Merge branch 'main' into install/tui-tweaks

This commit is contained in:
Lincoln Stein 2023-07-30 08:19:45 -04:00 committed by GitHub
commit cafcd16657
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 36 additions and 21 deletions

View File

@ -394,7 +394,7 @@ rm .\.venv -r -force
python -mvenv .venv python -mvenv .venv
.\.venv\Scripts\activate .\.venv\Scripts\activate
pip install invokeai pip install invokeai
invokeai-configure --root . invokeai-configure --yes --root .
``` ```
If you see anything marked as an error during this process please stop If you see anything marked as an error during this process please stop

View File

@ -1070,7 +1070,7 @@ def convert_controlnet_checkpoint(
extract_ema, extract_ema,
use_linear_projection=None, use_linear_projection=None,
cross_attention_dim=None, cross_attention_dim=None,
precision: torch.dtype = torch.float32, precision: Optional[torch.dtype] = None,
): ):
ctrlnet_config = create_unet_diffusers_config(original_config, image_size=image_size, controlnet=True) ctrlnet_config = create_unet_diffusers_config(original_config, image_size=image_size, controlnet=True)
ctrlnet_config["upcast_attention"] = upcast_attention ctrlnet_config["upcast_attention"] = upcast_attention
@ -1111,7 +1111,6 @@ def convert_controlnet_checkpoint(
return controlnet.to(precision) return controlnet.to(precision)
# TO DO - PASS PRECISION
def download_from_original_stable_diffusion_ckpt( def download_from_original_stable_diffusion_ckpt(
checkpoint_path: str, checkpoint_path: str,
model_version: BaseModelType, model_version: BaseModelType,
@ -1121,7 +1120,7 @@ def download_from_original_stable_diffusion_ckpt(
prediction_type: str = None, prediction_type: str = None,
model_type: str = None, model_type: str = None,
extract_ema: bool = False, extract_ema: bool = False,
precision: torch.dtype = torch.float32, precision: Optional[torch.dtype] = None,
scheduler_type: str = "pndm", scheduler_type: str = "pndm",
num_in_channels: Optional[int] = None, num_in_channels: Optional[int] = None,
upcast_attention: Optional[bool] = None, upcast_attention: Optional[bool] = None,
@ -1194,6 +1193,8 @@ def download_from_original_stable_diffusion_ckpt(
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer) [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer)
to use. If this parameter is `None`, the function will load a new instance of [CLIPTokenizer] by itself, if to use. If this parameter is `None`, the function will load a new instance of [CLIPTokenizer] by itself, if
needed. needed.
precision (`torch.dtype`, *optional*, defauts to `None`):
If not provided the precision will be set to the precision of the original file.
return: A StableDiffusionPipeline object representing the passed-in `.ckpt`/`.safetensors` file. return: A StableDiffusionPipeline object representing the passed-in `.ckpt`/`.safetensors` file.
""" """
@ -1252,6 +1253,10 @@ def download_from_original_stable_diffusion_ckpt(
logger.debug(f"model_type = {model_type}; original_config_file = {original_config_file}") logger.debug(f"model_type = {model_type}; original_config_file = {original_config_file}")
precision_probing_key = "model.diffusion_model.input_blocks.0.0.bias"
logger.debug(f"original checkpoint precision == {checkpoint[precision_probing_key].dtype}")
precision = precision or checkpoint[precision_probing_key].dtype
if original_config_file is None: if original_config_file is None:
key_name_v2_1 = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight" key_name_v2_1 = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight"
key_name_sd_xl_base = "conditioner.embedders.1.model.transformer.resblocks.9.mlp.c_proj.bias" key_name_sd_xl_base = "conditioner.embedders.1.model.transformer.resblocks.9.mlp.c_proj.bias"
@ -1279,9 +1284,12 @@ def download_from_original_stable_diffusion_ckpt(
original_config_file = BytesIO(requests.get(config_url).content) original_config_file = BytesIO(requests.get(config_url).content)
original_config = OmegaConf.load(original_config_file) original_config = OmegaConf.load(original_config_file)
if original_config["model"]["params"].get("use_ema") is not None:
extract_ema = original_config["model"]["params"]["use_ema"]
if ( if (
model_version == BaseModelType.StableDiffusion2 model_version == BaseModelType.StableDiffusion2
and original_config["model"]["params"]["parameterization"] == "v" and original_config["model"]["params"].get("parameterization") == "v"
): ):
prediction_type = "v_prediction" prediction_type = "v_prediction"
upcast_attention = True upcast_attention = True
@ -1447,7 +1455,7 @@ def download_from_original_stable_diffusion_ckpt(
if controlnet: if controlnet:
pipe = pipeline_class( pipe = pipeline_class(
vae=vae.to(precision), vae=vae.to(precision),
text_encoder=text_model, text_encoder=text_model.to(precision),
tokenizer=tokenizer, tokenizer=tokenizer,
unet=unet.to(precision), unet=unet.to(precision),
scheduler=scheduler, scheduler=scheduler,
@ -1459,7 +1467,7 @@ def download_from_original_stable_diffusion_ckpt(
else: else:
pipe = pipeline_class( pipe = pipeline_class(
vae=vae.to(precision), vae=vae.to(precision),
text_encoder=text_model, text_encoder=text_model.to(precision),
tokenizer=tokenizer, tokenizer=tokenizer,
unet=unet.to(precision), unet=unet.to(precision),
scheduler=scheduler, scheduler=scheduler,
@ -1484,8 +1492,8 @@ def download_from_original_stable_diffusion_ckpt(
image_noising_scheduler=image_noising_scheduler, image_noising_scheduler=image_noising_scheduler,
# regular denoising components # regular denoising components
tokenizer=tokenizer, tokenizer=tokenizer,
text_encoder=text_model, text_encoder=text_model.to(precision),
unet=unet, unet=unet.to(precision),
scheduler=scheduler, scheduler=scheduler,
# vae # vae
vae=vae, vae=vae,
@ -1560,7 +1568,7 @@ def download_from_original_stable_diffusion_ckpt(
if controlnet: if controlnet:
pipe = pipeline_class( pipe = pipeline_class(
vae=vae.to(precision), vae=vae.to(precision),
text_encoder=text_model, text_encoder=text_model.to(precision),
tokenizer=tokenizer, tokenizer=tokenizer,
unet=unet.to(precision), unet=unet.to(precision),
controlnet=controlnet, controlnet=controlnet,
@ -1571,7 +1579,7 @@ def download_from_original_stable_diffusion_ckpt(
else: else:
pipe = pipeline_class( pipe = pipeline_class(
vae=vae.to(precision), vae=vae.to(precision),
text_encoder=text_model, text_encoder=text_model.to(precision),
tokenizer=tokenizer, tokenizer=tokenizer,
unet=unet.to(precision), unet=unet.to(precision),
scheduler=scheduler, scheduler=scheduler,
@ -1594,9 +1602,9 @@ def download_from_original_stable_diffusion_ckpt(
pipe = StableDiffusionXLPipeline( pipe = StableDiffusionXLPipeline(
vae=vae.to(precision), vae=vae.to(precision),
text_encoder=text_encoder, text_encoder=text_encoder.to(precision),
tokenizer=tokenizer, tokenizer=tokenizer,
text_encoder_2=text_encoder_2, text_encoder_2=text_encoder_2.to(precision),
tokenizer_2=tokenizer_2, tokenizer_2=tokenizer_2,
unet=unet.to(precision), unet=unet.to(precision),
scheduler=scheduler, scheduler=scheduler,
@ -1639,7 +1647,7 @@ def download_controlnet_from_original_ckpt(
original_config_file: str, original_config_file: str,
image_size: int = 512, image_size: int = 512,
extract_ema: bool = False, extract_ema: bool = False,
precision: torch.dtype = torch.float32, precision: Optional[torch.dtype] = None,
num_in_channels: Optional[int] = None, num_in_channels: Optional[int] = None,
upcast_attention: Optional[bool] = None, upcast_attention: Optional[bool] = None,
device: str = None, device: str = None,
@ -1680,6 +1688,12 @@ def download_controlnet_from_original_ckpt(
while "state_dict" in checkpoint: while "state_dict" in checkpoint:
checkpoint = checkpoint["state_dict"] checkpoint = checkpoint["state_dict"]
# use original precision
precision_probing_key = "input_blocks.0.0.bias"
ckpt_precision = checkpoint[precision_probing_key].dtype
logger.debug(f"original controlnet precision = {ckpt_precision}")
precision = precision or ckpt_precision
original_config = OmegaConf.load(original_config_file) original_config = OmegaConf.load(original_config_file)
if num_in_channels is not None: if num_in_channels is not None:
@ -1699,7 +1713,7 @@ def download_controlnet_from_original_ckpt(
cross_attention_dim=cross_attention_dim, cross_attention_dim=cross_attention_dim,
) )
return controlnet return controlnet.to(precision)
def convert_ldm_vae_to_diffusers(checkpoint, vae_config: DictConfig, image_size: int) -> AutoencoderKL: def convert_ldm_vae_to_diffusers(checkpoint, vae_config: DictConfig, image_size: int) -> AutoencoderKL:

View File

@ -17,6 +17,7 @@ from .base import (
ModelNotFoundException, ModelNotFoundException,
) )
from invokeai.app.services.config import InvokeAIAppConfig from invokeai.app.services.config import InvokeAIAppConfig
import invokeai.backend.util.logging as logger
class ControlNetModelFormat(str, Enum): class ControlNetModelFormat(str, Enum):
@ -66,7 +67,7 @@ class ControlNetModel(ModelBase):
child_type: Optional[SubModelType] = None, child_type: Optional[SubModelType] = None,
): ):
if child_type is not None: if child_type is not None:
raise Exception("There is no child models in controlnet model") raise Exception("There are no child models in controlnet model")
model = None model = None
for variant in ["fp16", None]: for variant in ["fp16", None]:
@ -124,9 +125,7 @@ class ControlNetModel(ModelBase):
return model_path return model_path
@classmethod
def _convert_controlnet_ckpt_and_cache( def _convert_controlnet_ckpt_and_cache(
cls,
model_path: str, model_path: str,
output_path: str, output_path: str,
base_model: BaseModelType, base_model: BaseModelType,
@ -141,6 +140,7 @@ def _convert_controlnet_ckpt_and_cache(
weights = app_config.root_path / model_path weights = app_config.root_path / model_path
output_path = Path(output_path) output_path = Path(output_path)
logger.info(f"Converting {weights} to diffusers format")
# return cached version if it exists # return cached version if it exists
if output_path.exists(): if output_path.exists():
return output_path return output_path

View File

@ -123,6 +123,7 @@ class StableDiffusion1Model(DiffusersModel):
return _convert_ckpt_and_cache( return _convert_ckpt_and_cache(
version=BaseModelType.StableDiffusion1, version=BaseModelType.StableDiffusion1,
model_config=config, model_config=config,
load_safety_checker=False,
output_path=output_path, output_path=output_path,
) )
else: else:

View File

@ -58,14 +58,14 @@ dependencies = [
"invisible-watermark~=0.2.0", # needed to install SDXL base and refiner using their repo_ids "invisible-watermark~=0.2.0", # needed to install SDXL base and refiner using their repo_ids
"matplotlib", # needed for plotting of Penner easing functions "matplotlib", # needed for plotting of Penner easing functions
"mediapipe", # needed for "mediapipeface" controlnet model "mediapipe", # needed for "mediapipeface" controlnet model
"numpy",
"npyscreen", "npyscreen",
"numpy==1.24.4",
"omegaconf", "omegaconf",
"opencv-python", "opencv-python",
"pydantic==1.*",
"picklescan", "picklescan",
"pillow", "pillow",
"prompt-toolkit", "prompt-toolkit",
"pydantic==1.10.10",
"pympler~=1.0.1", "pympler~=1.0.1",
"pypatchmatch", "pypatchmatch",
'pyperclip', 'pyperclip',
@ -81,7 +81,7 @@ dependencies = [
"test-tube~=0.7.5", "test-tube~=0.7.5",
"torch~=2.0.1", "torch~=2.0.1",
"torchvision~=0.15.2", "torchvision~=0.15.2",
"torchmetrics~=1.0.1", "torchmetrics~=0.11.0",
"torchsde~=0.2.5", "torchsde~=0.2.5",
"transformers~=4.31.0", "transformers~=4.31.0",
"uvicorn[standard]~=0.21.1", "uvicorn[standard]~=0.21.1",