mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Update 070_INSTALL_XFORMERS.md
This commit is contained in:
parent
0e5c3a641a
commit
c5672adb6b
@ -28,7 +28,7 @@ command line, then just be sure to activate it's virtual environment.
|
|||||||
Then run the following three commands:
|
Then run the following three commands:
|
||||||
|
|
||||||
```sh
|
```sh
|
||||||
pip install xformers~=0.0.19
|
pip install xformers~=0.0.22
|
||||||
pip install triton # WON'T WORK ON WINDOWS
|
pip install triton # WON'T WORK ON WINDOWS
|
||||||
python -m xformers.info output
|
python -m xformers.info output
|
||||||
```
|
```
|
||||||
@ -42,7 +42,7 @@ If all goes well, you'll see a report like the
|
|||||||
following:
|
following:
|
||||||
|
|
||||||
```sh
|
```sh
|
||||||
xFormers 0.0.20
|
xFormers 0.0.22
|
||||||
memory_efficient_attention.cutlassF: available
|
memory_efficient_attention.cutlassF: available
|
||||||
memory_efficient_attention.cutlassB: available
|
memory_efficient_attention.cutlassB: available
|
||||||
memory_efficient_attention.flshattF: available
|
memory_efficient_attention.flshattF: available
|
||||||
@ -59,14 +59,14 @@ swiglu.gemm_fused_operand_sum: available
|
|||||||
swiglu.fused.p.cpp: available
|
swiglu.fused.p.cpp: available
|
||||||
is_triton_available: True
|
is_triton_available: True
|
||||||
is_functorch_available: False
|
is_functorch_available: False
|
||||||
pytorch.version: 2.0.1+cu118
|
pytorch.version: 2.1.0+cu121
|
||||||
pytorch.cuda: available
|
pytorch.cuda: available
|
||||||
gpu.compute_capability: 8.9
|
gpu.compute_capability: 8.9
|
||||||
gpu.name: NVIDIA GeForce RTX 4070
|
gpu.name: NVIDIA GeForce RTX 4070
|
||||||
build.info: available
|
build.info: available
|
||||||
build.cuda_version: 1108
|
build.cuda_version: 1108
|
||||||
build.python_version: 3.10.11
|
build.python_version: 3.10.11
|
||||||
build.torch_version: 2.0.1+cu118
|
build.torch_version: 2.1.0+cu121
|
||||||
build.env.TORCH_CUDA_ARCH_LIST: 5.0+PTX 6.0 6.1 7.0 7.5 8.0 8.6
|
build.env.TORCH_CUDA_ARCH_LIST: 5.0+PTX 6.0 6.1 7.0 7.5 8.0 8.6
|
||||||
build.env.XFORMERS_BUILD_TYPE: Release
|
build.env.XFORMERS_BUILD_TYPE: Release
|
||||||
build.env.XFORMERS_ENABLE_DEBUG_ASSERTIONS: None
|
build.env.XFORMERS_ENABLE_DEBUG_ASSERTIONS: None
|
||||||
@ -92,33 +92,22 @@ installed from source. These instructions were written for a system
|
|||||||
running Ubuntu 22.04, but other Linux distributions should be able to
|
running Ubuntu 22.04, but other Linux distributions should be able to
|
||||||
adapt this recipe.
|
adapt this recipe.
|
||||||
|
|
||||||
#### 1. Install CUDA Toolkit 11.8
|
#### 1. Install CUDA Toolkit 12.1
|
||||||
|
|
||||||
You will need the CUDA developer's toolkit in order to compile and
|
You will need the CUDA developer's toolkit in order to compile and
|
||||||
install xFormers. **Do not try to install Ubuntu's nvidia-cuda-toolkit
|
install xFormers. **Do not try to install Ubuntu's nvidia-cuda-toolkit
|
||||||
package.** It is out of date and will cause conflicts among the NVIDIA
|
package.** It is out of date and will cause conflicts among the NVIDIA
|
||||||
driver and binaries. Instead install the CUDA Toolkit package provided
|
driver and binaries. Instead install the CUDA Toolkit package provided
|
||||||
by NVIDIA itself. Go to [CUDA Toolkit 11.8
|
by NVIDIA itself. Go to [CUDA Toolkit 12.1
|
||||||
Downloads](https://developer.nvidia.com/cuda-11-8-0-download-archive)
|
Downloads](https://developer.nvidia.com/cuda-12-1-0-download-archive)
|
||||||
and use the target selection wizard to choose your platform and Linux
|
and use the target selection wizard to choose your platform and Linux
|
||||||
distribution. Select an installer type of "runfile (local)" at the
|
distribution. Select an installer type of "runfile (local)" at the
|
||||||
last step.
|
last step.
|
||||||
|
|
||||||
This will provide you with a recipe for downloading and running a
|
This will provide you with a recipe for downloading and running a
|
||||||
install shell script that will install the toolkit and drivers. For
|
install shell script that will install the toolkit and drivers.
|
||||||
example, the install script recipe for Ubuntu 22.04 running on a
|
|
||||||
x86_64 system is:
|
|
||||||
|
|
||||||
```
|
#### 2. Confirm/Install pyTorch 2.1.0 with CUDA 12.1 support
|
||||||
wget https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run
|
|
||||||
sudo sh cuda_11.8.0_520.61.05_linux.run
|
|
||||||
```
|
|
||||||
|
|
||||||
Rather than cut-and-paste this example, We recommend that you walk
|
|
||||||
through the toolkit wizard in order to get the most up to date
|
|
||||||
installer for your system.
|
|
||||||
|
|
||||||
#### 2. Confirm/Install pyTorch 2.01 with CUDA 11.8 support
|
|
||||||
|
|
||||||
If you are using InvokeAI 3.0.2 or higher, these will already be
|
If you are using InvokeAI 3.0.2 or higher, these will already be
|
||||||
installed. If not, you can check whether you have the needed libraries
|
installed. If not, you can check whether you have the needed libraries
|
||||||
@ -133,7 +122,7 @@ Then run the command:
|
|||||||
python -c 'exec("import torch\nprint(torch.__version__)")'
|
python -c 'exec("import torch\nprint(torch.__version__)")'
|
||||||
```
|
```
|
||||||
|
|
||||||
If it prints __1.13.1+cu118__ you're good. If not, you can install the
|
If it prints __2.1.0+cu121__ you're good. If not, you can install the
|
||||||
most up to date libraries with this command:
|
most up to date libraries with this command:
|
||||||
|
|
||||||
```sh
|
```sh
|
||||||
|
Loading…
Reference in New Issue
Block a user