improve debugging messages

This commit is contained in:
Lincoln Stein 2023-05-14 18:29:55 -04:00
parent b9e9087dbe
commit c8f765cc06

View File

@ -332,12 +332,16 @@ class ModelCache(object):
if cache.lazy_offloading:
cache._offload_unlocked_models()
if model.device != cache.execution_device:
if model.device != cache.execution_device and \
not (self.cache.sequential_offload \
and isinstance(model, StableDiffusionGeneratorPipeline)
):
cache.logger.debug(f'Moving {key} into {cache.execution_device}')
with VRAMUsage() as mem:
self._to(model,cache.execution_device)
# model.to(cache.execution_device) # move into GPU
self.cache.logger.debug(f'Locked {key} in {cache.execution_device}')
cache.logger.debug(f'GPU VRAM used for load: {(mem.vram_used/GIG):.2f} GB')
cache.model_sizes[key] = mem.vram_used # more accurate size
@ -348,7 +352,7 @@ class ModelCache(object):
# move it into CPU if it is in GPU and not locked
if hasattr(model, 'to') and (key in cache.loaded_models
and cache.locked_models[key] == 0):
self._go(model,cache.storage_device)
self._to(model,cache.storage_device)
# model.to(cache.storage_device)
cache.loaded_models.remove(key)
return model
@ -365,11 +369,6 @@ class ModelCache(object):
cache._print_cuda_stats()
def _to(self, model, device):
# if set, sequential offload will take care of GPU management for diffusers
if self.cache.sequential_offload and isinstance(model, StableDiffusionGeneratorPipeline):
return
self.cache.logger.debug(f'Moving {key} into {cache.execution_device}')
model.to(device)
if isinstance(model,MODEL_CLASSES[SDModelType.Diffusers]):
for part in DIFFUSERS_PARTS:
@ -476,9 +475,10 @@ class ModelCache(object):
def _print_cuda_stats(self):
vram = "%4.2fG" % (torch.cuda.memory_allocated() / GIG)
ram = "%4.2fG" % (self.current_cache_size / GIG)
cached_models = len(self.models)
loaded_models = len(self.loaded_models)
locked_models = len([x for x in self.locked_models if self.locked_models[x]>0])
logger.debug(f"Current VRAM/RAM usage: {vram}/{ram}; locked_models/loaded_models = {locked_models}/{loaded_models}")
logger.debug(f"Current VRAM/RAM usage: {vram}/{ram}; cached_models/loaded_models/locked_models = {cached_models}/{loaded_models}/{locked_models}")
def _make_cache_room(self, key, model_type):
# calculate how much memory this model will require