(__app_name__)
def get_pypi_versions(package_name="InvokeAI") -> list[str]:
def get_pypi_versions(package_name=package_name) -> list[str]:
"""Get the versions of the package from PyPI"""
url = f"https://pypi.org/pypi/{package_name}/json"
response = request.get(url).json()
response = requests.get(url).json()
versions: list[str] = list(response["releases"].keys())
return versions
def local_on_pypi(package_name="InvokeAI", local_version=local_version) -> bool:
def local_on_pypi(package_name=package_name, local_version=local_version) -> bool:
"""Compare the versions of the package from PyPI and the local package"""
pypi_versions = get_pypi_versions(package_name)
return local_version in pypi_versions
if __name__ == "__main__":
package_name = "InvokeAI"
if local_on_pypi():
print(f"Package {package_name} is up to date")
else: