diff --git a/invokeai/app/invocations/latent.py b/invokeai/app/invocations/latent.py index a5dbf55695..6fc1657bc3 100644 --- a/invokeai/app/invocations/latent.py +++ b/invokeai/app/invocations/latent.py @@ -22,18 +22,18 @@ from invokeai.app.invocations.metadata import CoreMetadata from invokeai.app.invocations.primitives import ( ImageField, ImageOutput, - LatentsField, - LatentsOutput, InpaintMaskField, InpaintMaskOutput, + LatentsField, + LatentsOutput, build_latents_output, ) from invokeai.app.util.controlnet_utils import prepare_control_image from invokeai.app.util.step_callback import stable_diffusion_step_callback from invokeai.backend.model_management.models import ModelType, SilenceWarnings -from ...backend.model_management.models import BaseModelType from ...backend.model_management.lora import ModelPatcher +from ...backend.model_management.models import BaseModelType from ...backend.stable_diffusion import PipelineIntermediateState from ...backend.stable_diffusion.diffusers_pipeline import ( ConditioningData, @@ -45,16 +45,7 @@ from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import Post from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP from ...backend.util.devices import choose_precision, choose_torch_device from ..models.image import ImageCategory, ResourceOrigin -from .baseinvocation import ( - BaseInvocation, - FieldDescriptions, - Input, - InputField, - InvocationContext, - UIType, - tags, - title, -) +from .baseinvocation import BaseInvocation, FieldDescriptions, Input, InputField, InvocationContext, UIType, tags, title from .compel import ConditioningField from .controlnet_image_processors import ControlField from .model import ModelInfo, UNetField, VaeField @@ -65,7 +56,7 @@ DEFAULT_PRECISION = choose_precision(choose_torch_device()) SAMPLER_NAME_VALUES = Literal[tuple(list(SCHEDULER_MAP.keys()))] -@title("Create inpaint mask") +@title("Create Inpaint Mask") @tags("mask", "inpaint") class CreateInpaintMaskInvocation(BaseInvocation): """Creates mask for inpaint model run.""" @@ -85,12 +76,11 @@ class CreateInpaintMaskInvocation(BaseInvocation): def prep_mask_tensor(self, mask_image): if mask_image.mode != "L": - # FIXME: why do we get passed an RGB image here? We can only use single-channel. mask_image = mask_image.convert("L") mask_tensor = image_resized_to_grid_as_tensor(mask_image, normalize=False) if mask_tensor.dim() == 3: mask_tensor = mask_tensor.unsqueeze(0) - #if shape is not None: + # if shape is not None: # mask_tensor = tv_resize(mask_tensor, shape, T.InterpolationMode.BILINEAR) return mask_tensor @@ -107,7 +97,7 @@ class CreateInpaintMaskInvocation(BaseInvocation): mask = self.prep_mask_tensor( context.services.images.get_pil_image(self.mask.image_name), ) - + if image is not None: vae_info = context.services.model_manager.get_model( **self.vae.vae.dict(), @@ -779,12 +769,8 @@ class ImageToLatentsInvocation(BaseInvocation): @torch.no_grad() def invoke(self, context: InvocationContext) -> LatentsOutput: - # image = context.services.images.get( - # self.image.image_type, self.image.image_name - # ) image = context.services.images.get_pil_image(self.image.image_name) - # vae_info = context.services.model_manager.get_model(**self.vae.vae.dict()) vae_info = context.services.model_manager.get_model( **self.vae.vae.dict(), context=context,