Feat/easy param (#3504)

* Testing change to LatentsToText to allow setting different cfg_scale values per diffusion step.

* Adding first attempt at float param easing node, using Penner easing functions.

* Core implementation of ControlNet and MultiControlNet.

* Added support for ControlNet and MultiControlNet to legacy non-nodal Txt2Img in backend/generator. Although backend/generator will likely disappear by v3.x, right now they are very useful for testing core ControlNet and MultiControlNet functionality while node codebase is rapidly evolving.

* Added example of using ControlNet with legacy Txt2Img generator

* Resolving rebase conflict

* Added first controlnet preprocessor node for canny edge detection.

* Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node

* Switching to ControlField for output from controlnet nodes.

* Resolving conflicts in rebase to origin/main

* Refactored ControlNet nodes so they subclass from PreprocessedControlInvocation, and only need to override run_processor(image) (instead of reimplementing invoke())

* changes to base class for controlnet nodes

* Added HED, LineArt, and OpenPose ControlNet nodes

* Added an additional "raw_processed_image" output port to controlnets, mainly so could route ImageField to a ShowImage node

* Added more preprocessor nodes for:
      MidasDepth
      ZoeDepth
      MLSD
      NormalBae
      Pidi
      LineartAnime
      ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.

* Prep for splitting pre-processor and controlnet nodes

* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.

* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.

* More rebase repair.

* Added support for using multiple control nets. Unfortunately this breaks direct usage of Control node output port  ==> TextToLatent control input port -- passing through a Collect node is now required. Working on fixing this...

* Fixed use of ControlNet control_weight parameter

* Fixed lint-ish formatting error

* Core implementation of ControlNet and MultiControlNet.

* Added first controlnet preprocessor node for canny edge detection.

* Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node

* Switching to ControlField for output from controlnet nodes.

* Refactored controlnet node to output ControlField that bundles control info.

* changes to base class for controlnet nodes

* Added more preprocessor nodes for:
      MidasDepth
      ZoeDepth
      MLSD
      NormalBae
      Pidi
      LineartAnime
      ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.

* Prep for splitting pre-processor and controlnet nodes

* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.

* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.

* Cleaning up TextToLatent arg testing

* Cleaning up mistakes after rebase.

* Removed last bits of dtype and and device hardwiring from controlnet section

* Refactored ControNet support to consolidate multiple parameters into data struct. Also redid how multiple controlnets are handled.

* Added support for specifying which step iteration to start using
each ControlNet, and which step to end using each controlnet (specified as fraction of total steps)

* Cleaning up prior to submitting ControlNet PR. Mostly turning off diagnostic printing. Also fixed error when there is no controlnet input.

* Added dependency on controlnet-aux v0.0.3

* Commented out ZoeDetector. Will re-instate once there's a controlnet-aux release that supports it.

* Switched CotrolNet node modelname input from free text to default list of popular ControlNet model names.

* Fix to work with current stable release of controlnet_aux (v0.0.3). Turned of pre-processor params that were added post v0.0.3. Also change defaults for shuffle.

* Refactored most of controlnet code into its own method to declutter TextToLatents.invoke(), and make upcoming integration with LatentsToLatents easier.

* Cleaning up after ControlNet refactor in TextToLatentsInvocation

* Extended node-based ControlNet support to LatentsToLatentsInvocation.

* chore(ui): regen api client

* fix(ui): add value to conditioning field

* fix(ui): add control field type

* fix(ui): fix node ui type hints

* fix(nodes): controlnet input accepts list or single controlnet

* Moved to controlnet_aux v0.0.4, reinstated Zoe controlnet preprocessor. Also in pyproject.toml  had to specify downgrade of timm to 0.6.13 _after_ controlnet-aux installs timm >= 0.9.2, because timm >0.6.13 breaks Zoe preprocessor.

* Core implementation of ControlNet and MultiControlNet.

* Added first controlnet preprocessor node for canny edge detection.

* Switching to ControlField for output from controlnet nodes.

* Resolving conflicts in rebase to origin/main

* Refactored ControlNet nodes so they subclass from PreprocessedControlInvocation, and only need to override run_processor(image) (instead of reimplementing invoke())

* changes to base class for controlnet nodes

* Added HED, LineArt, and OpenPose ControlNet nodes

* Added more preprocessor nodes for:
      MidasDepth
      ZoeDepth
      MLSD
      NormalBae
      Pidi
      LineartAnime
      ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.

* Prep for splitting pre-processor and controlnet nodes

* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.

* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.

* Added support for using multiple control nets. Unfortunately this breaks direct usage of Control node output port  ==> TextToLatent control input port -- passing through a Collect node is now required. Working on fixing this...

* Fixed use of ControlNet control_weight parameter

* Core implementation of ControlNet and MultiControlNet.

* Added first controlnet preprocessor node for canny edge detection.

* Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node

* Switching to ControlField for output from controlnet nodes.

* Refactored controlnet node to output ControlField that bundles control info.

* changes to base class for controlnet nodes

* Added more preprocessor nodes for:
      MidasDepth
      ZoeDepth
      MLSD
      NormalBae
      Pidi
      LineartAnime
      ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.

* Prep for splitting pre-processor and controlnet nodes

* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.

* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.

* Cleaning up TextToLatent arg testing

* Cleaning up mistakes after rebase.

* Removed last bits of dtype and and device hardwiring from controlnet section

* Refactored ControNet support to consolidate multiple parameters into data struct. Also redid how multiple controlnets are handled.

* Added support for specifying which step iteration to start using
each ControlNet, and which step to end using each controlnet (specified as fraction of total steps)

* Cleaning up prior to submitting ControlNet PR. Mostly turning off diagnostic printing. Also fixed error when there is no controlnet input.

* Commented out ZoeDetector. Will re-instate once there's a controlnet-aux release that supports it.

* Switched CotrolNet node modelname input from free text to default list of popular ControlNet model names.

* Fix to work with current stable release of controlnet_aux (v0.0.3). Turned of pre-processor params that were added post v0.0.3. Also change defaults for shuffle.

* Refactored most of controlnet code into its own method to declutter TextToLatents.invoke(), and make upcoming integration with LatentsToLatents easier.

* Cleaning up after ControlNet refactor in TextToLatentsInvocation

* Extended node-based ControlNet support to LatentsToLatentsInvocation.

* chore(ui): regen api client

* fix(ui): fix node ui type hints

* fix(nodes): controlnet input accepts list or single controlnet

* Added Mediapipe image processor for use as ControlNet preprocessor.
Also hacked in ability to specify HF subfolder when loading ControlNet models from string.

* Fixed bug where MediapipFaceProcessorInvocation was ignoring max_faces and min_confidence params.

* Added nodes for float params: ParamFloatInvocation and FloatCollectionOutput. Also added FloatOutput.

* Added mediapipe install requirement. Should be able to remove once controlnet_aux package adds mediapipe to its requirements.

* Added float to FIELD_TYPE_MAP ins constants.ts

* Progress toward improvement in fieldTemplateBuilder.ts  getFieldType()

* Fixed controlnet preprocessors and controlnet handling in TextToLatents to work with revised Image services.

* Cleaning up from merge, re-adding cfg_scale to FIELD_TYPE_MAP

* Making sure cfg_scale of type list[float] can be used in image metadata, to support param easing for cfg_scale

* Fixed math for per-step param easing.

* Added option to show plot of param value at each step

* Just cleaning up after adding param easing plot option, removing vestigial code.

* Modified control_weight ControlNet param to be polistmorphic --
can now be either a single float weight applied for all steps, or a list of floats of size total_steps, that specifies weight for each step.

* Added more informative error message when _validat_edge() throws an error.

* Just improving parm easing bar chart title to include easing type.

* Added requirement for easing-functions package

* Taking out some diagnostic prints.

* Added option to use both easing function and mirror of easing function together.

* Fixed recently introduced problem (when pulled in main), triggered by num_steps in StepParamEasingInvocation not having a default value -- just added default.

---------

Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
This commit is contained in:
Gregg Helt
2023-06-10 23:27:44 -07:00
committed by GitHub
parent 30f20b55d5
commit c647056287
10 changed files with 377 additions and 40 deletions

View File

@ -65,7 +65,6 @@ from typing import Optional, Union, List, get_args
def is_union_subtype(t1, t2):
t1_args = get_args(t1)
t2_args = get_args(t2)
if not t1_args:
# t1 is a single type
return t1 in t2_args
@ -86,7 +85,6 @@ def is_list_or_contains_list(t):
for arg in t_args:
if get_origin(arg) is list:
return True
return False
@ -393,7 +391,7 @@ class Graph(BaseModel):
from_node = self.get_node(edge.source.node_id)
to_node = self.get_node(edge.destination.node_id)
except NodeNotFoundError:
raise InvalidEdgeError("One or both nodes don't exist")
raise InvalidEdgeError("One or both nodes don't exist: {edge.source.node_id} -> {edge.destination.node_id}")
# Validate that an edge to this node+field doesn't already exist
input_edges = self._get_input_edges(edge.destination.node_id, edge.destination.field)
@ -404,41 +402,41 @@ class Graph(BaseModel):
g = self.nx_graph_flat()
g.add_edge(edge.source.node_id, edge.destination.node_id)
if not nx.is_directed_acyclic_graph(g):
raise InvalidEdgeError(f'Edge creates a cycle in the graph')
raise InvalidEdgeError(f'Edge creates a cycle in the graph: {edge.source.node_id} -> {edge.destination.node_id}')
# Validate that the field types are compatible
if not are_connections_compatible(
from_node, edge.source.field, to_node, edge.destination.field
):
raise InvalidEdgeError(f'Fields are incompatible')
raise InvalidEdgeError(f'Fields are incompatible: cannot connect {edge.source.node_id}.{edge.source.field} to {edge.destination.node_id}.{edge.destination.field}')
# Validate if iterator output type matches iterator input type (if this edge results in both being set)
if isinstance(to_node, IterateInvocation) and edge.destination.field == "collection":
if not self._is_iterator_connection_valid(
edge.destination.node_id, new_input=edge.source
):
raise InvalidEdgeError(f'Iterator input type does not match iterator output type')
raise InvalidEdgeError(f'Iterator input type does not match iterator output type: {edge.source.node_id}.{edge.source.field} to {edge.destination.node_id}.{edge.destination.field}')
# Validate if iterator input type matches output type (if this edge results in both being set)
if isinstance(from_node, IterateInvocation) and edge.source.field == "item":
if not self._is_iterator_connection_valid(
edge.source.node_id, new_output=edge.destination
):
raise InvalidEdgeError(f'Iterator output type does not match iterator input type')
raise InvalidEdgeError(f'Iterator output type does not match iterator input type:, {edge.source.node_id}.{edge.source.field} to {edge.destination.node_id}.{edge.destination.field}')
# Validate if collector input type matches output type (if this edge results in both being set)
if isinstance(to_node, CollectInvocation) and edge.destination.field == "item":
if not self._is_collector_connection_valid(
edge.destination.node_id, new_input=edge.source
):
raise InvalidEdgeError(f'Collector output type does not match collector input type')
raise InvalidEdgeError(f'Collector output type does not match collector input type: {edge.source.node_id}.{edge.source.field} to {edge.destination.node_id}.{edge.destination.field}')
# Validate if collector output type matches input type (if this edge results in both being set)
if isinstance(from_node, CollectInvocation) and edge.source.field == "collection":
if not self._is_collector_connection_valid(
edge.source.node_id, new_output=edge.destination
):
raise InvalidEdgeError(f'Collector input type does not match collector output type')
raise InvalidEdgeError(f'Collector input type does not match collector output type: {edge.source.node_id}.{edge.source.field} to {edge.destination.node_id}.{edge.destination.field}')
def has_node(self, node_path: str) -> bool: