mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
deprecate the face restoration option
This commit is contained in:
parent
c7b547ea3e
commit
c90345d6a3
invokeai
app/services
backend/restoration
@ -361,7 +361,7 @@ setting environment variables INVOKEAI_<setting>.
|
|||||||
log_tokenization : bool = Field(default=False, description="Enable logging of parsed prompt tokens.", category='Features')
|
log_tokenization : bool = Field(default=False, description="Enable logging of parsed prompt tokens.", category='Features')
|
||||||
nsfw_checker : bool = Field(default=True, description="Enable/disable the NSFW checker", category='Features')
|
nsfw_checker : bool = Field(default=True, description="Enable/disable the NSFW checker", category='Features')
|
||||||
patchmatch : bool = Field(default=True, description="Enable/disable patchmatch inpaint code", category='Features')
|
patchmatch : bool = Field(default=True, description="Enable/disable patchmatch inpaint code", category='Features')
|
||||||
restore : bool = Field(default=True, description="Enable/disable face restoration code", category='Features')
|
restore : bool = Field(default=True, description="Enable/disable face restoration code (DEPRECATED)", category='DEPRECATED')
|
||||||
|
|
||||||
always_use_cpu : bool = Field(default=False, description="If true, use the CPU for rendering even if a GPU is available.", category='Memory/Performance')
|
always_use_cpu : bool = Field(default=False, description="If true, use the CPU for rendering even if a GPU is available.", category='Memory/Performance')
|
||||||
free_gpu_mem : bool = Field(default=False, description="If true, purge model from GPU after each generation.", category='Memory/Performance')
|
free_gpu_mem : bool = Field(default=False, description="If true, purge model from GPU after each generation.", category='Memory/Performance')
|
||||||
|
@ -1,4 +0,0 @@
|
|||||||
"""
|
|
||||||
Initialization file for the invokeai.backend.restoration package
|
|
||||||
"""
|
|
||||||
from .base import Restoration
|
|
@ -1,45 +0,0 @@
|
|||||||
import invokeai.backend.util.logging as logger
|
|
||||||
|
|
||||||
class Restoration:
|
|
||||||
def __init__(self) -> None:
|
|
||||||
pass
|
|
||||||
|
|
||||||
def load_face_restore_models(
|
|
||||||
self, gfpgan_model_path="./models/core/face_restoration/gfpgan/GFPGANv1.4.pth"
|
|
||||||
):
|
|
||||||
# Load GFPGAN
|
|
||||||
gfpgan = self.load_gfpgan(gfpgan_model_path)
|
|
||||||
if gfpgan.gfpgan_model_exists:
|
|
||||||
logger.info("GFPGAN Initialized")
|
|
||||||
else:
|
|
||||||
logger.info("GFPGAN Disabled")
|
|
||||||
gfpgan = None
|
|
||||||
|
|
||||||
# Load CodeFormer
|
|
||||||
codeformer = self.load_codeformer()
|
|
||||||
if codeformer.codeformer_model_exists:
|
|
||||||
logger.info("CodeFormer Initialized")
|
|
||||||
else:
|
|
||||||
logger.info("CodeFormer Disabled")
|
|
||||||
codeformer = None
|
|
||||||
|
|
||||||
return gfpgan, codeformer
|
|
||||||
|
|
||||||
# Face Restore Models
|
|
||||||
def load_gfpgan(self, gfpgan_model_path):
|
|
||||||
from .gfpgan import GFPGAN
|
|
||||||
|
|
||||||
return GFPGAN(gfpgan_model_path)
|
|
||||||
|
|
||||||
def load_codeformer(self):
|
|
||||||
from .codeformer import CodeFormerRestoration
|
|
||||||
|
|
||||||
return CodeFormerRestoration()
|
|
||||||
|
|
||||||
# Upscale Models
|
|
||||||
def load_esrgan(self, esrgan_bg_tile=400):
|
|
||||||
from .realesrgan import ESRGAN
|
|
||||||
|
|
||||||
esrgan = ESRGAN(esrgan_bg_tile)
|
|
||||||
logger.info("ESRGAN Initialized")
|
|
||||||
return esrgan
|
|
@ -1,120 +0,0 @@
|
|||||||
import os
|
|
||||||
import sys
|
|
||||||
import warnings
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import torch
|
|
||||||
|
|
||||||
import invokeai.backend.util.logging as logger
|
|
||||||
from invokeai.app.services.config import InvokeAIAppConfig
|
|
||||||
|
|
||||||
pretrained_model_url = (
|
|
||||||
"https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth"
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
class CodeFormerRestoration:
|
|
||||||
def __init__(
|
|
||||||
self, codeformer_dir="./models/core/face_restoration/codeformer", codeformer_model_path="codeformer.pth"
|
|
||||||
) -> None:
|
|
||||||
|
|
||||||
self.globals = InvokeAIAppConfig.get_config()
|
|
||||||
codeformer_dir = self.globals.root_dir / codeformer_dir
|
|
||||||
self.model_path = codeformer_dir / codeformer_model_path
|
|
||||||
self.codeformer_model_exists = self.model_path.exists()
|
|
||||||
|
|
||||||
if not self.codeformer_model_exists:
|
|
||||||
logger.error(f"NOT FOUND: CodeFormer model not found at {self.model_path}")
|
|
||||||
sys.path.append(os.path.abspath(codeformer_dir))
|
|
||||||
|
|
||||||
def process(self, image, strength, device, seed=None, fidelity=0.75):
|
|
||||||
if seed is not None:
|
|
||||||
logger.info(f"CodeFormer - Restoring Faces for image seed:{seed}")
|
|
||||||
with warnings.catch_warnings():
|
|
||||||
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
|
||||||
warnings.filterwarnings("ignore", category=UserWarning)
|
|
||||||
|
|
||||||
from basicsr.utils import img2tensor, tensor2img
|
|
||||||
from basicsr.utils.download_util import load_file_from_url
|
|
||||||
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
|
|
||||||
from PIL import Image
|
|
||||||
from torchvision.transforms.functional import normalize
|
|
||||||
|
|
||||||
from .codeformer_arch import CodeFormer
|
|
||||||
|
|
||||||
cf_class = CodeFormer
|
|
||||||
|
|
||||||
cf = cf_class(
|
|
||||||
dim_embd=512,
|
|
||||||
codebook_size=1024,
|
|
||||||
n_head=8,
|
|
||||||
n_layers=9,
|
|
||||||
connect_list=["32", "64", "128", "256"],
|
|
||||||
).to(device)
|
|
||||||
|
|
||||||
# note that this file should already be downloaded and cached at
|
|
||||||
# this point
|
|
||||||
checkpoint_path = load_file_from_url(
|
|
||||||
url=pretrained_model_url,
|
|
||||||
model_dir=os.path.abspath(os.path.dirname(self.model_path)),
|
|
||||||
progress=True,
|
|
||||||
)
|
|
||||||
checkpoint = torch.load(checkpoint_path)["params_ema"]
|
|
||||||
cf.load_state_dict(checkpoint)
|
|
||||||
cf.eval()
|
|
||||||
|
|
||||||
image = image.convert("RGB")
|
|
||||||
# Codeformer expects a BGR np array; make array and flip channels
|
|
||||||
bgr_image_array = np.array(image, dtype=np.uint8)[..., ::-1]
|
|
||||||
|
|
||||||
face_helper = FaceRestoreHelper(
|
|
||||||
upscale_factor=1,
|
|
||||||
use_parse=True,
|
|
||||||
device=device,
|
|
||||||
model_rootpath = self.globals.model_path / 'core/face_restoration/gfpgan/weights'
|
|
||||||
)
|
|
||||||
face_helper.clean_all()
|
|
||||||
face_helper.read_image(bgr_image_array)
|
|
||||||
face_helper.get_face_landmarks_5(resize=640, eye_dist_threshold=5)
|
|
||||||
face_helper.align_warp_face()
|
|
||||||
|
|
||||||
for idx, cropped_face in enumerate(face_helper.cropped_faces):
|
|
||||||
cropped_face_t = img2tensor(
|
|
||||||
cropped_face / 255.0, bgr2rgb=True, float32=True
|
|
||||||
)
|
|
||||||
normalize(
|
|
||||||
cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True
|
|
||||||
)
|
|
||||||
cropped_face_t = cropped_face_t.unsqueeze(0).to(device)
|
|
||||||
|
|
||||||
try:
|
|
||||||
with torch.no_grad():
|
|
||||||
output = cf(cropped_face_t, w=fidelity, adain=True)[0]
|
|
||||||
restored_face = tensor2img(
|
|
||||||
output.squeeze(0), rgb2bgr=True, min_max=(-1, 1)
|
|
||||||
)
|
|
||||||
del output
|
|
||||||
torch.cuda.empty_cache()
|
|
||||||
except RuntimeError as error:
|
|
||||||
logger.error(f"Failed inference for CodeFormer: {error}.")
|
|
||||||
restored_face = cropped_face
|
|
||||||
|
|
||||||
restored_face = restored_face.astype("uint8")
|
|
||||||
face_helper.add_restored_face(restored_face)
|
|
||||||
|
|
||||||
face_helper.get_inverse_affine(None)
|
|
||||||
|
|
||||||
restored_img = face_helper.paste_faces_to_input_image()
|
|
||||||
|
|
||||||
# Flip the channels back to RGB
|
|
||||||
res = Image.fromarray(restored_img[..., ::-1])
|
|
||||||
|
|
||||||
if strength < 1.0:
|
|
||||||
# Resize the image to the new image if the sizes have changed
|
|
||||||
if restored_img.size != image.size:
|
|
||||||
image = image.resize(res.size)
|
|
||||||
res = Image.blend(image, res, strength)
|
|
||||||
|
|
||||||
cf = None
|
|
||||||
|
|
||||||
return res
|
|
@ -1,325 +0,0 @@
|
|||||||
import math
|
|
||||||
from typing import List, Optional
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import torch
|
|
||||||
import torch.nn.functional as F
|
|
||||||
from basicsr.utils import get_root_logger
|
|
||||||
from basicsr.utils.registry import ARCH_REGISTRY
|
|
||||||
from torch import Tensor, nn
|
|
||||||
|
|
||||||
from .vqgan_arch import *
|
|
||||||
|
|
||||||
|
|
||||||
def calc_mean_std(feat, eps=1e-5):
|
|
||||||
"""Calculate mean and std for adaptive_instance_normalization.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
feat (Tensor): 4D tensor.
|
|
||||||
eps (float): A small value added to the variance to avoid
|
|
||||||
divide-by-zero. Default: 1e-5.
|
|
||||||
"""
|
|
||||||
size = feat.size()
|
|
||||||
assert len(size) == 4, "The input feature should be 4D tensor."
|
|
||||||
b, c = size[:2]
|
|
||||||
feat_var = feat.view(b, c, -1).var(dim=2) + eps
|
|
||||||
feat_std = feat_var.sqrt().view(b, c, 1, 1)
|
|
||||||
feat_mean = feat.view(b, c, -1).mean(dim=2).view(b, c, 1, 1)
|
|
||||||
return feat_mean, feat_std
|
|
||||||
|
|
||||||
|
|
||||||
def adaptive_instance_normalization(content_feat, style_feat):
|
|
||||||
"""Adaptive instance normalization.
|
|
||||||
|
|
||||||
Adjust the reference features to have the similar color and illuminations
|
|
||||||
as those in the degradate features.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
content_feat (Tensor): The reference feature.
|
|
||||||
style_feat (Tensor): The degradate features.
|
|
||||||
"""
|
|
||||||
size = content_feat.size()
|
|
||||||
style_mean, style_std = calc_mean_std(style_feat)
|
|
||||||
content_mean, content_std = calc_mean_std(content_feat)
|
|
||||||
normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(
|
|
||||||
size
|
|
||||||
)
|
|
||||||
return normalized_feat * style_std.expand(size) + style_mean.expand(size)
|
|
||||||
|
|
||||||
|
|
||||||
class PositionEmbeddingSine(nn.Module):
|
|
||||||
"""
|
|
||||||
This is a more standard version of the position embedding, very similar to the one
|
|
||||||
used by the Attention is all you need paper, generalized to work on images.
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self, num_pos_feats=64, temperature=10000, normalize=False, scale=None
|
|
||||||
):
|
|
||||||
super().__init__()
|
|
||||||
self.num_pos_feats = num_pos_feats
|
|
||||||
self.temperature = temperature
|
|
||||||
self.normalize = normalize
|
|
||||||
if scale is not None and normalize is False:
|
|
||||||
raise ValueError("normalize should be True if scale is passed")
|
|
||||||
if scale is None:
|
|
||||||
scale = 2 * math.pi
|
|
||||||
self.scale = scale
|
|
||||||
|
|
||||||
def forward(self, x, mask=None):
|
|
||||||
if mask is None:
|
|
||||||
mask = torch.zeros(
|
|
||||||
(x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool
|
|
||||||
)
|
|
||||||
not_mask = ~mask
|
|
||||||
y_embed = not_mask.cumsum(1, dtype=torch.float32)
|
|
||||||
x_embed = not_mask.cumsum(2, dtype=torch.float32)
|
|
||||||
if self.normalize:
|
|
||||||
eps = 1e-6
|
|
||||||
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
|
|
||||||
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
|
|
||||||
|
|
||||||
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
|
|
||||||
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
|
|
||||||
|
|
||||||
pos_x = x_embed[:, :, :, None] / dim_t
|
|
||||||
pos_y = y_embed[:, :, :, None] / dim_t
|
|
||||||
pos_x = torch.stack(
|
|
||||||
(pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4
|
|
||||||
).flatten(3)
|
|
||||||
pos_y = torch.stack(
|
|
||||||
(pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4
|
|
||||||
).flatten(3)
|
|
||||||
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
|
|
||||||
return pos
|
|
||||||
|
|
||||||
|
|
||||||
def _get_activation_fn(activation):
|
|
||||||
"""Return an activation function given a string"""
|
|
||||||
if activation == "relu":
|
|
||||||
return F.relu
|
|
||||||
if activation == "gelu":
|
|
||||||
return F.gelu
|
|
||||||
if activation == "glu":
|
|
||||||
return F.glu
|
|
||||||
raise RuntimeError(f"activation should be relu/gelu, not {activation}.")
|
|
||||||
|
|
||||||
|
|
||||||
class TransformerSALayer(nn.Module):
|
|
||||||
def __init__(
|
|
||||||
self, embed_dim, nhead=8, dim_mlp=2048, dropout=0.0, activation="gelu"
|
|
||||||
):
|
|
||||||
super().__init__()
|
|
||||||
self.self_attn = nn.MultiheadAttention(embed_dim, nhead, dropout=dropout)
|
|
||||||
# Implementation of Feedforward model - MLP
|
|
||||||
self.linear1 = nn.Linear(embed_dim, dim_mlp)
|
|
||||||
self.dropout = nn.Dropout(dropout)
|
|
||||||
self.linear2 = nn.Linear(dim_mlp, embed_dim)
|
|
||||||
|
|
||||||
self.norm1 = nn.LayerNorm(embed_dim)
|
|
||||||
self.norm2 = nn.LayerNorm(embed_dim)
|
|
||||||
self.dropout1 = nn.Dropout(dropout)
|
|
||||||
self.dropout2 = nn.Dropout(dropout)
|
|
||||||
|
|
||||||
self.activation = _get_activation_fn(activation)
|
|
||||||
|
|
||||||
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
|
|
||||||
return tensor if pos is None else tensor + pos
|
|
||||||
|
|
||||||
def forward(
|
|
||||||
self,
|
|
||||||
tgt,
|
|
||||||
tgt_mask: Optional[Tensor] = None,
|
|
||||||
tgt_key_padding_mask: Optional[Tensor] = None,
|
|
||||||
query_pos: Optional[Tensor] = None,
|
|
||||||
):
|
|
||||||
# self attention
|
|
||||||
tgt2 = self.norm1(tgt)
|
|
||||||
q = k = self.with_pos_embed(tgt2, query_pos)
|
|
||||||
tgt2 = self.self_attn(
|
|
||||||
q, k, value=tgt2, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask
|
|
||||||
)[0]
|
|
||||||
tgt = tgt + self.dropout1(tgt2)
|
|
||||||
|
|
||||||
# ffn
|
|
||||||
tgt2 = self.norm2(tgt)
|
|
||||||
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
|
|
||||||
tgt = tgt + self.dropout2(tgt2)
|
|
||||||
return tgt
|
|
||||||
|
|
||||||
|
|
||||||
class Fuse_sft_block(nn.Module):
|
|
||||||
def __init__(self, in_ch, out_ch):
|
|
||||||
super().__init__()
|
|
||||||
self.encode_enc = ResBlock(2 * in_ch, out_ch)
|
|
||||||
|
|
||||||
self.scale = nn.Sequential(
|
|
||||||
nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1),
|
|
||||||
nn.LeakyReLU(0.2, True),
|
|
||||||
nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1),
|
|
||||||
)
|
|
||||||
|
|
||||||
self.shift = nn.Sequential(
|
|
||||||
nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1),
|
|
||||||
nn.LeakyReLU(0.2, True),
|
|
||||||
nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1),
|
|
||||||
)
|
|
||||||
|
|
||||||
def forward(self, enc_feat, dec_feat, w=1):
|
|
||||||
enc_feat = self.encode_enc(torch.cat([enc_feat, dec_feat], dim=1))
|
|
||||||
scale = self.scale(enc_feat)
|
|
||||||
shift = self.shift(enc_feat)
|
|
||||||
residual = w * (dec_feat * scale + shift)
|
|
||||||
out = dec_feat + residual
|
|
||||||
return out
|
|
||||||
|
|
||||||
|
|
||||||
@ARCH_REGISTRY.register()
|
|
||||||
class CodeFormer(VQAutoEncoder):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
dim_embd=512,
|
|
||||||
n_head=8,
|
|
||||||
n_layers=9,
|
|
||||||
codebook_size=1024,
|
|
||||||
latent_size=256,
|
|
||||||
connect_list=["32", "64", "128", "256"],
|
|
||||||
fix_modules=["quantize", "generator"],
|
|
||||||
):
|
|
||||||
super(CodeFormer, self).__init__(
|
|
||||||
512, 64, [1, 2, 2, 4, 4, 8], "nearest", 2, [16], codebook_size
|
|
||||||
)
|
|
||||||
|
|
||||||
if fix_modules is not None:
|
|
||||||
for module in fix_modules:
|
|
||||||
for param in getattr(self, module).parameters():
|
|
||||||
param.requires_grad = False
|
|
||||||
|
|
||||||
self.connect_list = connect_list
|
|
||||||
self.n_layers = n_layers
|
|
||||||
self.dim_embd = dim_embd
|
|
||||||
self.dim_mlp = dim_embd * 2
|
|
||||||
|
|
||||||
self.position_emb = nn.Parameter(torch.zeros(latent_size, self.dim_embd))
|
|
||||||
self.feat_emb = nn.Linear(256, self.dim_embd)
|
|
||||||
|
|
||||||
# transformer
|
|
||||||
self.ft_layers = nn.Sequential(
|
|
||||||
*[
|
|
||||||
TransformerSALayer(
|
|
||||||
embed_dim=dim_embd, nhead=n_head, dim_mlp=self.dim_mlp, dropout=0.0
|
|
||||||
)
|
|
||||||
for _ in range(self.n_layers)
|
|
||||||
]
|
|
||||||
)
|
|
||||||
|
|
||||||
# logits_predict head
|
|
||||||
self.idx_pred_layer = nn.Sequential(
|
|
||||||
nn.LayerNorm(dim_embd), nn.Linear(dim_embd, codebook_size, bias=False)
|
|
||||||
)
|
|
||||||
|
|
||||||
self.channels = {
|
|
||||||
"16": 512,
|
|
||||||
"32": 256,
|
|
||||||
"64": 256,
|
|
||||||
"128": 128,
|
|
||||||
"256": 128,
|
|
||||||
"512": 64,
|
|
||||||
}
|
|
||||||
|
|
||||||
# after second residual block for > 16, before attn layer for ==16
|
|
||||||
self.fuse_encoder_block = {
|
|
||||||
"512": 2,
|
|
||||||
"256": 5,
|
|
||||||
"128": 8,
|
|
||||||
"64": 11,
|
|
||||||
"32": 14,
|
|
||||||
"16": 18,
|
|
||||||
}
|
|
||||||
# after first residual block for > 16, before attn layer for ==16
|
|
||||||
self.fuse_generator_block = {
|
|
||||||
"16": 6,
|
|
||||||
"32": 9,
|
|
||||||
"64": 12,
|
|
||||||
"128": 15,
|
|
||||||
"256": 18,
|
|
||||||
"512": 21,
|
|
||||||
}
|
|
||||||
|
|
||||||
# fuse_convs_dict
|
|
||||||
self.fuse_convs_dict = nn.ModuleDict()
|
|
||||||
for f_size in self.connect_list:
|
|
||||||
in_ch = self.channels[f_size]
|
|
||||||
self.fuse_convs_dict[f_size] = Fuse_sft_block(in_ch, in_ch)
|
|
||||||
|
|
||||||
def _init_weights(self, module):
|
|
||||||
if isinstance(module, (nn.Linear, nn.Embedding)):
|
|
||||||
module.weight.data.normal_(mean=0.0, std=0.02)
|
|
||||||
if isinstance(module, nn.Linear) and module.bias is not None:
|
|
||||||
module.bias.data.zero_()
|
|
||||||
elif isinstance(module, nn.LayerNorm):
|
|
||||||
module.bias.data.zero_()
|
|
||||||
module.weight.data.fill_(1.0)
|
|
||||||
|
|
||||||
def forward(self, x, w=0, detach_16=True, code_only=False, adain=False):
|
|
||||||
# ################### Encoder #####################
|
|
||||||
enc_feat_dict = {}
|
|
||||||
out_list = [self.fuse_encoder_block[f_size] for f_size in self.connect_list]
|
|
||||||
for i, block in enumerate(self.encoder.blocks):
|
|
||||||
x = block(x)
|
|
||||||
if i in out_list:
|
|
||||||
enc_feat_dict[str(x.shape[-1])] = x.clone()
|
|
||||||
|
|
||||||
lq_feat = x
|
|
||||||
# ################# Transformer ###################
|
|
||||||
# quant_feat, codebook_loss, quant_stats = self.quantize(lq_feat)
|
|
||||||
pos_emb = self.position_emb.unsqueeze(1).repeat(1, x.shape[0], 1)
|
|
||||||
# BCHW -> BC(HW) -> (HW)BC
|
|
||||||
feat_emb = self.feat_emb(lq_feat.flatten(2).permute(2, 0, 1))
|
|
||||||
query_emb = feat_emb
|
|
||||||
# Transformer encoder
|
|
||||||
for layer in self.ft_layers:
|
|
||||||
query_emb = layer(query_emb, query_pos=pos_emb)
|
|
||||||
|
|
||||||
# output logits
|
|
||||||
logits = self.idx_pred_layer(query_emb) # (hw)bn
|
|
||||||
logits = logits.permute(1, 0, 2) # (hw)bn -> b(hw)n
|
|
||||||
|
|
||||||
if code_only: # for training stage II
|
|
||||||
# logits doesn't need softmax before cross_entropy loss
|
|
||||||
return logits, lq_feat
|
|
||||||
|
|
||||||
# ################# Quantization ###################
|
|
||||||
# if self.training:
|
|
||||||
# quant_feat = torch.einsum('btn,nc->btc', [soft_one_hot, self.quantize.embedding.weight])
|
|
||||||
# # b(hw)c -> bc(hw) -> bchw
|
|
||||||
# quant_feat = quant_feat.permute(0,2,1).view(lq_feat.shape)
|
|
||||||
# ------------
|
|
||||||
soft_one_hot = F.softmax(logits, dim=2)
|
|
||||||
_, top_idx = torch.topk(soft_one_hot, 1, dim=2)
|
|
||||||
quant_feat = self.quantize.get_codebook_feat(
|
|
||||||
top_idx, shape=[x.shape[0], 16, 16, 256]
|
|
||||||
)
|
|
||||||
# preserve gradients
|
|
||||||
# quant_feat = lq_feat + (quant_feat - lq_feat).detach()
|
|
||||||
|
|
||||||
if detach_16:
|
|
||||||
quant_feat = quant_feat.detach() # for training stage III
|
|
||||||
if adain:
|
|
||||||
quant_feat = adaptive_instance_normalization(quant_feat, lq_feat)
|
|
||||||
|
|
||||||
# ################## Generator ####################
|
|
||||||
x = quant_feat
|
|
||||||
fuse_list = [self.fuse_generator_block[f_size] for f_size in self.connect_list]
|
|
||||||
|
|
||||||
for i, block in enumerate(self.generator.blocks):
|
|
||||||
x = block(x)
|
|
||||||
if i in fuse_list: # fuse after i-th block
|
|
||||||
f_size = str(x.shape[-1])
|
|
||||||
if w > 0:
|
|
||||||
x = self.fuse_convs_dict[f_size](
|
|
||||||
enc_feat_dict[f_size].detach(), x, w
|
|
||||||
)
|
|
||||||
out = x
|
|
||||||
# logits doesn't need softmax before cross_entropy loss
|
|
||||||
return out, logits, lq_feat
|
|
@ -1,84 +0,0 @@
|
|||||||
import os
|
|
||||||
import sys
|
|
||||||
import warnings
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import torch
|
|
||||||
from PIL import Image
|
|
||||||
|
|
||||||
import invokeai.backend.util.logging as logger
|
|
||||||
from invokeai.app.services.config import InvokeAIAppConfig
|
|
||||||
|
|
||||||
class GFPGAN:
|
|
||||||
def __init__(self, gfpgan_model_path="models/gfpgan/GFPGANv1.4.pth") -> None:
|
|
||||||
self.globals = InvokeAIAppConfig.get_config()
|
|
||||||
if not os.path.isabs(gfpgan_model_path):
|
|
||||||
gfpgan_model_path = self.globals.root_dir / gfpgan_model_path
|
|
||||||
self.model_path = gfpgan_model_path
|
|
||||||
self.gfpgan_model_exists = os.path.isfile(self.model_path)
|
|
||||||
|
|
||||||
if not self.gfpgan_model_exists:
|
|
||||||
logger.error(f"NOT FOUND: GFPGAN model not found at {self.model_path}")
|
|
||||||
return None
|
|
||||||
|
|
||||||
def model_exists(self):
|
|
||||||
return os.path.isfile(self.model_path)
|
|
||||||
|
|
||||||
def process(self, image, strength: float, seed: str = None):
|
|
||||||
if seed is not None:
|
|
||||||
logger.info(f"GFPGAN - Restoring Faces for image seed:{seed}")
|
|
||||||
|
|
||||||
with warnings.catch_warnings():
|
|
||||||
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
|
||||||
warnings.filterwarnings("ignore", category=UserWarning)
|
|
||||||
cwd = os.getcwd()
|
|
||||||
os.chdir(self.globals.root_dir / 'models')
|
|
||||||
try:
|
|
||||||
from gfpgan import GFPGANer
|
|
||||||
|
|
||||||
self.gfpgan = GFPGANer(
|
|
||||||
model_path=self.model_path,
|
|
||||||
upscale=1,
|
|
||||||
arch="clean",
|
|
||||||
channel_multiplier=2,
|
|
||||||
bg_upsampler=None,
|
|
||||||
)
|
|
||||||
except Exception:
|
|
||||||
import traceback
|
|
||||||
|
|
||||||
logger.error("Error loading GFPGAN:", file=sys.stderr)
|
|
||||||
print(traceback.format_exc(), file=sys.stderr)
|
|
||||||
os.chdir(cwd)
|
|
||||||
|
|
||||||
if self.gfpgan is None:
|
|
||||||
logger.warning("WARNING: GFPGAN not initialized.")
|
|
||||||
logger.warning(
|
|
||||||
f"Download https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth to {self.model_path}"
|
|
||||||
)
|
|
||||||
|
|
||||||
image = image.convert("RGB")
|
|
||||||
|
|
||||||
# GFPGAN expects a BGR np array; make array and flip channels
|
|
||||||
bgr_image_array = np.array(image, dtype=np.uint8)[..., ::-1]
|
|
||||||
|
|
||||||
_, _, restored_img = self.gfpgan.enhance(
|
|
||||||
bgr_image_array,
|
|
||||||
has_aligned=False,
|
|
||||||
only_center_face=False,
|
|
||||||
paste_back=True,
|
|
||||||
)
|
|
||||||
|
|
||||||
# Flip the channels back to RGB
|
|
||||||
res = Image.fromarray(restored_img[..., ::-1])
|
|
||||||
|
|
||||||
if strength < 1.0:
|
|
||||||
# Resize the image to the new image if the sizes have changed
|
|
||||||
if restored_img.size != image.size:
|
|
||||||
image = image.resize(res.size)
|
|
||||||
res = Image.blend(image, res, strength)
|
|
||||||
|
|
||||||
if torch.cuda.is_available():
|
|
||||||
torch.cuda.empty_cache()
|
|
||||||
self.gfpgan = None
|
|
||||||
|
|
||||||
return res
|
|
@ -1,118 +0,0 @@
|
|||||||
import math
|
|
||||||
|
|
||||||
from PIL import Image
|
|
||||||
import invokeai.backend.util.logging as logger
|
|
||||||
|
|
||||||
class Outcrop(object):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
image,
|
|
||||||
generate, # current generate object
|
|
||||||
):
|
|
||||||
self.image = image
|
|
||||||
self.generate = generate
|
|
||||||
|
|
||||||
def process(
|
|
||||||
self,
|
|
||||||
extents: dict,
|
|
||||||
opt, # current options
|
|
||||||
orig_opt, # ones originally used to generate the image
|
|
||||||
image_callback=None,
|
|
||||||
prefix=None,
|
|
||||||
):
|
|
||||||
# grow and mask the image
|
|
||||||
extended_image = self._extend_all(extents)
|
|
||||||
|
|
||||||
# switch samplers temporarily
|
|
||||||
curr_sampler = self.generate.sampler
|
|
||||||
self.generate.sampler_name = opt.sampler_name
|
|
||||||
self.generate._set_scheduler()
|
|
||||||
|
|
||||||
def wrapped_callback(img, seed, **kwargs):
|
|
||||||
preferred_seed = (
|
|
||||||
orig_opt.seed
|
|
||||||
if orig_opt.seed is not None and orig_opt.seed >= 0
|
|
||||||
else seed
|
|
||||||
)
|
|
||||||
image_callback(img, preferred_seed, use_prefix=prefix, **kwargs)
|
|
||||||
|
|
||||||
result = self.generate.prompt2image(
|
|
||||||
opt.prompt,
|
|
||||||
seed=opt.seed or orig_opt.seed,
|
|
||||||
sampler=self.generate.sampler,
|
|
||||||
steps=opt.steps,
|
|
||||||
cfg_scale=opt.cfg_scale,
|
|
||||||
ddim_eta=self.generate.ddim_eta,
|
|
||||||
width=extended_image.width,
|
|
||||||
height=extended_image.height,
|
|
||||||
init_img=extended_image,
|
|
||||||
strength=0.90,
|
|
||||||
image_callback=wrapped_callback if image_callback else None,
|
|
||||||
seam_size=opt.seam_size or 96,
|
|
||||||
seam_blur=opt.seam_blur or 16,
|
|
||||||
seam_strength=opt.seam_strength or 0.7,
|
|
||||||
seam_steps=20,
|
|
||||||
tile_size=32,
|
|
||||||
color_match=True,
|
|
||||||
force_outpaint=True, # this just stops the warning about erased regions
|
|
||||||
)
|
|
||||||
|
|
||||||
# swap sampler back
|
|
||||||
self.generate.sampler = curr_sampler
|
|
||||||
return result
|
|
||||||
|
|
||||||
def _extend_all(
|
|
||||||
self,
|
|
||||||
extents: dict,
|
|
||||||
) -> Image:
|
|
||||||
"""
|
|
||||||
Extend the image in direction ('top','bottom','left','right') by
|
|
||||||
the indicated value. The image canvas is extended, and the empty
|
|
||||||
rectangular section will be filled with a blurred copy of the
|
|
||||||
adjacent image.
|
|
||||||
"""
|
|
||||||
image = self.image
|
|
||||||
for direction in extents:
|
|
||||||
assert direction in [
|
|
||||||
"top",
|
|
||||||
"left",
|
|
||||||
"bottom",
|
|
||||||
"right",
|
|
||||||
], 'Direction must be one of "top", "left", "bottom", "right"'
|
|
||||||
pixels = extents[direction]
|
|
||||||
# round pixels up to the nearest 64
|
|
||||||
pixels = math.ceil(pixels / 64) * 64
|
|
||||||
logger.info(f"extending image {direction}ward by {pixels} pixels")
|
|
||||||
image = self._rotate(image, direction)
|
|
||||||
image = self._extend(image, pixels)
|
|
||||||
image = self._rotate(image, direction, reverse=True)
|
|
||||||
return image
|
|
||||||
|
|
||||||
def _rotate(self, image: Image, direction: str, reverse=False) -> Image:
|
|
||||||
"""
|
|
||||||
Rotates image so that the area to extend is always at the top top.
|
|
||||||
Simplifies logic later. The reverse argument, if true, will undo the
|
|
||||||
previous transpose.
|
|
||||||
"""
|
|
||||||
transposes = {
|
|
||||||
"right": ["ROTATE_90", "ROTATE_270"],
|
|
||||||
"bottom": ["ROTATE_180", "ROTATE_180"],
|
|
||||||
"left": ["ROTATE_270", "ROTATE_90"],
|
|
||||||
}
|
|
||||||
if direction not in transposes:
|
|
||||||
return image
|
|
||||||
transpose = transposes[direction][1 if reverse else 0]
|
|
||||||
return image.transpose(Image.Transpose.__dict__[transpose])
|
|
||||||
|
|
||||||
def _extend(self, image: Image, pixels: int) -> Image:
|
|
||||||
extended_img = Image.new("RGBA", (image.width, image.height + pixels))
|
|
||||||
|
|
||||||
extended_img.paste((0, 0, 0), [0, 0, image.width, image.height + pixels])
|
|
||||||
extended_img.paste(image, box=(0, pixels))
|
|
||||||
|
|
||||||
# now make the top part transparent to use as a mask
|
|
||||||
alpha = extended_img.getchannel("A")
|
|
||||||
alpha.paste(0, (0, 0, extended_img.width, pixels))
|
|
||||||
extended_img.putalpha(alpha)
|
|
||||||
|
|
||||||
return extended_img
|
|
@ -1,102 +0,0 @@
|
|||||||
import math
|
|
||||||
import warnings
|
|
||||||
|
|
||||||
from PIL import Image, ImageFilter
|
|
||||||
|
|
||||||
|
|
||||||
class Outpaint(object):
|
|
||||||
def __init__(self, image, generate):
|
|
||||||
self.image = image
|
|
||||||
self.generate = generate
|
|
||||||
|
|
||||||
def process(self, opt, old_opt, image_callback=None, prefix=None):
|
|
||||||
image = self._create_outpaint_image(self.image, opt.out_direction)
|
|
||||||
|
|
||||||
seed = old_opt.seed
|
|
||||||
prompt = old_opt.prompt
|
|
||||||
|
|
||||||
def wrapped_callback(img, seed, **kwargs):
|
|
||||||
image_callback(img, seed, use_prefix=prefix, **kwargs)
|
|
||||||
|
|
||||||
return self.generate.prompt2image(
|
|
||||||
prompt,
|
|
||||||
seed=seed,
|
|
||||||
sampler=self.generate.sampler,
|
|
||||||
steps=opt.steps,
|
|
||||||
cfg_scale=opt.cfg_scale,
|
|
||||||
ddim_eta=self.generate.ddim_eta,
|
|
||||||
width=opt.width,
|
|
||||||
height=opt.height,
|
|
||||||
init_img=image,
|
|
||||||
strength=0.83,
|
|
||||||
image_callback=wrapped_callback,
|
|
||||||
prefix=prefix,
|
|
||||||
)
|
|
||||||
|
|
||||||
def _create_outpaint_image(self, image, direction_args):
|
|
||||||
assert len(direction_args) in [
|
|
||||||
1,
|
|
||||||
2,
|
|
||||||
], "Direction (-D) must have exactly one or two arguments."
|
|
||||||
|
|
||||||
if len(direction_args) == 1:
|
|
||||||
direction = direction_args[0]
|
|
||||||
pixels = None
|
|
||||||
elif len(direction_args) == 2:
|
|
||||||
direction = direction_args[0]
|
|
||||||
pixels = int(direction_args[1])
|
|
||||||
|
|
||||||
assert direction in [
|
|
||||||
"top",
|
|
||||||
"left",
|
|
||||||
"bottom",
|
|
||||||
"right",
|
|
||||||
], 'Direction (-D) must be one of "top", "left", "bottom", "right"'
|
|
||||||
|
|
||||||
image = image.convert("RGBA")
|
|
||||||
# we always extend top, but rotate to extend along the requested side
|
|
||||||
if direction == "left":
|
|
||||||
image = image.transpose(Image.Transpose.ROTATE_270)
|
|
||||||
elif direction == "bottom":
|
|
||||||
image = image.transpose(Image.Transpose.ROTATE_180)
|
|
||||||
elif direction == "right":
|
|
||||||
image = image.transpose(Image.Transpose.ROTATE_90)
|
|
||||||
|
|
||||||
pixels = image.height // 2 if pixels is None else int(pixels)
|
|
||||||
assert (
|
|
||||||
0 < pixels < image.height
|
|
||||||
), "Direction (-D) pixels length must be in the range 0 - image.size"
|
|
||||||
|
|
||||||
# the top part of the image is taken from the source image mirrored
|
|
||||||
# coordinates (0,0) are the upper left corner of an image
|
|
||||||
top = image.transpose(Image.Transpose.FLIP_TOP_BOTTOM).convert("RGBA")
|
|
||||||
top = top.crop((0, top.height - pixels, top.width, top.height))
|
|
||||||
|
|
||||||
# setting all alpha of the top part to 0
|
|
||||||
alpha = top.getchannel("A")
|
|
||||||
alpha.paste(0, (0, 0, top.width, top.height))
|
|
||||||
top.putalpha(alpha)
|
|
||||||
|
|
||||||
# taking the bottom from the original image
|
|
||||||
bottom = image.crop((0, 0, image.width, image.height - pixels))
|
|
||||||
|
|
||||||
new_img = image.copy()
|
|
||||||
new_img.paste(top, (0, 0))
|
|
||||||
new_img.paste(bottom, (0, pixels))
|
|
||||||
|
|
||||||
# create a 10% dither in the middle
|
|
||||||
dither = min(image.height // 10, pixels)
|
|
||||||
for x in range(0, image.width, 2):
|
|
||||||
for y in range(pixels - dither, pixels + dither):
|
|
||||||
(r, g, b, a) = new_img.getpixel((x, y))
|
|
||||||
new_img.putpixel((x, y), (r, g, b, 0))
|
|
||||||
|
|
||||||
# let's rotate back again
|
|
||||||
if direction == "left":
|
|
||||||
new_img = new_img.transpose(Image.Transpose.ROTATE_90)
|
|
||||||
elif direction == "bottom":
|
|
||||||
new_img = new_img.transpose(Image.Transpose.ROTATE_180)
|
|
||||||
elif direction == "right":
|
|
||||||
new_img = new_img.transpose(Image.Transpose.ROTATE_270)
|
|
||||||
|
|
||||||
return new_img
|
|
@ -1,104 +0,0 @@
|
|||||||
import warnings
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import torch
|
|
||||||
from PIL import Image
|
|
||||||
from PIL.Image import Image as ImageType
|
|
||||||
|
|
||||||
import invokeai.backend.util.logging as logger
|
|
||||||
from invokeai.app.services.config import InvokeAIAppConfig
|
|
||||||
config = InvokeAIAppConfig.get_config()
|
|
||||||
|
|
||||||
class ESRGAN:
|
|
||||||
def __init__(self, bg_tile_size=400) -> None:
|
|
||||||
self.bg_tile_size = bg_tile_size
|
|
||||||
|
|
||||||
def load_esrgan_bg_upsampler(self, denoise_str):
|
|
||||||
if not torch.cuda.is_available(): # CPU or MPS on M1
|
|
||||||
use_half_precision = False
|
|
||||||
else:
|
|
||||||
use_half_precision = True
|
|
||||||
|
|
||||||
from realesrgan import RealESRGANer
|
|
||||||
from realesrgan.archs.srvgg_arch import SRVGGNetCompact
|
|
||||||
|
|
||||||
model = SRVGGNetCompact(
|
|
||||||
num_in_ch=3,
|
|
||||||
num_out_ch=3,
|
|
||||||
num_feat=64,
|
|
||||||
num_conv=32,
|
|
||||||
upscale=4,
|
|
||||||
act_type="prelu",
|
|
||||||
)
|
|
||||||
model_path = config.models_path / "core/upscaling/realesrgan/realesr-general-x4v3.pth"
|
|
||||||
wdn_model_path = config.models_path / "core/upscaling/realesrgan/realesr-general-wdn-x4v3.pth"
|
|
||||||
scale = 4
|
|
||||||
|
|
||||||
bg_upsampler = RealESRGANer(
|
|
||||||
scale=scale,
|
|
||||||
model_path=[model_path, wdn_model_path],
|
|
||||||
model=model,
|
|
||||||
tile=self.bg_tile_size,
|
|
||||||
dni_weight=[denoise_str, 1 - denoise_str],
|
|
||||||
tile_pad=10,
|
|
||||||
pre_pad=0,
|
|
||||||
half=use_half_precision,
|
|
||||||
)
|
|
||||||
|
|
||||||
return bg_upsampler
|
|
||||||
|
|
||||||
def process(
|
|
||||||
self,
|
|
||||||
image: ImageType,
|
|
||||||
strength: float,
|
|
||||||
seed: str = None,
|
|
||||||
upsampler_scale: int = 2,
|
|
||||||
denoise_str: float = 0.75,
|
|
||||||
):
|
|
||||||
with warnings.catch_warnings():
|
|
||||||
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
|
||||||
warnings.filterwarnings("ignore", category=UserWarning)
|
|
||||||
|
|
||||||
try:
|
|
||||||
upsampler = self.load_esrgan_bg_upsampler(denoise_str)
|
|
||||||
except Exception:
|
|
||||||
import sys
|
|
||||||
import traceback
|
|
||||||
|
|
||||||
logger.error("Error loading Real-ESRGAN:")
|
|
||||||
print(traceback.format_exc(), file=sys.stderr)
|
|
||||||
|
|
||||||
if upsampler_scale == 0:
|
|
||||||
logger.warning("Real-ESRGAN: Invalid scaling option. Image not upscaled.")
|
|
||||||
return image
|
|
||||||
|
|
||||||
if seed is not None:
|
|
||||||
logger.info(
|
|
||||||
f"Real-ESRGAN Upscaling seed:{seed}, scale:{upsampler_scale}x, tile:{self.bg_tile_size}, denoise:{denoise_str}"
|
|
||||||
)
|
|
||||||
# ESRGAN outputs images with partial transparency if given RGBA images; convert to RGB
|
|
||||||
image = image.convert("RGB")
|
|
||||||
|
|
||||||
# REALSRGAN expects a BGR np array; make array and flip channels
|
|
||||||
bgr_image_array = np.array(image, dtype=np.uint8)[..., ::-1]
|
|
||||||
|
|
||||||
output, _ = upsampler.enhance(
|
|
||||||
bgr_image_array,
|
|
||||||
outscale=upsampler_scale,
|
|
||||||
alpha_upsampler="realesrgan",
|
|
||||||
)
|
|
||||||
|
|
||||||
# Flip the channels back to RGB
|
|
||||||
res = Image.fromarray(output[..., ::-1])
|
|
||||||
|
|
||||||
if strength < 1.0:
|
|
||||||
# Resize the image to the new image if the sizes have changed
|
|
||||||
if output.size != image.size:
|
|
||||||
image = image.resize(res.size)
|
|
||||||
res = Image.blend(image, res, strength)
|
|
||||||
|
|
||||||
if torch.cuda.is_available():
|
|
||||||
torch.cuda.empty_cache()
|
|
||||||
upsampler = None
|
|
||||||
|
|
||||||
return res
|
|
@ -1,514 +0,0 @@
|
|||||||
"""
|
|
||||||
VQGAN code, adapted from the original created by the Unleashing Transformers authors:
|
|
||||||
https://github.com/samb-t/unleashing-transformers/blob/master/models/vqgan.py
|
|
||||||
|
|
||||||
"""
|
|
||||||
import copy
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import torch
|
|
||||||
import torch.nn as nn
|
|
||||||
import torch.nn.functional as F
|
|
||||||
from basicsr.utils import get_root_logger
|
|
||||||
from basicsr.utils.registry import ARCH_REGISTRY
|
|
||||||
|
|
||||||
|
|
||||||
def normalize(in_channels):
|
|
||||||
return torch.nn.GroupNorm(
|
|
||||||
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
@torch.jit.script
|
|
||||||
def swish(x):
|
|
||||||
return x * torch.sigmoid(x)
|
|
||||||
|
|
||||||
|
|
||||||
# Define VQVAE classes
|
|
||||||
class VectorQuantizer(nn.Module):
|
|
||||||
def __init__(self, codebook_size, emb_dim, beta):
|
|
||||||
super(VectorQuantizer, self).__init__()
|
|
||||||
self.codebook_size = codebook_size # number of embeddings
|
|
||||||
self.emb_dim = emb_dim # dimension of embedding
|
|
||||||
self.beta = beta # commitment cost used in loss term, beta * ||z_e(x)-sg[e]||^2
|
|
||||||
self.embedding = nn.Embedding(self.codebook_size, self.emb_dim)
|
|
||||||
self.embedding.weight.data.uniform_(
|
|
||||||
-1.0 / self.codebook_size, 1.0 / self.codebook_size
|
|
||||||
)
|
|
||||||
|
|
||||||
def forward(self, z):
|
|
||||||
# reshape z -> (batch, height, width, channel) and flatten
|
|
||||||
z = z.permute(0, 2, 3, 1).contiguous()
|
|
||||||
z_flattened = z.view(-1, self.emb_dim)
|
|
||||||
|
|
||||||
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
|
|
||||||
d = (
|
|
||||||
(z_flattened**2).sum(dim=1, keepdim=True)
|
|
||||||
+ (self.embedding.weight**2).sum(1)
|
|
||||||
- 2 * torch.matmul(z_flattened, self.embedding.weight.t())
|
|
||||||
)
|
|
||||||
|
|
||||||
mean_distance = torch.mean(d)
|
|
||||||
# find closest encodings
|
|
||||||
# min_encoding_indices = torch.argmin(d, dim=1).unsqueeze(1)
|
|
||||||
min_encoding_scores, min_encoding_indices = torch.topk(
|
|
||||||
d, 1, dim=1, largest=False
|
|
||||||
)
|
|
||||||
# [0-1], higher score, higher confidence
|
|
||||||
min_encoding_scores = torch.exp(-min_encoding_scores / 10)
|
|
||||||
|
|
||||||
min_encodings = torch.zeros(
|
|
||||||
min_encoding_indices.shape[0], self.codebook_size
|
|
||||||
).to(z)
|
|
||||||
min_encodings.scatter_(1, min_encoding_indices, 1)
|
|
||||||
|
|
||||||
# get quantized latent vectors
|
|
||||||
z_q = torch.matmul(min_encodings, self.embedding.weight).view(z.shape)
|
|
||||||
# compute loss for embedding
|
|
||||||
loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean(
|
|
||||||
(z_q - z.detach()) ** 2
|
|
||||||
)
|
|
||||||
# preserve gradients
|
|
||||||
z_q = z + (z_q - z).detach()
|
|
||||||
|
|
||||||
# perplexity
|
|
||||||
e_mean = torch.mean(min_encodings, dim=0)
|
|
||||||
perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + 1e-10)))
|
|
||||||
# reshape back to match original input shape
|
|
||||||
z_q = z_q.permute(0, 3, 1, 2).contiguous()
|
|
||||||
|
|
||||||
return (
|
|
||||||
z_q,
|
|
||||||
loss,
|
|
||||||
{
|
|
||||||
"perplexity": perplexity,
|
|
||||||
"min_encodings": min_encodings,
|
|
||||||
"min_encoding_indices": min_encoding_indices,
|
|
||||||
"min_encoding_scores": min_encoding_scores,
|
|
||||||
"mean_distance": mean_distance,
|
|
||||||
},
|
|
||||||
)
|
|
||||||
|
|
||||||
def get_codebook_feat(self, indices, shape):
|
|
||||||
# input indices: batch*token_num -> (batch*token_num)*1
|
|
||||||
# shape: batch, height, width, channel
|
|
||||||
indices = indices.view(-1, 1)
|
|
||||||
min_encodings = torch.zeros(indices.shape[0], self.codebook_size).to(indices)
|
|
||||||
min_encodings.scatter_(1, indices, 1)
|
|
||||||
# get quantized latent vectors
|
|
||||||
z_q = torch.matmul(min_encodings.float(), self.embedding.weight)
|
|
||||||
|
|
||||||
if shape is not None: # reshape back to match original input shape
|
|
||||||
z_q = z_q.view(shape).permute(0, 3, 1, 2).contiguous()
|
|
||||||
|
|
||||||
return z_q
|
|
||||||
|
|
||||||
|
|
||||||
class GumbelQuantizer(nn.Module):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
codebook_size,
|
|
||||||
emb_dim,
|
|
||||||
num_hiddens,
|
|
||||||
straight_through=False,
|
|
||||||
kl_weight=5e-4,
|
|
||||||
temp_init=1.0,
|
|
||||||
):
|
|
||||||
super().__init__()
|
|
||||||
self.codebook_size = codebook_size # number of embeddings
|
|
||||||
self.emb_dim = emb_dim # dimension of embedding
|
|
||||||
self.straight_through = straight_through
|
|
||||||
self.temperature = temp_init
|
|
||||||
self.kl_weight = kl_weight
|
|
||||||
self.proj = nn.Conv2d(
|
|
||||||
num_hiddens, codebook_size, 1
|
|
||||||
) # projects last encoder layer to quantized logits
|
|
||||||
self.embed = nn.Embedding(codebook_size, emb_dim)
|
|
||||||
|
|
||||||
def forward(self, z):
|
|
||||||
hard = self.straight_through if self.training else True
|
|
||||||
|
|
||||||
logits = self.proj(z)
|
|
||||||
|
|
||||||
soft_one_hot = F.gumbel_softmax(logits, tau=self.temperature, dim=1, hard=hard)
|
|
||||||
|
|
||||||
z_q = torch.einsum("b n h w, n d -> b d h w", soft_one_hot, self.embed.weight)
|
|
||||||
|
|
||||||
# + kl divergence to the prior loss
|
|
||||||
qy = F.softmax(logits, dim=1)
|
|
||||||
diff = (
|
|
||||||
self.kl_weight
|
|
||||||
* torch.sum(qy * torch.log(qy * self.codebook_size + 1e-10), dim=1).mean()
|
|
||||||
)
|
|
||||||
min_encoding_indices = soft_one_hot.argmax(dim=1)
|
|
||||||
|
|
||||||
return z_q, diff, {"min_encoding_indices": min_encoding_indices}
|
|
||||||
|
|
||||||
|
|
||||||
class Downsample(nn.Module):
|
|
||||||
def __init__(self, in_channels):
|
|
||||||
super().__init__()
|
|
||||||
self.conv = torch.nn.Conv2d(
|
|
||||||
in_channels, in_channels, kernel_size=3, stride=2, padding=0
|
|
||||||
)
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
pad = (0, 1, 0, 1)
|
|
||||||
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
|
||||||
x = self.conv(x)
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
class Upsample(nn.Module):
|
|
||||||
def __init__(self, in_channels):
|
|
||||||
super().__init__()
|
|
||||||
self.conv = nn.Conv2d(
|
|
||||||
in_channels, in_channels, kernel_size=3, stride=1, padding=1
|
|
||||||
)
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
x = F.interpolate(x, scale_factor=2.0, mode="nearest")
|
|
||||||
x = self.conv(x)
|
|
||||||
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
class ResBlock(nn.Module):
|
|
||||||
def __init__(self, in_channels, out_channels=None):
|
|
||||||
super(ResBlock, self).__init__()
|
|
||||||
self.in_channels = in_channels
|
|
||||||
self.out_channels = in_channels if out_channels is None else out_channels
|
|
||||||
self.norm1 = normalize(in_channels)
|
|
||||||
self.conv1 = nn.Conv2d(
|
|
||||||
in_channels, out_channels, kernel_size=3, stride=1, padding=1
|
|
||||||
)
|
|
||||||
self.norm2 = normalize(out_channels)
|
|
||||||
self.conv2 = nn.Conv2d(
|
|
||||||
out_channels, out_channels, kernel_size=3, stride=1, padding=1
|
|
||||||
)
|
|
||||||
if self.in_channels != self.out_channels:
|
|
||||||
self.conv_out = nn.Conv2d(
|
|
||||||
in_channels, out_channels, kernel_size=1, stride=1, padding=0
|
|
||||||
)
|
|
||||||
|
|
||||||
def forward(self, x_in):
|
|
||||||
x = x_in
|
|
||||||
x = self.norm1(x)
|
|
||||||
x = swish(x)
|
|
||||||
x = self.conv1(x)
|
|
||||||
x = self.norm2(x)
|
|
||||||
x = swish(x)
|
|
||||||
x = self.conv2(x)
|
|
||||||
if self.in_channels != self.out_channels:
|
|
||||||
x_in = self.conv_out(x_in)
|
|
||||||
|
|
||||||
return x + x_in
|
|
||||||
|
|
||||||
|
|
||||||
class AttnBlock(nn.Module):
|
|
||||||
def __init__(self, in_channels):
|
|
||||||
super().__init__()
|
|
||||||
self.in_channels = in_channels
|
|
||||||
|
|
||||||
self.norm = normalize(in_channels)
|
|
||||||
self.q = torch.nn.Conv2d(
|
|
||||||
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
|
||||||
)
|
|
||||||
self.k = torch.nn.Conv2d(
|
|
||||||
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
|
||||||
)
|
|
||||||
self.v = torch.nn.Conv2d(
|
|
||||||
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
|
||||||
)
|
|
||||||
self.proj_out = torch.nn.Conv2d(
|
|
||||||
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
|
||||||
)
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
h_ = x
|
|
||||||
h_ = self.norm(h_)
|
|
||||||
q = self.q(h_)
|
|
||||||
k = self.k(h_)
|
|
||||||
v = self.v(h_)
|
|
||||||
|
|
||||||
# compute attention
|
|
||||||
b, c, h, w = q.shape
|
|
||||||
q = q.reshape(b, c, h * w)
|
|
||||||
q = q.permute(0, 2, 1)
|
|
||||||
k = k.reshape(b, c, h * w)
|
|
||||||
w_ = torch.bmm(q, k)
|
|
||||||
w_ = w_ * (int(c) ** (-0.5))
|
|
||||||
w_ = F.softmax(w_, dim=2)
|
|
||||||
|
|
||||||
# attend to values
|
|
||||||
v = v.reshape(b, c, h * w)
|
|
||||||
w_ = w_.permute(0, 2, 1)
|
|
||||||
h_ = torch.bmm(v, w_)
|
|
||||||
h_ = h_.reshape(b, c, h, w)
|
|
||||||
|
|
||||||
h_ = self.proj_out(h_)
|
|
||||||
|
|
||||||
return x + h_
|
|
||||||
|
|
||||||
|
|
||||||
class Encoder(nn.Module):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
in_channels,
|
|
||||||
nf,
|
|
||||||
emb_dim,
|
|
||||||
ch_mult,
|
|
||||||
num_res_blocks,
|
|
||||||
resolution,
|
|
||||||
attn_resolutions,
|
|
||||||
):
|
|
||||||
super().__init__()
|
|
||||||
self.nf = nf
|
|
||||||
self.num_resolutions = len(ch_mult)
|
|
||||||
self.num_res_blocks = num_res_blocks
|
|
||||||
self.resolution = resolution
|
|
||||||
self.attn_resolutions = attn_resolutions
|
|
||||||
|
|
||||||
curr_res = self.resolution
|
|
||||||
in_ch_mult = (1,) + tuple(ch_mult)
|
|
||||||
|
|
||||||
blocks = []
|
|
||||||
# initial convultion
|
|
||||||
blocks.append(nn.Conv2d(in_channels, nf, kernel_size=3, stride=1, padding=1))
|
|
||||||
|
|
||||||
# residual and downsampling blocks, with attention on smaller res (16x16)
|
|
||||||
for i in range(self.num_resolutions):
|
|
||||||
block_in_ch = nf * in_ch_mult[i]
|
|
||||||
block_out_ch = nf * ch_mult[i]
|
|
||||||
for _ in range(self.num_res_blocks):
|
|
||||||
blocks.append(ResBlock(block_in_ch, block_out_ch))
|
|
||||||
block_in_ch = block_out_ch
|
|
||||||
if curr_res in attn_resolutions:
|
|
||||||
blocks.append(AttnBlock(block_in_ch))
|
|
||||||
|
|
||||||
if i != self.num_resolutions - 1:
|
|
||||||
blocks.append(Downsample(block_in_ch))
|
|
||||||
curr_res = curr_res // 2
|
|
||||||
|
|
||||||
# non-local attention block
|
|
||||||
blocks.append(ResBlock(block_in_ch, block_in_ch))
|
|
||||||
blocks.append(AttnBlock(block_in_ch))
|
|
||||||
blocks.append(ResBlock(block_in_ch, block_in_ch))
|
|
||||||
|
|
||||||
# normalise and convert to latent size
|
|
||||||
blocks.append(normalize(block_in_ch))
|
|
||||||
blocks.append(
|
|
||||||
nn.Conv2d(block_in_ch, emb_dim, kernel_size=3, stride=1, padding=1)
|
|
||||||
)
|
|
||||||
self.blocks = nn.ModuleList(blocks)
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
for block in self.blocks:
|
|
||||||
x = block(x)
|
|
||||||
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
class Generator(nn.Module):
|
|
||||||
def __init__(self, nf, emb_dim, ch_mult, res_blocks, img_size, attn_resolutions):
|
|
||||||
super().__init__()
|
|
||||||
self.nf = nf
|
|
||||||
self.ch_mult = ch_mult
|
|
||||||
self.num_resolutions = len(self.ch_mult)
|
|
||||||
self.num_res_blocks = res_blocks
|
|
||||||
self.resolution = img_size
|
|
||||||
self.attn_resolutions = attn_resolutions
|
|
||||||
self.in_channels = emb_dim
|
|
||||||
self.out_channels = 3
|
|
||||||
block_in_ch = self.nf * self.ch_mult[-1]
|
|
||||||
curr_res = self.resolution // 2 ** (self.num_resolutions - 1)
|
|
||||||
|
|
||||||
blocks = []
|
|
||||||
# initial conv
|
|
||||||
blocks.append(
|
|
||||||
nn.Conv2d(self.in_channels, block_in_ch, kernel_size=3, stride=1, padding=1)
|
|
||||||
)
|
|
||||||
|
|
||||||
# non-local attention block
|
|
||||||
blocks.append(ResBlock(block_in_ch, block_in_ch))
|
|
||||||
blocks.append(AttnBlock(block_in_ch))
|
|
||||||
blocks.append(ResBlock(block_in_ch, block_in_ch))
|
|
||||||
|
|
||||||
for i in reversed(range(self.num_resolutions)):
|
|
||||||
block_out_ch = self.nf * self.ch_mult[i]
|
|
||||||
|
|
||||||
for _ in range(self.num_res_blocks):
|
|
||||||
blocks.append(ResBlock(block_in_ch, block_out_ch))
|
|
||||||
block_in_ch = block_out_ch
|
|
||||||
|
|
||||||
if curr_res in self.attn_resolutions:
|
|
||||||
blocks.append(AttnBlock(block_in_ch))
|
|
||||||
|
|
||||||
if i != 0:
|
|
||||||
blocks.append(Upsample(block_in_ch))
|
|
||||||
curr_res = curr_res * 2
|
|
||||||
|
|
||||||
blocks.append(normalize(block_in_ch))
|
|
||||||
blocks.append(
|
|
||||||
nn.Conv2d(
|
|
||||||
block_in_ch, self.out_channels, kernel_size=3, stride=1, padding=1
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
self.blocks = nn.ModuleList(blocks)
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
for block in self.blocks:
|
|
||||||
x = block(x)
|
|
||||||
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
@ARCH_REGISTRY.register()
|
|
||||||
class VQAutoEncoder(nn.Module):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
img_size,
|
|
||||||
nf,
|
|
||||||
ch_mult,
|
|
||||||
quantizer="nearest",
|
|
||||||
res_blocks=2,
|
|
||||||
attn_resolutions=[16],
|
|
||||||
codebook_size=1024,
|
|
||||||
emb_dim=256,
|
|
||||||
beta=0.25,
|
|
||||||
gumbel_straight_through=False,
|
|
||||||
gumbel_kl_weight=1e-8,
|
|
||||||
model_path=None,
|
|
||||||
):
|
|
||||||
super().__init__()
|
|
||||||
logger = get_root_logger()
|
|
||||||
self.in_channels = 3
|
|
||||||
self.nf = nf
|
|
||||||
self.n_blocks = res_blocks
|
|
||||||
self.codebook_size = codebook_size
|
|
||||||
self.embed_dim = emb_dim
|
|
||||||
self.ch_mult = ch_mult
|
|
||||||
self.resolution = img_size
|
|
||||||
self.attn_resolutions = attn_resolutions
|
|
||||||
self.quantizer_type = quantizer
|
|
||||||
self.encoder = Encoder(
|
|
||||||
self.in_channels,
|
|
||||||
self.nf,
|
|
||||||
self.embed_dim,
|
|
||||||
self.ch_mult,
|
|
||||||
self.n_blocks,
|
|
||||||
self.resolution,
|
|
||||||
self.attn_resolutions,
|
|
||||||
)
|
|
||||||
if self.quantizer_type == "nearest":
|
|
||||||
self.beta = beta # 0.25
|
|
||||||
self.quantize = VectorQuantizer(
|
|
||||||
self.codebook_size, self.embed_dim, self.beta
|
|
||||||
)
|
|
||||||
elif self.quantizer_type == "gumbel":
|
|
||||||
self.gumbel_num_hiddens = emb_dim
|
|
||||||
self.straight_through = gumbel_straight_through
|
|
||||||
self.kl_weight = gumbel_kl_weight
|
|
||||||
self.quantize = GumbelQuantizer(
|
|
||||||
self.codebook_size,
|
|
||||||
self.embed_dim,
|
|
||||||
self.gumbel_num_hiddens,
|
|
||||||
self.straight_through,
|
|
||||||
self.kl_weight,
|
|
||||||
)
|
|
||||||
self.generator = Generator(
|
|
||||||
self.nf,
|
|
||||||
self.embed_dim,
|
|
||||||
self.ch_mult,
|
|
||||||
self.n_blocks,
|
|
||||||
self.resolution,
|
|
||||||
self.attn_resolutions,
|
|
||||||
)
|
|
||||||
|
|
||||||
if model_path is not None:
|
|
||||||
chkpt = torch.load(model_path, map_location="cpu")
|
|
||||||
if "params_ema" in chkpt:
|
|
||||||
self.load_state_dict(
|
|
||||||
torch.load(model_path, map_location="cpu")["params_ema"]
|
|
||||||
)
|
|
||||||
logger.info(f"vqgan is loaded from: {model_path} [params_ema]")
|
|
||||||
elif "params" in chkpt:
|
|
||||||
self.load_state_dict(
|
|
||||||
torch.load(model_path, map_location="cpu")["params"]
|
|
||||||
)
|
|
||||||
logger.info(f"vqgan is loaded from: {model_path} [params]")
|
|
||||||
else:
|
|
||||||
raise ValueError(f"Wrong params!")
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
x = self.encoder(x)
|
|
||||||
quant, codebook_loss, quant_stats = self.quantize(x)
|
|
||||||
x = self.generator(quant)
|
|
||||||
return x, codebook_loss, quant_stats
|
|
||||||
|
|
||||||
|
|
||||||
# patch based discriminator
|
|
||||||
@ARCH_REGISTRY.register()
|
|
||||||
class VQGANDiscriminator(nn.Module):
|
|
||||||
def __init__(self, nc=3, ndf=64, n_layers=4, model_path=None):
|
|
||||||
super().__init__()
|
|
||||||
|
|
||||||
layers = [
|
|
||||||
nn.Conv2d(nc, ndf, kernel_size=4, stride=2, padding=1),
|
|
||||||
nn.LeakyReLU(0.2, True),
|
|
||||||
]
|
|
||||||
ndf_mult = 1
|
|
||||||
ndf_mult_prev = 1
|
|
||||||
for n in range(1, n_layers): # gradually increase the number of filters
|
|
||||||
ndf_mult_prev = ndf_mult
|
|
||||||
ndf_mult = min(2**n, 8)
|
|
||||||
layers += [
|
|
||||||
nn.Conv2d(
|
|
||||||
ndf * ndf_mult_prev,
|
|
||||||
ndf * ndf_mult,
|
|
||||||
kernel_size=4,
|
|
||||||
stride=2,
|
|
||||||
padding=1,
|
|
||||||
bias=False,
|
|
||||||
),
|
|
||||||
nn.BatchNorm2d(ndf * ndf_mult),
|
|
||||||
nn.LeakyReLU(0.2, True),
|
|
||||||
]
|
|
||||||
|
|
||||||
ndf_mult_prev = ndf_mult
|
|
||||||
ndf_mult = min(2**n_layers, 8)
|
|
||||||
|
|
||||||
layers += [
|
|
||||||
nn.Conv2d(
|
|
||||||
ndf * ndf_mult_prev,
|
|
||||||
ndf * ndf_mult,
|
|
||||||
kernel_size=4,
|
|
||||||
stride=1,
|
|
||||||
padding=1,
|
|
||||||
bias=False,
|
|
||||||
),
|
|
||||||
nn.BatchNorm2d(ndf * ndf_mult),
|
|
||||||
nn.LeakyReLU(0.2, True),
|
|
||||||
]
|
|
||||||
|
|
||||||
layers += [
|
|
||||||
nn.Conv2d(ndf * ndf_mult, 1, kernel_size=4, stride=1, padding=1)
|
|
||||||
] # output 1 channel prediction map
|
|
||||||
self.main = nn.Sequential(*layers)
|
|
||||||
|
|
||||||
if model_path is not None:
|
|
||||||
chkpt = torch.load(model_path, map_location="cpu")
|
|
||||||
if "params_d" in chkpt:
|
|
||||||
self.load_state_dict(
|
|
||||||
torch.load(model_path, map_location="cpu")["params_d"]
|
|
||||||
)
|
|
||||||
elif "params" in chkpt:
|
|
||||||
self.load_state_dict(
|
|
||||||
torch.load(model_path, map_location="cpu")["params"]
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
raise ValueError(f"Wrong params!")
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
return self.main(x)
|
|
Loading…
Reference in New Issue
Block a user