Add IP Adapter Style & Composition Modes (#6213)

## Summary

Until now IP Adapter had complete control on the contents of the output.
With this PR, users are now able to select "Style Only" or "Composition
Only" to draw just the style or layout of the reference image.

Based off: https://arxiv.org/abs/2404.02733

### New IP Method Option

- `Full` - Both style and layout of the refence image are used.
- `Style Only` - Only the style of the image is used
- `Composition Only` - Only the composition of the image is used.


![opera_0BkqZTwObO](https://github.com/invoke-ai/InvokeAI/assets/54517381/1b2fbbba-44c9-4c25-87cb-3711a17d13e3)

### Example Result


![demo](https://github.com/invoke-ai/InvokeAI/assets/54517381/703f3de5-e685-4691-acda-9338a4c10796)

### Notes

- Supports both SDXL and SD1.5

### Testing

- Just check and test if it works as expected with all IP Adapter models
- both SDXL and SD1.5

## Merge Plan

Good to merge once tested for all edge cases.
This commit is contained in:
Kent Keirsey 2024-04-16 14:23:36 -04:00 committed by GitHub
commit c828a4e59f
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
18 changed files with 374 additions and 70 deletions

View File

@ -4,20 +4,8 @@ from typing import List, Literal, Optional, Union
from pydantic import BaseModel, Field, field_validator, model_validator
from typing_extensions import Self
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import (
FieldDescriptions,
Input,
InputField,
OutputField,
TensorField,
UIType,
)
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, TensorField, UIType
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.invocations.primitives import ImageField
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
@ -36,6 +24,7 @@ class IPAdapterField(BaseModel):
ip_adapter_model: ModelIdentifierField = Field(description="The IP-Adapter model to use.")
image_encoder_model: ModelIdentifierField = Field(description="The name of the CLIP image encoder model.")
weight: Union[float, List[float]] = Field(default=1, description="The weight given to the IP-Adapter.")
target_blocks: List[str] = Field(default=[], description="The IP Adapter blocks to apply")
begin_step_percent: float = Field(
default=0, ge=0, le=1, description="When the IP-Adapter is first applied (% of total steps)"
)
@ -69,7 +58,7 @@ class IPAdapterOutput(BaseInvocationOutput):
CLIP_VISION_MODEL_MAP = {"ViT-H": "ip_adapter_sd_image_encoder", "ViT-G": "ip_adapter_sdxl_image_encoder"}
@invocation("ip_adapter", title="IP-Adapter", tags=["ip_adapter", "control"], category="ip_adapter", version="1.3.0")
@invocation("ip_adapter", title="IP-Adapter", tags=["ip_adapter", "control"], category="ip_adapter", version="1.4.0")
class IPAdapterInvocation(BaseInvocation):
"""Collects IP-Adapter info to pass to other nodes."""
@ -90,6 +79,9 @@ class IPAdapterInvocation(BaseInvocation):
weight: Union[float, List[float]] = InputField(
default=1, description="The weight given to the IP-Adapter", title="Weight"
)
method: Literal["full", "style", "composition"] = InputField(
default="full", description="The method to apply the IP-Adapter"
)
begin_step_percent: float = InputField(
default=0, ge=0, le=1, description="When the IP-Adapter is first applied (% of total steps)"
)
@ -124,12 +116,32 @@ class IPAdapterInvocation(BaseInvocation):
image_encoder_model = self._get_image_encoder(context, image_encoder_model_name)
if self.method == "style":
if ip_adapter_info.base == "sd-1":
target_blocks = ["up_blocks.1"]
elif ip_adapter_info.base == "sdxl":
target_blocks = ["up_blocks.0.attentions.1"]
else:
raise ValueError(f"Unsupported IP-Adapter base type: '{ip_adapter_info.base}'.")
elif self.method == "composition":
if ip_adapter_info.base == "sd-1":
target_blocks = ["down_blocks.2", "mid_block"]
elif ip_adapter_info.base == "sdxl":
target_blocks = ["down_blocks.2.attentions.1"]
else:
raise ValueError(f"Unsupported IP-Adapter base type: '{ip_adapter_info.base}'.")
elif self.method == "full":
target_blocks = ["block"]
else:
raise ValueError(f"Unexpected IP-Adapter method: '{self.method}'.")
return IPAdapterOutput(
ip_adapter=IPAdapterField(
image=self.image,
ip_adapter_model=self.ip_adapter_model,
image_encoder_model=ModelIdentifierField.from_config(image_encoder_model),
weight=self.weight,
target_blocks=target_blocks,
begin_step_percent=self.begin_step_percent,
end_step_percent=self.end_step_percent,
mask=self.mask,

View File

@ -679,6 +679,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
IPAdapterData(
ip_adapter_model=ip_adapter_model,
weight=single_ip_adapter.weight,
target_blocks=single_ip_adapter.target_blocks,
begin_step_percent=single_ip_adapter.begin_step_percent,
end_step_percent=single_ip_adapter.end_step_percent,
ip_adapter_conditioning=IPAdapterConditioningInfo(image_prompt_embeds, uncond_image_prompt_embeds),

View File

@ -36,6 +36,7 @@ class IPAdapterMetadataField(BaseModel):
image: ImageField = Field(description="The IP-Adapter image prompt.")
ip_adapter_model: ModelIdentifierField = Field(description="The IP-Adapter model.")
clip_vision_model: Literal["ViT-H", "ViT-G"] = Field(description="The CLIP Vision model")
method: Literal["full", "style", "composition"] = Field(description="Method to apply IP Weights with")
weight: Union[float, list[float]] = Field(description="The weight given to the IP-Adapter")
begin_step_percent: float = Field(description="When the IP-Adapter is first applied (% of total steps)")
end_step_percent: float = Field(description="When the IP-Adapter is last applied (% of total steps)")

View File

@ -21,12 +21,9 @@ from pydantic import Field
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
from invokeai.app.services.config.config_default import get_config
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
IPAdapterData,
TextConditioningData,
)
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import IPAdapterData, TextConditioningData
from invokeai.backend.stable_diffusion.diffusion.shared_invokeai_diffusion import InvokeAIDiffuserComponent
from invokeai.backend.stable_diffusion.diffusion.unet_attention_patcher import UNetAttentionPatcher
from invokeai.backend.stable_diffusion.diffusion.unet_attention_patcher import UNetAttentionPatcher, UNetIPAdapterData
from invokeai.backend.util.attention import auto_detect_slice_size
from invokeai.backend.util.devices import TorchDevice
@ -394,8 +391,13 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
unet_attention_patcher = None
self.use_ip_adapter = use_ip_adapter
attn_ctx = nullcontext()
if use_ip_adapter or use_regional_prompting:
ip_adapters = [ipa.ip_adapter_model for ipa in ip_adapter_data] if use_ip_adapter else None
ip_adapters: Optional[List[UNetIPAdapterData]] = (
[{"ip_adapter": ipa.ip_adapter_model, "target_blocks": ipa.target_blocks} for ipa in ip_adapter_data]
if use_ip_adapter
else None
)
unet_attention_patcher = UNetAttentionPatcher(ip_adapters)
attn_ctx = unet_attention_patcher.apply_ip_adapter_attention(self.invokeai_diffuser.model)

View File

@ -53,6 +53,7 @@ class IPAdapterData:
ip_adapter_model: IPAdapter
ip_adapter_conditioning: IPAdapterConditioningInfo
mask: torch.Tensor
target_blocks: List[str]
# Either a single weight applied to all steps, or a list of weights for each step.
weight: Union[float, List[float]] = 1.0

View File

@ -1,4 +1,5 @@
from typing import Optional
from dataclasses import dataclass
from typing import List, Optional, cast
import torch
import torch.nn.functional as F
@ -9,6 +10,12 @@ from invokeai.backend.stable_diffusion.diffusion.regional_ip_data import Regiona
from invokeai.backend.stable_diffusion.diffusion.regional_prompt_data import RegionalPromptData
@dataclass
class IPAdapterAttentionWeights:
ip_adapter_weights: IPAttentionProcessorWeights
skip: bool
class CustomAttnProcessor2_0(AttnProcessor2_0):
"""A custom implementation of AttnProcessor2_0 that supports additional Invoke features.
This implementation is based on
@ -20,7 +27,7 @@ class CustomAttnProcessor2_0(AttnProcessor2_0):
def __init__(
self,
ip_adapter_weights: Optional[list[IPAttentionProcessorWeights]] = None,
ip_adapter_attention_weights: Optional[List[IPAdapterAttentionWeights]] = None,
):
"""Initialize a CustomAttnProcessor2_0.
Note: Arguments that are the same for all attention layers are passed to __call__(). Arguments that are
@ -30,23 +37,22 @@ class CustomAttnProcessor2_0(AttnProcessor2_0):
for the i'th IP-Adapter.
"""
super().__init__()
self._ip_adapter_weights = ip_adapter_weights
def _is_ip_adapter_enabled(self) -> bool:
return self._ip_adapter_weights is not None
self._ip_adapter_attention_weights = ip_adapter_attention_weights
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
temb: Optional[torch.FloatTensor] = None,
# For regional prompting:
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
temb: Optional[torch.Tensor] = None,
# For Regional Prompting:
regional_prompt_data: Optional[RegionalPromptData] = None,
percent_through: Optional[torch.FloatTensor] = None,
percent_through: Optional[torch.Tensor] = None,
# For IP-Adapter:
regional_ip_data: Optional[RegionalIPData] = None,
*args,
**kwargs,
) -> torch.FloatTensor:
"""Apply attention.
Args:
@ -130,17 +136,19 @@ class CustomAttnProcessor2_0(AttnProcessor2_0):
# Apply IP-Adapter conditioning.
if is_cross_attention:
if self._is_ip_adapter_enabled():
if self._ip_adapter_attention_weights:
assert regional_ip_data is not None
ip_masks = regional_ip_data.get_masks(query_seq_len=query_seq_len)
assert (
len(regional_ip_data.image_prompt_embeds)
== len(self._ip_adapter_weights)
== len(self._ip_adapter_attention_weights)
== len(regional_ip_data.scales)
== ip_masks.shape[1]
)
for ipa_index, ipa_embed in enumerate(regional_ip_data.image_prompt_embeds):
ipa_weights = self._ip_adapter_weights[ipa_index]
ipa_weights = self._ip_adapter_attention_weights[ipa_index].ip_adapter_weights
ipa_scale = regional_ip_data.scales[ipa_index]
ip_mask = ip_masks[0, ipa_index, ...]
@ -153,29 +161,33 @@ class CustomAttnProcessor2_0(AttnProcessor2_0):
# Expected ip_hidden_state shape: (batch_size, num_ip_images, ip_seq_len, ip_image_embedding)
ip_key = ipa_weights.to_k_ip(ip_hidden_states)
ip_value = ipa_weights.to_v_ip(ip_hidden_states)
if not self._ip_adapter_attention_weights[ipa_index].skip:
ip_key = ipa_weights.to_k_ip(ip_hidden_states)
ip_value = ipa_weights.to_v_ip(ip_hidden_states)
# Expected ip_key and ip_value shape: (batch_size, num_ip_images, ip_seq_len, head_dim * num_heads)
# Expected ip_key and ip_value shape:
# (batch_size, num_ip_images, ip_seq_len, head_dim * num_heads)
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# Expected ip_key and ip_value shape: (batch_size, num_heads, num_ip_images * ip_seq_len, head_dim)
# Expected ip_key and ip_value shape:
# (batch_size, num_heads, num_ip_images * ip_seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
ip_hidden_states = F.scaled_dot_product_attention(
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
)
# TODO: add support for attn.scale when we move to Torch 2.1
ip_hidden_states = F.scaled_dot_product_attention(
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
)
# Expected ip_hidden_states shape: (batch_size, num_heads, query_seq_len, head_dim)
# Expected ip_hidden_states shape: (batch_size, num_heads, query_seq_len, head_dim)
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(
batch_size, -1, attn.heads * head_dim
)
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
ip_hidden_states = ip_hidden_states.to(query.dtype)
ip_hidden_states = ip_hidden_states.to(query.dtype)
# Expected ip_hidden_states shape: (batch_size, query_seq_len, num_heads * head_dim)
hidden_states = hidden_states + ipa_scale * ip_hidden_states * ip_mask
# Expected ip_hidden_states shape: (batch_size, query_seq_len, num_heads * head_dim)
hidden_states = hidden_states + ipa_scale * ip_hidden_states * ip_mask
else:
# If IP-Adapter is not enabled, then regional_ip_data should not be passed in.
assert regional_ip_data is None
@ -188,11 +200,15 @@ class CustomAttnProcessor2_0(AttnProcessor2_0):
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
# End of unmodified block from AttnProcessor2_0
return hidden_states
# casting torch.Tensor to torch.FloatTensor to avoid type issues
return cast(torch.FloatTensor, hidden_states)

View File

@ -1,17 +1,25 @@
from contextlib import contextmanager
from typing import Optional
from typing import List, Optional, TypedDict
from diffusers.models import UNet2DConditionModel
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
from invokeai.backend.stable_diffusion.diffusion.custom_atttention import CustomAttnProcessor2_0
from invokeai.backend.stable_diffusion.diffusion.custom_atttention import (
CustomAttnProcessor2_0,
IPAdapterAttentionWeights,
)
class UNetIPAdapterData(TypedDict):
ip_adapter: IPAdapter
target_blocks: List[str]
class UNetAttentionPatcher:
"""A class for patching a UNet with CustomAttnProcessor2_0 attention layers."""
def __init__(self, ip_adapters: Optional[list[IPAdapter]]):
self._ip_adapters = ip_adapters
def __init__(self, ip_adapter_data: Optional[List[UNetIPAdapterData]]):
self._ip_adapters = ip_adapter_data
def _prepare_attention_processors(self, unet: UNet2DConditionModel):
"""Prepare a dict of attention processors that can be injected into a unet, and load the IP-Adapter attention
@ -26,9 +34,22 @@ class UNetAttentionPatcher:
attn_procs[name] = CustomAttnProcessor2_0()
else:
# Collect the weights from each IP Adapter for the idx'th attention processor.
attn_procs[name] = CustomAttnProcessor2_0(
[ip_adapter.attn_weights.get_attention_processor_weights(idx) for ip_adapter in self._ip_adapters],
)
ip_adapter_attention_weights_collection: list[IPAdapterAttentionWeights] = []
for ip_adapter in self._ip_adapters:
ip_adapter_weights = ip_adapter["ip_adapter"].attn_weights.get_attention_processor_weights(idx)
skip = True
for block in ip_adapter["target_blocks"]:
if block in name:
skip = False
break
ip_adapter_attention_weights: IPAdapterAttentionWeights = IPAdapterAttentionWeights(
ip_adapter_weights=ip_adapter_weights, skip=skip
)
ip_adapter_attention_weights_collection.append(ip_adapter_attention_weights)
attn_procs[name] = CustomAttnProcessor2_0(ip_adapter_attention_weights_collection)
return attn_procs
@contextmanager

View File

@ -213,6 +213,10 @@
"resize": "Resize",
"resizeSimple": "Resize (Simple)",
"resizeMode": "Resize Mode",
"ipAdapterMethod": "Method",
"full": "Full",
"style": "Style Only",
"composition": "Composition Only",
"safe": "Safe",
"saveControlImage": "Save Control Image",
"scribble": "scribble",

View File

@ -21,6 +21,7 @@ import ControlAdapterShouldAutoConfig from './ControlAdapterShouldAutoConfig';
import ControlNetCanvasImageImports from './imports/ControlNetCanvasImageImports';
import { ParamControlAdapterBeginEnd } from './parameters/ParamControlAdapterBeginEnd';
import ParamControlAdapterControlMode from './parameters/ParamControlAdapterControlMode';
import ParamControlAdapterIPMethod from './parameters/ParamControlAdapterIPMethod';
import ParamControlAdapterProcessorSelect from './parameters/ParamControlAdapterProcessorSelect';
import ParamControlAdapterResizeMode from './parameters/ParamControlAdapterResizeMode';
import ParamControlAdapterWeight from './parameters/ParamControlAdapterWeight';
@ -111,7 +112,8 @@ const ControlAdapterConfig = (props: { id: string; number: number }) => {
<Flex w="full" flexDir="column" gap={4}>
<Flex gap={8} w="full" alignItems="center">
<Flex flexDir="column" gap={2} h={32} w="full">
<Flex flexDir="column" gap={4} h={controlAdapterType === 'ip_adapter' ? 40 : 32} w="full">
<ParamControlAdapterIPMethod id={id} />
<ParamControlAdapterWeight id={id} />
<ParamControlAdapterBeginEnd id={id} />
</Flex>

View File

@ -0,0 +1,63 @@
import type { ComboboxOnChange } from '@invoke-ai/ui-library';
import { Combobox, FormControl, FormLabel } from '@invoke-ai/ui-library';
import { useAppDispatch } from 'app/store/storeHooks';
import { InformationalPopover } from 'common/components/InformationalPopover/InformationalPopover';
import { useControlAdapterIPMethod } from 'features/controlAdapters/hooks/useControlAdapterIPMethod';
import { useControlAdapterIsEnabled } from 'features/controlAdapters/hooks/useControlAdapterIsEnabled';
import { controlAdapterIPMethodChanged } from 'features/controlAdapters/store/controlAdaptersSlice';
import type { IPMethod } from 'features/controlAdapters/store/types';
import { isIPMethod } from 'features/controlAdapters/store/types';
import { memo, useCallback, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
type Props = {
id: string;
};
const ParamControlAdapterIPMethod = ({ id }: Props) => {
const isEnabled = useControlAdapterIsEnabled(id);
const method = useControlAdapterIPMethod(id);
const dispatch = useAppDispatch();
const { t } = useTranslation();
const options: { label: string; value: IPMethod }[] = useMemo(
() => [
{ label: t('controlnet.full'), value: 'full' },
{ label: t('controlnet.style'), value: 'style' },
{ label: t('controlnet.composition'), value: 'composition' },
],
[t]
);
const handleIPMethodChanged = useCallback<ComboboxOnChange>(
(v) => {
if (!isIPMethod(v?.value)) {
return;
}
dispatch(
controlAdapterIPMethodChanged({
id,
method: v.value,
})
);
},
[id, dispatch]
);
const value = useMemo(() => options.find((o) => o.value === method), [options, method]);
if (!method) {
return null;
}
return (
<FormControl>
<InformationalPopover feature="controlNetResizeMode">
<FormLabel>{t('controlnet.ipAdapterMethod')}</FormLabel>
</InformationalPopover>
<Combobox value={value} options={options} isDisabled={!isEnabled} onChange={handleIPMethodChanged} />
</FormControl>
);
};
export default memo(ParamControlAdapterIPMethod);

View File

@ -0,0 +1,24 @@
import { createMemoizedSelector } from 'app/store/createMemoizedSelector';
import { useAppSelector } from 'app/store/storeHooks';
import {
selectControlAdapterById,
selectControlAdaptersSlice,
} from 'features/controlAdapters/store/controlAdaptersSlice';
import { useMemo } from 'react';
export const useControlAdapterIPMethod = (id: string) => {
const selector = useMemo(
() =>
createMemoizedSelector(selectControlAdaptersSlice, (controlAdapters) => {
const cn = selectControlAdapterById(controlAdapters, id);
if (cn && cn?.type === 'ip_adapter') {
return cn.method;
}
}),
[id]
);
const method = useAppSelector(selector);
return method;
};

View File

@ -21,6 +21,7 @@ import type {
ControlAdapterType,
ControlMode,
ControlNetConfig,
IPMethod,
RequiredControlAdapterProcessorNode,
ResizeMode,
T2IAdapterConfig,
@ -245,6 +246,10 @@ export const controlAdaptersSlice = createSlice({
}
caAdapter.updateOne(state, { id, changes: { controlMode } });
},
controlAdapterIPMethodChanged: (state, action: PayloadAction<{ id: string; method: IPMethod }>) => {
const { id, method } = action.payload;
caAdapter.updateOne(state, { id, changes: { method } });
},
controlAdapterCLIPVisionModelChanged: (
state,
action: PayloadAction<{ id: string; clipVisionModel: CLIPVisionModel }>
@ -390,6 +395,7 @@ export const {
controlAdapterIsEnabledChanged,
controlAdapterModelChanged,
controlAdapterCLIPVisionModelChanged,
controlAdapterIPMethodChanged,
controlAdapterWeightChanged,
controlAdapterBeginStepPctChanged,
controlAdapterEndStepPctChanged,

View File

@ -210,6 +210,10 @@ const zResizeMode = z.enum(['just_resize', 'crop_resize', 'fill_resize', 'just_r
export type ResizeMode = z.infer<typeof zResizeMode>;
export const isResizeMode = (v: unknown): v is ResizeMode => zResizeMode.safeParse(v).success;
const zIPMethod = z.enum(['full', 'style', 'composition']);
export type IPMethod = z.infer<typeof zIPMethod>;
export const isIPMethod = (v: unknown): v is IPMethod => zIPMethod.safeParse(v).success;
export type ControlNetConfig = {
type: 'controlnet';
id: string;
@ -253,6 +257,7 @@ export type IPAdapterConfig = {
model: ParameterIPAdapterModel | null;
clipVisionModel: CLIPVisionModel;
weight: number;
method: IPMethod;
beginStepPct: number;
endStepPct: number;
};

View File

@ -46,6 +46,7 @@ export const initialIPAdapter: Omit<IPAdapterConfig, 'id'> = {
isEnabled: true,
controlImage: null,
model: null,
method: 'full',
clipVisionModel: 'ViT-H',
weight: 1,
beginStepPct: 0,

View File

@ -386,6 +386,10 @@ const parseIPAdapter: MetadataParseFunc<IPAdapterConfigMetadata> = async (metada
.nullish()
.catch(null)
.parse(await getProperty(metadataItem, 'weight'));
const method = zIPAdapterField.shape.method
.nullish()
.catch(null)
.parse(await getProperty(metadataItem, 'method'));
const begin_step_percent = zIPAdapterField.shape.begin_step_percent
.nullish()
.catch(null)
@ -403,6 +407,7 @@ const parseIPAdapter: MetadataParseFunc<IPAdapterConfigMetadata> = async (metada
clipVisionModel: 'ViT-H',
controlImage: image?.image_name ?? null,
weight: weight ?? initialIPAdapter.weight,
method: method ?? initialIPAdapter.method,
beginStepPct: begin_step_percent ?? initialIPAdapter.beginStepPct,
endStepPct: end_step_percent ?? initialIPAdapter.endStepPct,
};

View File

@ -109,6 +109,7 @@ export const zIPAdapterField = z.object({
image: zImageField,
ip_adapter_model: zModelIdentifierField,
weight: z.number(),
method: z.enum(['full', 'style', 'composition']),
begin_step_percent: z.number().optional(),
end_step_percent: z.number().optional(),
});

View File

@ -48,7 +48,7 @@ export const addIPAdapterToLinearGraph = async (
if (!ipAdapter.model) {
return;
}
const { id, weight, model, clipVisionModel, beginStepPct, endStepPct, controlImage } = ipAdapter;
const { id, weight, model, clipVisionModel, method, beginStepPct, endStepPct, controlImage } = ipAdapter;
assert(controlImage, 'IP Adapter image is required');
@ -57,6 +57,7 @@ export const addIPAdapterToLinearGraph = async (
type: 'ip_adapter',
is_intermediate: true,
weight: weight,
method: method,
ip_adapter_model: model,
clip_vision_model: clipVisionModel,
begin_step_percent: beginStepPct,
@ -84,7 +85,7 @@ export const addIPAdapterToLinearGraph = async (
};
const buildIPAdapterMetadata = (ipAdapter: IPAdapterConfig): S['IPAdapterMetadataField'] => {
const { controlImage, beginStepPct, endStepPct, model, clipVisionModel, weight } = ipAdapter;
const { controlImage, beginStepPct, endStepPct, model, clipVisionModel, method, weight } = ipAdapter;
assert(model, 'IP Adapter model is required');
@ -102,6 +103,7 @@ const buildIPAdapterMetadata = (ipAdapter: IPAdapterConfig): S['IPAdapterMetadat
ip_adapter_model: model,
clip_vision_model: clipVisionModel,
weight,
method,
begin_step_percent: beginStepPct,
end_step_percent: endStepPct,
image,

File diff suppressed because one or more lines are too long