mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Bugfix/convert v2 models (#2630)
## Convert v2 models in CLI - This PR introduces a CLI prompt for the proper configuration file to use when converting a ckpt file, in order to support both inpainting and v2 models files. - When user tries to directly !import a v2 model, it prints out a proper warning that v2 ckpts are not directly supported and converts it into a diffusers model automatically. The user interaction looks like this: ``` (stable-diffusion-1.5) invoke> !import_model /home/lstein/graphic-art.ckpt Short name for this model [graphic-art]: graphic-art-test Description for this model [Imported model graphic-art]: Imported model graphic-art What type of model is this?: [1] A model based on Stable Diffusion 1.X [2] A model based on Stable Diffusion 2.X [3] An inpainting model based on Stable Diffusion 1.X [4] Something else Your choice: [1] 2 ``` In addition, this PR enhances the bulk checkpoint import function. If a directory path is passed to `!import_model` then it will be scanned for `.ckpt` and `.safetensors` files. The user will be prompted to import all the files found, or select which ones to import. Addresses https://discord.com/channels/1020123559063990373/1073730061380894740/1073954728544845855
This commit is contained in:
commit
ccba41cdb2
@ -80,6 +80,13 @@ only `.safetensors` and `.ckpt` models, but they can be easily loaded
|
||||
into InvokeAI and/or converted into optimized `diffusers` models. Be
|
||||
aware that CIVITAI hosts many models that generate NSFW content.
|
||||
|
||||
!!! note
|
||||
|
||||
InvokeAI 2.3.x does not support directly importing and
|
||||
running Stable Diffusion version 2 checkpoint models. You may instead
|
||||
convert them into `diffusers` models using the conversion methods
|
||||
described below.
|
||||
|
||||
## Installation
|
||||
|
||||
There are multiple ways to install and manage models:
|
||||
@ -90,7 +97,7 @@ There are multiple ways to install and manage models:
|
||||
models files.
|
||||
|
||||
3. The web interface (WebUI) has a GUI for importing and managing
|
||||
models.
|
||||
models.
|
||||
|
||||
### Installation via `invokeai-configure`
|
||||
|
||||
@ -106,7 +113,7 @@ confirm that the files are complete.
|
||||
You can install a new model, including any of the community-supported ones, via
|
||||
the command-line client's `!import_model` command.
|
||||
|
||||
#### Installing `.ckpt` and `.safetensors` models
|
||||
#### Installing individual `.ckpt` and `.safetensors` models
|
||||
|
||||
If the model is already downloaded to your local disk, use
|
||||
`!import_model /path/to/file.ckpt` to load it. For example:
|
||||
@ -131,15 +138,40 @@ invoke> !import_model https://example.org/sd_models/martians.safetensors
|
||||
For this to work, the URL must not be password-protected. Otherwise
|
||||
you will receive a 404 error.
|
||||
|
||||
When you import a legacy model, the CLI will ask you a few questions
|
||||
about the model, including what size image it was trained on (usually
|
||||
512x512), what name and description you wish to use for it, what
|
||||
configuration file to use for it (usually the default
|
||||
`v1-inference.yaml`), whether you'd like to make this model the
|
||||
default at startup time, and whether you would like to install a
|
||||
custom VAE (variable autoencoder) file for the model. For recent
|
||||
models, the answer to the VAE question is usually "no," but it won't
|
||||
hurt to answer "yes".
|
||||
When you import a legacy model, the CLI will first ask you what type
|
||||
of model this is. You can indicate whether it is a model based on
|
||||
Stable Diffusion 1.x (1.4 or 1.5), one based on Stable Diffusion 2.x,
|
||||
or a 1.x inpainting model. Be careful to indicate the correct model
|
||||
type, or it will not load correctly. You can correct the model type
|
||||
after the fact using the `!edit_model` command.
|
||||
|
||||
The system will then ask you a few other questions about the model,
|
||||
including what size image it was trained on (usually 512x512), what
|
||||
name and description you wish to use for it, and whether you would
|
||||
like to install a custom VAE (variable autoencoder) file for the
|
||||
model. For recent models, the answer to the VAE question is usually
|
||||
"no," but it won't hurt to answer "yes".
|
||||
|
||||
After importing, the model will load. If this is successful, you will
|
||||
be asked if you want to keep the model loaded in memory to start
|
||||
generating immediately. You'll also be asked if you wish to make this
|
||||
the default model on startup. You can change this later using
|
||||
`!edit_model`.
|
||||
|
||||
#### Importing a batch of `.ckpt` and `.safetensors` models from a directory
|
||||
|
||||
You may also point `!import_model` to a directory containing a set of
|
||||
`.ckpt` or `.safetensors` files. They will be imported _en masse_.
|
||||
|
||||
!!! example
|
||||
|
||||
```console
|
||||
invoke> !import_model C:/Users/fred/Downloads/civitai_models/
|
||||
```
|
||||
|
||||
You will be given the option to import all models found in the
|
||||
directory, or select which ones to import. If there are subfolders
|
||||
within the directory, they will be searched for models to import.
|
||||
|
||||
#### Installing `diffusers` models
|
||||
|
||||
@ -284,14 +316,18 @@ up a dialogue that lists the models you have already installed, and
|
||||
allows you to load, delete or edit them:
|
||||
|
||||
<figure markdown>
|
||||
|
||||
![model-manager](../assets/installing-models/webui-models-1.png)
|
||||
|
||||
</figure>
|
||||
|
||||
To add a new model, click on **+ Add New** and select to either a
|
||||
checkpoint/safetensors model, or a diffusers model:
|
||||
|
||||
<figure markdown>
|
||||
|
||||
![model-manager-add-new](../assets/installing-models/webui-models-2.png)
|
||||
|
||||
</figure>
|
||||
|
||||
In this example, we chose **Add Diffusers**. As shown in the figure
|
||||
@ -302,7 +338,9 @@ choose to enter a path to disk, the system will autocomplete for you
|
||||
as you type:
|
||||
|
||||
<figure markdown>
|
||||
|
||||
![model-manager-add-diffusers](../assets/installing-models/webui-models-3.png)
|
||||
|
||||
</figure>
|
||||
|
||||
Press **Add Model** at the bottom of the dialogue (scrolled out of
|
||||
@ -317,7 +355,9 @@ directory and press the "Search" icon. This will display the
|
||||
subfolders, and allow you to choose which ones to import:
|
||||
|
||||
<figure markdown>
|
||||
|
||||
![model-manager-add-checkpoint](../assets/installing-models/webui-models-4.png)
|
||||
|
||||
</figure>
|
||||
|
||||
## Model Management Startup Options
|
||||
@ -342,9 +382,8 @@ invoke.sh --autoconvert /home/fred/stable-diffusion-checkpoints
|
||||
|
||||
And here is what the same argument looks like in `invokeai.init`:
|
||||
|
||||
```
|
||||
```bash
|
||||
--outdir="/home/fred/invokeai/outputs
|
||||
--no-nsfw_checker
|
||||
--autoconvert /home/fred/stable-diffusion-checkpoints
|
||||
```
|
||||
|
||||
|
@ -1,29 +1,31 @@
|
||||
import os
|
||||
import re
|
||||
import sys
|
||||
import shlex
|
||||
import sys
|
||||
import traceback
|
||||
|
||||
from argparse import Namespace
|
||||
from pathlib import Path
|
||||
from typing import Optional, Union
|
||||
from typing import List, Optional, Union
|
||||
|
||||
import click
|
||||
|
||||
if sys.platform == "darwin":
|
||||
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
|
||||
|
||||
from ldm.invoke.globals import Globals
|
||||
import pyparsing # type: ignore
|
||||
|
||||
import ldm.invoke
|
||||
from ldm.generate import Generate
|
||||
from ldm.invoke.prompt_parser import PromptParser
|
||||
from ldm.invoke.readline import get_completer, Completer
|
||||
from ldm.invoke.args import Args, metadata_dumps, metadata_from_png, dream_cmd_from_png
|
||||
from ldm.invoke.pngwriter import PngWriter, retrieve_metadata, write_metadata
|
||||
from ldm.invoke.args import (Args, dream_cmd_from_png, metadata_dumps,
|
||||
metadata_from_png)
|
||||
from ldm.invoke.globals import Globals
|
||||
from ldm.invoke.image_util import make_grid
|
||||
from ldm.invoke.log import write_log
|
||||
from ldm.invoke.model_manager import ModelManager
|
||||
|
||||
import click # type: ignore
|
||||
import ldm.invoke
|
||||
import pyparsing # type: ignore
|
||||
from ldm.invoke.pngwriter import PngWriter, retrieve_metadata, write_metadata
|
||||
from ldm.invoke.prompt_parser import PromptParser
|
||||
from ldm.invoke.readline import Completer, get_completer
|
||||
from ldm.util import url_attachment_name
|
||||
|
||||
# global used in multiple functions (fix)
|
||||
infile = None
|
||||
@ -66,11 +68,11 @@ def main():
|
||||
print(f'>> InvokeAI runtime directory is "{Globals.root}"')
|
||||
|
||||
# loading here to avoid long delays on startup
|
||||
from ldm.generate import Generate
|
||||
|
||||
# these two lines prevent a horrible warning message from appearing
|
||||
# when the frozen CLIP tokenizer is imported
|
||||
import transformers # type: ignore
|
||||
|
||||
from ldm.generate import Generate
|
||||
transformers.logging.set_verbosity_error()
|
||||
import diffusers
|
||||
diffusers.logging.set_verbosity_error()
|
||||
@ -574,10 +576,12 @@ def set_default_output_dir(opt:Args, completer:Completer):
|
||||
|
||||
|
||||
def import_model(model_path: str, gen, opt, completer):
|
||||
'''
|
||||
model_path can be (1) a URL to a .ckpt file; (2) a local .ckpt file path; or
|
||||
(3) a huggingface repository id
|
||||
'''
|
||||
"""
|
||||
model_path can be (1) a URL to a .ckpt file; (2) a local .ckpt file path;
|
||||
(3) a huggingface repository id; or (4) a local directory containing a
|
||||
diffusers model.
|
||||
"""
|
||||
model.path = model_path.replace('\\','/') # windows
|
||||
model_name = None
|
||||
|
||||
if model_path.startswith(('http:','https:','ftp:')):
|
||||
@ -592,12 +596,8 @@ def import_model(model_path: str, gen, opt, completer):
|
||||
models = list(Path(model_path).rglob('*.ckpt')) + list(Path(model_path).rglob('*.safetensors'))
|
||||
|
||||
if models:
|
||||
# Only the last model name will be used below.
|
||||
for model in sorted(models):
|
||||
|
||||
if click.confirm(f'Import {model.stem} ?', default=True):
|
||||
model_name = import_ckpt_model(model, gen, opt, completer)
|
||||
print()
|
||||
models = import_checkpoint_list(models, gen, opt, completer)
|
||||
model_name = models[0] if len(models) == 1 else None
|
||||
else:
|
||||
model_name = import_diffuser_model(Path(model_path), gen, opt, completer)
|
||||
|
||||
@ -614,14 +614,53 @@ def import_model(model_path: str, gen, opt, completer):
|
||||
print('** model failed to load. Discarding configuration entry')
|
||||
gen.model_manager.del_model(model_name)
|
||||
return
|
||||
if input('Make this the default model? [n] ').strip() in ('y','Y'):
|
||||
if click.confirm('Make this the default model?', default=False):
|
||||
gen.model_manager.set_default_model(model_name)
|
||||
|
||||
gen.model_manager.commit(opt.conf)
|
||||
completer.update_models(gen.model_manager.list_models())
|
||||
print(f'>> {model_name} successfully installed')
|
||||
|
||||
def import_diffuser_model(path_or_repo: Union[Path, str], gen, _, completer) -> Optional[str]:
|
||||
def import_checkpoint_list(models: List[Path], gen, opt, completer)->List[str]:
|
||||
'''
|
||||
Does a mass import of all the checkpoint/safetensors on a path list
|
||||
'''
|
||||
model_names = list()
|
||||
choice = input('** Directory of checkpoint/safetensors models detected. Install <a>ll or <s>elected models? [a] ') or 'a'
|
||||
do_all = choice.startswith('a')
|
||||
if do_all:
|
||||
config_file = _ask_for_config_file(models[0], completer, plural=True)
|
||||
manager = gen.model_manager
|
||||
for model in sorted(models):
|
||||
model_name = f'{model.stem}'
|
||||
model_description = f'Imported model {model_name}'
|
||||
if model_name in manager.model_names():
|
||||
print(f'** {model_name} is already imported. Skipping.')
|
||||
elif manager.import_ckpt_model(
|
||||
model,
|
||||
config = config_file,
|
||||
model_name = model_name,
|
||||
model_description = model_description,
|
||||
commit_to_conf = opt.conf):
|
||||
model_names.append(model_name)
|
||||
print(f'>> Model {model_name} imported successfully')
|
||||
else:
|
||||
print(f'** Model {model} failed to import')
|
||||
else:
|
||||
for model in sorted(models):
|
||||
if click.confirm(f'Import {model.stem} ?', default=True):
|
||||
if model_name := import_ckpt_model(model, gen, opt, completer):
|
||||
print(f'>> Model {model.stem} imported successfully')
|
||||
model_names.append(model_name)
|
||||
else:
|
||||
printf('** Model {model} failed to import')
|
||||
print()
|
||||
return model_names
|
||||
|
||||
def import_diffuser_model(
|
||||
path_or_repo: Union[Path, str], gen, _, completer
|
||||
) -> Optional[str]:
|
||||
path_or_repo = path_or_repo.replace('\\','/') # windows
|
||||
manager = gen.model_manager
|
||||
default_name = Path(path_or_repo).stem
|
||||
default_description = f'Imported model {default_name}'
|
||||
@ -632,7 +671,7 @@ def import_diffuser_model(path_or_repo: Union[Path, str], gen, _, completer) ->
|
||||
model_description=default_description
|
||||
)
|
||||
vae = None
|
||||
if input('Replace this model\'s VAE with "stabilityai/sd-vae-ft-mse"? [n] ').strip() in ('y','Y'):
|
||||
if click.confirm('Replace this model\'s VAE with "stabilityai/sd-vae-ft-mse"?', default=False):
|
||||
vae = dict(repo_id='stabilityai/sd-vae-ft-mse')
|
||||
|
||||
if not manager.import_diffuser_model(
|
||||
@ -644,27 +683,22 @@ def import_diffuser_model(path_or_repo: Union[Path, str], gen, _, completer) ->
|
||||
return None
|
||||
return model_name
|
||||
|
||||
def import_ckpt_model(path_or_url: Union[Path, str], gen, opt, completer) -> Optional[str]:
|
||||
def import_ckpt_model(
|
||||
path_or_url: Union[Path, str], gen, opt, completer
|
||||
) -> Optional[str]:
|
||||
path_or_url = path_or_url.replace('\\','/')
|
||||
manager = gen.model_manager
|
||||
default_name = Path(path_or_url).stem
|
||||
default_description = f'Imported model {default_name}'
|
||||
is_a_url = str(path_or_url).startswith(('http:','https:'))
|
||||
base_name = Path(url_attachment_name(path_or_url)).name if is_a_url else Path(path_or_url).name
|
||||
default_name = Path(base_name).stem
|
||||
default_description = f"Imported model {default_name}"
|
||||
|
||||
model_name, model_description = _get_model_name_and_desc(
|
||||
manager,
|
||||
completer,
|
||||
model_name=default_name,
|
||||
model_description=default_description
|
||||
)
|
||||
config_file = None
|
||||
default = Path(Globals.root,'configs/stable-diffusion/v1-inpainting-inference.yaml') \
|
||||
if re.search('inpaint',default_name, flags=re.IGNORECASE) \
|
||||
else Path(Globals.root,'configs/stable-diffusion/v1-inference.yaml')
|
||||
|
||||
completer.complete_extensions(('.yaml','.yml'))
|
||||
completer.set_line(str(default))
|
||||
done = False
|
||||
while not done:
|
||||
config_file = input('Configuration file for this model: ').strip()
|
||||
done = os.path.exists(config_file)
|
||||
|
||||
completer.complete_extensions(('.ckpt','.safetensors'))
|
||||
vae = None
|
||||
@ -692,10 +726,15 @@ def import_ckpt_model(path_or_url: Union[Path, str], gen, opt, completer) -> Opt
|
||||
def _verify_load(model_name:str, gen)->bool:
|
||||
print('>> Verifying that new model loads...')
|
||||
current_model = gen.model_name
|
||||
if not gen.model_manager.get_model(model_name):
|
||||
try:
|
||||
if not gen.model_manager.get_model(model_name):
|
||||
return False
|
||||
except Exception as e:
|
||||
print(f'** model failed to load: {str(e)}')
|
||||
print('** note that importing 2.X checkpoints is not supported. Please use !convert_model instead.')
|
||||
return False
|
||||
do_switch = input('Keep model loaded? [y] ')
|
||||
if len(do_switch)==0 or do_switch[0] in ('y','Y'):
|
||||
|
||||
if click.confirm('Keep model loaded?', default=True):
|
||||
gen.set_model(model_name)
|
||||
else:
|
||||
print('>> Restoring previous model')
|
||||
@ -708,16 +747,45 @@ def _get_model_name_and_desc(model_manager,completer,model_name:str='',model_des
|
||||
model_description = input(f'Description for this model [{model_description}]: ').strip() or model_description
|
||||
return model_name, model_description
|
||||
|
||||
def _is_inpainting(model_name_or_path: str)->bool:
|
||||
if re.search('inpaint',model_name_or_path, flags=re.IGNORECASE):
|
||||
return not input('Is this an inpainting model? [y] ').startswith(('n','N'))
|
||||
else:
|
||||
return not input('Is this an inpainting model? [n] ').startswith(('y','Y'))
|
||||
def _ask_for_config_file(model_path: Union[str,Path], completer, plural: bool=False)->Path:
|
||||
default = '1'
|
||||
if re.search('inpaint',str(model_path),flags=re.IGNORECASE):
|
||||
default = '3'
|
||||
choices={
|
||||
'1': 'v1-inference.yaml',
|
||||
'2': 'v2-inference-v.yaml',
|
||||
'3': 'v1-inpainting-inference.yaml',
|
||||
}
|
||||
|
||||
def optimize_model(model_name_or_path: str, gen, opt, completer):
|
||||
prompt = '''What type of models are these?:
|
||||
[1] Models based on Stable Diffusion 1.X
|
||||
[2] Models based on Stable Diffusion 2.X
|
||||
[3] Inpainting models based on Stable Diffusion 1.X
|
||||
[4] Something else''' if plural else '''What type of model is this?:
|
||||
[1] A model based on Stable Diffusion 1.X
|
||||
[2] A model based on Stable Diffusion 2.X
|
||||
[3] An inpainting models based on Stable Diffusion 1.X
|
||||
[4] Something else'''
|
||||
print(prompt)
|
||||
choice = input(f'Your choice: [{default}] ')
|
||||
choice = choice.strip() or default
|
||||
if config_file := choices.get(choice,None):
|
||||
return Path('configs','stable-diffusion',config_file)
|
||||
|
||||
# otherwise ask user to select
|
||||
done = False
|
||||
completer.complete_extensions(('.yaml','.yml'))
|
||||
completer.set_line(str(Path(Globals.root,'configs/stable-diffusion/')))
|
||||
while not done:
|
||||
config_path = input('Configuration file for this model (leave blank to abort): ').strip()
|
||||
done = not config_path or os.path.exists(config_path)
|
||||
return config_path
|
||||
|
||||
|
||||
def optimize_model(model_name_or_path: Union[Path,str], gen, opt, completer):
|
||||
model_name_or_path = model_name_or_path.replace('\\','/') # windows
|
||||
manager = gen.model_manager
|
||||
ckpt_path = None
|
||||
original_config_file = None
|
||||
|
||||
if model_name_or_path == gen.model_name:
|
||||
print("** Can't convert the active model. !switch to another model first. **")
|
||||
@ -732,6 +800,9 @@ def optimize_model(model_name_or_path: str, gen, opt, completer):
|
||||
print(f'** {model_name_or_path} is not a legacy .ckpt weights file')
|
||||
return
|
||||
elif os.path.exists(model_name_or_path):
|
||||
original_config_file = original_config_file or _ask_for_config_file(model_name_or_path, completer)
|
||||
if not original_config_file:
|
||||
return
|
||||
ckpt_path = Path(model_name_or_path)
|
||||
model_name, model_description = _get_model_name_and_desc(
|
||||
manager,
|
||||
@ -739,12 +810,6 @@ def optimize_model(model_name_or_path: str, gen, opt, completer):
|
||||
ckpt_path.stem,
|
||||
f'Converted model {ckpt_path.stem}'
|
||||
)
|
||||
is_inpainting = _is_inpainting(model_name_or_path)
|
||||
original_config_file = Path(
|
||||
'configs',
|
||||
'stable-diffusion',
|
||||
'v1-inpainting-inference.yaml' if is_inpainting else 'v1-inference.yaml'
|
||||
)
|
||||
else:
|
||||
print(f'** {model_name_or_path} is neither an existing model nor the path to a .ckpt file')
|
||||
return
|
||||
@ -761,7 +826,7 @@ def optimize_model(model_name_or_path: str, gen, opt, completer):
|
||||
return
|
||||
|
||||
vae = None
|
||||
if input('Replace this model\'s VAE with "stabilityai/sd-vae-ft-mse"? [n] ').strip() in ('y','Y'):
|
||||
if click.confirm('Replace this model\'s VAE with "stabilityai/sd-vae-ft-mse"?', default=False):
|
||||
vae = dict(repo_id='stabilityai/sd-vae-ft-mse')
|
||||
|
||||
new_config = gen.model_manager.convert_and_import(
|
||||
@ -777,11 +842,10 @@ def optimize_model(model_name_or_path: str, gen, opt, completer):
|
||||
return
|
||||
|
||||
completer.update_models(gen.model_manager.list_models())
|
||||
if input(f'Load optimized model {model_name}? [y] ').strip() not in ('n','N'):
|
||||
if click.confirm(f'Load optimized model {model_name}?', default=True):
|
||||
gen.set_model(model_name)
|
||||
|
||||
response = input(f'Delete the original .ckpt file at ({ckpt_path} ? [n] ')
|
||||
if response.startswith(('y','Y')):
|
||||
if click.confirm(f'Delete the original .ckpt file at {ckpt_path}?',default=False):
|
||||
ckpt_path.unlink(missing_ok=True)
|
||||
print(f'{ckpt_path} deleted')
|
||||
|
||||
@ -794,10 +858,10 @@ def del_config(model_name:str, gen, opt, completer):
|
||||
print(f"** Unknown model {model_name}")
|
||||
return
|
||||
|
||||
if input(f'Remove {model_name} from the list of models known to InvokeAI? [y] ').strip().startswith(('n','N')):
|
||||
if not click.confirm(f'Remove {model_name} from the list of models known to InvokeAI?',default=True):
|
||||
return
|
||||
|
||||
delete_completely = input('Completely remove the model file or directory from disk? [n] ').startswith(('y','Y'))
|
||||
delete_completely = click.confirm('Completely remove the model file or directory from disk?',default=False)
|
||||
gen.model_manager.del_model(model_name,delete_files=delete_completely)
|
||||
gen.model_manager.commit(opt.conf)
|
||||
print(f'** {model_name} deleted')
|
||||
@ -826,7 +890,7 @@ def edit_model(model_name:str, gen, opt, completer):
|
||||
# this does the update
|
||||
manager.add_model(new_name, info, True)
|
||||
|
||||
if input('Make this the default model? [n] ').startswith(('y','Y')):
|
||||
if click.confirm('Make this the default model?',default=False):
|
||||
manager.set_default_model(new_name)
|
||||
manager.commit(opt.conf)
|
||||
completer.update_models(manager.list_models())
|
||||
@ -1010,6 +1074,7 @@ def get_next_command(infile=None, model_name='no model') -> str: # command stri
|
||||
def invoke_ai_web_server_loop(gen: Generate, gfpgan, codeformer, esrgan):
|
||||
print('\n* --web was specified, starting web server...')
|
||||
from invokeai.backend import InvokeAIWebServer
|
||||
|
||||
# Change working directory to the stable-diffusion directory
|
||||
os.chdir(
|
||||
os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))
|
||||
@ -1158,8 +1223,7 @@ def report_model_error(opt:Namespace, e:Exception):
|
||||
if yes_to_all:
|
||||
print('** Reconfiguration is being forced by environment variable INVOKE_MODEL_RECONFIGURE')
|
||||
else:
|
||||
response = input('Do you want to run invokeai-configure script to select and/or reinstall models? [y] ')
|
||||
if response.startswith(('n', 'N')):
|
||||
if click.confirm('Do you want to run invokeai-configure script to select and/or reinstall models?', default=True):
|
||||
return
|
||||
|
||||
print('invokeai-configure is launching....\n')
|
||||
|
@ -34,8 +34,8 @@ from ldm.invoke.generator.diffusers_pipeline import \
|
||||
StableDiffusionGeneratorPipeline
|
||||
from ldm.invoke.globals import (Globals, global_autoscan_dir, global_cache_dir,
|
||||
global_models_dir)
|
||||
from ldm.util import (ask_user, download_with_progress_bar,
|
||||
instantiate_from_config)
|
||||
from ldm.util import (ask_user, download_with_resume,
|
||||
url_attachment_name, instantiate_from_config)
|
||||
|
||||
DEFAULT_MAX_MODELS = 2
|
||||
VAE_TO_REPO_ID = { # hack, see note in convert_and_import()
|
||||
@ -673,15 +673,18 @@ class ModelManager(object):
|
||||
path to the configuration file, then the new entry will be committed to the
|
||||
models.yaml file.
|
||||
"""
|
||||
if str(weights).startswith(("http:", "https:")):
|
||||
model_name = model_name or url_attachment_name(weights)
|
||||
|
||||
weights_path = self._resolve_path(weights, "models/ldm/stable-diffusion-v1")
|
||||
config_path = self._resolve_path(config, "configs/stable-diffusion")
|
||||
config_path = self._resolve_path(config, "configs/stable-diffusion")
|
||||
|
||||
if weights_path is None or not weights_path.exists():
|
||||
return False
|
||||
if config_path is None or not config_path.exists():
|
||||
return False
|
||||
|
||||
model_name = model_name or Path(weights).stem
|
||||
model_name = model_name or Path(weights).stem # note this gives ugly pathnames if used on a URL without a Content-Disposition header
|
||||
model_description = (
|
||||
model_description or f"imported stable diffusion weights file {model_name}"
|
||||
)
|
||||
@ -971,16 +974,15 @@ class ModelManager(object):
|
||||
print("** Migration is done. Continuing...")
|
||||
|
||||
def _resolve_path(
|
||||
self, source: Union[str, Path], dest_directory: str
|
||||
self, source: Union[str, Path], dest_directory: str
|
||||
) -> Optional[Path]:
|
||||
resolved_path = None
|
||||
if str(source).startswith(("http:", "https:", "ftp:")):
|
||||
basename = os.path.basename(source)
|
||||
if not os.path.isabs(dest_directory):
|
||||
dest_directory = os.path.join(Globals.root, dest_directory)
|
||||
dest = os.path.join(dest_directory, basename)
|
||||
if download_with_progress_bar(str(source), Path(dest)):
|
||||
resolved_path = Path(dest)
|
||||
dest_directory = Path(dest_directory)
|
||||
if not dest_directory.is_absolute():
|
||||
dest_directory = Globals.root / dest_directory
|
||||
dest_directory.mkdir(parents=True, exist_ok=True)
|
||||
resolved_path = download_with_resume(str(source), dest_directory)
|
||||
else:
|
||||
if not os.path.isabs(source):
|
||||
source = os.path.join(Globals.root, source)
|
||||
|
238
ldm/util.py
238
ldm/util.py
@ -1,20 +1,21 @@
|
||||
import importlib
|
||||
import math
|
||||
import multiprocessing as mp
|
||||
import os
|
||||
import re
|
||||
from collections import abc
|
||||
from inspect import isfunction
|
||||
from pathlib import Path
|
||||
from queue import Queue
|
||||
from threading import Thread
|
||||
from urllib import request
|
||||
from tqdm import tqdm
|
||||
from pathlib import Path
|
||||
from ldm.invoke.devices import torch_dtype
|
||||
|
||||
import numpy as np
|
||||
import requests
|
||||
import torch
|
||||
import os
|
||||
import traceback
|
||||
from PIL import Image, ImageDraw, ImageFont
|
||||
from tqdm import tqdm
|
||||
|
||||
from ldm.invoke.devices import torch_dtype
|
||||
|
||||
|
||||
def log_txt_as_img(wh, xc, size=10):
|
||||
@ -23,18 +24,18 @@ def log_txt_as_img(wh, xc, size=10):
|
||||
b = len(xc)
|
||||
txts = list()
|
||||
for bi in range(b):
|
||||
txt = Image.new('RGB', wh, color='white')
|
||||
txt = Image.new("RGB", wh, color="white")
|
||||
draw = ImageDraw.Draw(txt)
|
||||
font = ImageFont.load_default()
|
||||
nc = int(40 * (wh[0] / 256))
|
||||
lines = '\n'.join(
|
||||
lines = "\n".join(
|
||||
xc[bi][start : start + nc] for start in range(0, len(xc[bi]), nc)
|
||||
)
|
||||
|
||||
try:
|
||||
draw.text((0, 0), lines, fill='black', font=font)
|
||||
draw.text((0, 0), lines, fill="black", font=font)
|
||||
except UnicodeEncodeError:
|
||||
print('Cant encode string for logging. Skipping.')
|
||||
print("Cant encode string for logging. Skipping.")
|
||||
|
||||
txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
|
||||
txts.append(txt)
|
||||
@ -77,25 +78,23 @@ def count_params(model, verbose=False):
|
||||
total_params = sum(p.numel() for p in model.parameters())
|
||||
if verbose:
|
||||
print(
|
||||
f' | {model.__class__.__name__} has {total_params * 1.e-6:.2f} M params.'
|
||||
f" | {model.__class__.__name__} has {total_params * 1.e-6:.2f} M params."
|
||||
)
|
||||
return total_params
|
||||
|
||||
|
||||
def instantiate_from_config(config, **kwargs):
|
||||
if not 'target' in config:
|
||||
if config == '__is_first_stage__':
|
||||
if not "target" in config:
|
||||
if config == "__is_first_stage__":
|
||||
return None
|
||||
elif config == '__is_unconditional__':
|
||||
elif config == "__is_unconditional__":
|
||||
return None
|
||||
raise KeyError('Expected key `target` to instantiate.')
|
||||
return get_obj_from_str(config['target'])(
|
||||
**config.get('params', dict()), **kwargs
|
||||
)
|
||||
raise KeyError("Expected key `target` to instantiate.")
|
||||
return get_obj_from_str(config["target"])(**config.get("params", dict()), **kwargs)
|
||||
|
||||
|
||||
def get_obj_from_str(string, reload=False):
|
||||
module, cls = string.rsplit('.', 1)
|
||||
module, cls = string.rsplit(".", 1)
|
||||
if reload:
|
||||
module_imp = importlib.import_module(module)
|
||||
importlib.reload(module_imp)
|
||||
@ -111,14 +110,14 @@ def _do_parallel_data_prefetch(func, Q, data, idx, idx_to_fn=False):
|
||||
else:
|
||||
res = func(data)
|
||||
Q.put([idx, res])
|
||||
Q.put('Done')
|
||||
Q.put("Done")
|
||||
|
||||
|
||||
def parallel_data_prefetch(
|
||||
func: callable,
|
||||
data,
|
||||
n_proc,
|
||||
target_data_type='ndarray',
|
||||
target_data_type="ndarray",
|
||||
cpu_intensive=True,
|
||||
use_worker_id=False,
|
||||
):
|
||||
@ -126,21 +125,21 @@ def parallel_data_prefetch(
|
||||
# raise ValueError(
|
||||
# "Data, which is passed to parallel_data_prefetch has to be either of type list or ndarray."
|
||||
# )
|
||||
if isinstance(data, np.ndarray) and target_data_type == 'list':
|
||||
raise ValueError('list expected but function got ndarray.')
|
||||
if isinstance(data, np.ndarray) and target_data_type == "list":
|
||||
raise ValueError("list expected but function got ndarray.")
|
||||
elif isinstance(data, abc.Iterable):
|
||||
if isinstance(data, dict):
|
||||
print(
|
||||
f'WARNING:"data" argument passed to parallel_data_prefetch is a dict: Using only its values and disregarding keys.'
|
||||
'WARNING:"data" argument passed to parallel_data_prefetch is a dict: Using only its values and disregarding keys.'
|
||||
)
|
||||
data = list(data.values())
|
||||
if target_data_type == 'ndarray':
|
||||
if target_data_type == "ndarray":
|
||||
data = np.asarray(data)
|
||||
else:
|
||||
data = list(data)
|
||||
else:
|
||||
raise TypeError(
|
||||
f'The data, that shall be processed parallel has to be either an np.ndarray or an Iterable, but is actually {type(data)}.'
|
||||
f"The data, that shall be processed parallel has to be either an np.ndarray or an Iterable, but is actually {type(data)}."
|
||||
)
|
||||
|
||||
if cpu_intensive:
|
||||
@ -150,7 +149,7 @@ def parallel_data_prefetch(
|
||||
Q = Queue(1000)
|
||||
proc = Thread
|
||||
# spawn processes
|
||||
if target_data_type == 'ndarray':
|
||||
if target_data_type == "ndarray":
|
||||
arguments = [
|
||||
[func, Q, part, i, use_worker_id]
|
||||
for i, part in enumerate(np.array_split(data, n_proc))
|
||||
@ -173,7 +172,7 @@ def parallel_data_prefetch(
|
||||
processes += [p]
|
||||
|
||||
# start processes
|
||||
print(f'Start prefetching...')
|
||||
print("Start prefetching...")
|
||||
import time
|
||||
|
||||
start = time.time()
|
||||
@ -186,13 +185,13 @@ def parallel_data_prefetch(
|
||||
while k < n_proc:
|
||||
# get result
|
||||
res = Q.get()
|
||||
if res == 'Done':
|
||||
if res == "Done":
|
||||
k += 1
|
||||
else:
|
||||
gather_res[res[0]] = res[1]
|
||||
|
||||
except Exception as e:
|
||||
print('Exception: ', e)
|
||||
print("Exception: ", e)
|
||||
for p in processes:
|
||||
p.terminate()
|
||||
|
||||
@ -200,15 +199,15 @@ def parallel_data_prefetch(
|
||||
finally:
|
||||
for p in processes:
|
||||
p.join()
|
||||
print(f'Prefetching complete. [{time.time() - start} sec.]')
|
||||
print(f"Prefetching complete. [{time.time() - start} sec.]")
|
||||
|
||||
if target_data_type == 'ndarray':
|
||||
if target_data_type == "ndarray":
|
||||
if not isinstance(gather_res[0], np.ndarray):
|
||||
return np.concatenate([np.asarray(r) for r in gather_res], axis=0)
|
||||
|
||||
# order outputs
|
||||
return np.concatenate(gather_res, axis=0)
|
||||
elif target_data_type == 'list':
|
||||
elif target_data_type == "list":
|
||||
out = []
|
||||
for r in gather_res:
|
||||
out.extend(r)
|
||||
@ -216,49 +215,79 @@ def parallel_data_prefetch(
|
||||
else:
|
||||
return gather_res
|
||||
|
||||
def rand_perlin_2d(shape, res, device, fade = lambda t: 6*t**5 - 15*t**4 + 10*t**3):
|
||||
|
||||
def rand_perlin_2d(
|
||||
shape, res, device, fade=lambda t: 6 * t**5 - 15 * t**4 + 10 * t**3
|
||||
):
|
||||
delta = (res[0] / shape[0], res[1] / shape[1])
|
||||
d = (shape[0] // res[0], shape[1] // res[1])
|
||||
|
||||
grid = torch.stack(torch.meshgrid(torch.arange(0, res[0], delta[0]), torch.arange(0, res[1], delta[1]), indexing='ij'), dim = -1).to(device) % 1
|
||||
grid = (
|
||||
torch.stack(
|
||||
torch.meshgrid(
|
||||
torch.arange(0, res[0], delta[0]),
|
||||
torch.arange(0, res[1], delta[1]),
|
||||
indexing="ij",
|
||||
),
|
||||
dim=-1,
|
||||
).to(device)
|
||||
% 1
|
||||
)
|
||||
|
||||
rand_val = torch.rand(res[0]+1, res[1]+1)
|
||||
rand_val = torch.rand(res[0] + 1, res[1] + 1)
|
||||
|
||||
angles = 2*math.pi*rand_val
|
||||
gradients = torch.stack((torch.cos(angles), torch.sin(angles)), dim = -1).to(device)
|
||||
angles = 2 * math.pi * rand_val
|
||||
gradients = torch.stack((torch.cos(angles), torch.sin(angles)), dim=-1).to(device)
|
||||
|
||||
tile_grads = lambda slice1, slice2: gradients[slice1[0]:slice1[1], slice2[0]:slice2[1]].repeat_interleave(d[0], 0).repeat_interleave(d[1], 1)
|
||||
tile_grads = (
|
||||
lambda slice1, slice2: gradients[slice1[0] : slice1[1], slice2[0] : slice2[1]]
|
||||
.repeat_interleave(d[0], 0)
|
||||
.repeat_interleave(d[1], 1)
|
||||
)
|
||||
|
||||
dot = lambda grad, shift: (torch.stack((grid[:shape[0],:shape[1],0] + shift[0], grid[:shape[0],:shape[1], 1] + shift[1] ), dim = -1) * grad[:shape[0], :shape[1]]).sum(dim = -1)
|
||||
dot = lambda grad, shift: (
|
||||
torch.stack(
|
||||
(
|
||||
grid[: shape[0], : shape[1], 0] + shift[0],
|
||||
grid[: shape[0], : shape[1], 1] + shift[1],
|
||||
),
|
||||
dim=-1,
|
||||
)
|
||||
* grad[: shape[0], : shape[1]]
|
||||
).sum(dim=-1)
|
||||
|
||||
n00 = dot(tile_grads([0, -1], [0, -1]), [0, 0]).to(device)
|
||||
n00 = dot(tile_grads([0, -1], [0, -1]), [0, 0]).to(device)
|
||||
n10 = dot(tile_grads([1, None], [0, -1]), [-1, 0]).to(device)
|
||||
n01 = dot(tile_grads([0, -1],[1, None]), [0, -1]).to(device)
|
||||
n11 = dot(tile_grads([1, None], [1, None]), [-1,-1]).to(device)
|
||||
t = fade(grid[:shape[0], :shape[1]])
|
||||
noise = math.sqrt(2) * torch.lerp(torch.lerp(n00, n10, t[..., 0]), torch.lerp(n01, n11, t[..., 0]), t[..., 1]).to(device)
|
||||
n01 = dot(tile_grads([0, -1], [1, None]), [0, -1]).to(device)
|
||||
n11 = dot(tile_grads([1, None], [1, None]), [-1, -1]).to(device)
|
||||
t = fade(grid[: shape[0], : shape[1]])
|
||||
noise = math.sqrt(2) * torch.lerp(
|
||||
torch.lerp(n00, n10, t[..., 0]), torch.lerp(n01, n11, t[..., 0]), t[..., 1]
|
||||
).to(device)
|
||||
return noise.to(dtype=torch_dtype(device))
|
||||
|
||||
|
||||
def ask_user(question: str, answers: list):
|
||||
from itertools import chain, repeat
|
||||
user_prompt = f'\n>> {question} {answers}: '
|
||||
invalid_answer_msg = 'Invalid answer. Please try again.'
|
||||
pose_question = chain([user_prompt], repeat('\n'.join([invalid_answer_msg, user_prompt])))
|
||||
|
||||
user_prompt = f"\n>> {question} {answers}: "
|
||||
invalid_answer_msg = "Invalid answer. Please try again."
|
||||
pose_question = chain(
|
||||
[user_prompt], repeat("\n".join([invalid_answer_msg, user_prompt]))
|
||||
)
|
||||
user_answers = map(input, pose_question)
|
||||
valid_response = next(filter(answers.__contains__, user_answers))
|
||||
return valid_response
|
||||
|
||||
|
||||
def debug_image(debug_image, debug_text, debug_show=True, debug_result=False, debug_status=False ):
|
||||
def debug_image(
|
||||
debug_image, debug_text, debug_show=True, debug_result=False, debug_status=False
|
||||
):
|
||||
if not debug_status:
|
||||
return
|
||||
|
||||
image_copy = debug_image.copy().convert("RGBA")
|
||||
ImageDraw.Draw(image_copy).text(
|
||||
(5, 5),
|
||||
debug_text,
|
||||
(255, 0, 0)
|
||||
)
|
||||
ImageDraw.Draw(image_copy).text((5, 5), debug_text, (255, 0, 0))
|
||||
|
||||
if debug_show:
|
||||
image_copy.show()
|
||||
@ -266,31 +295,84 @@ def debug_image(debug_image, debug_text, debug_show=True, debug_result=False, de
|
||||
if debug_result:
|
||||
return image_copy
|
||||
|
||||
#-------------------------------------
|
||||
class ProgressBar():
|
||||
def __init__(self,model_name='file'):
|
||||
self.pbar = None
|
||||
self.name = model_name
|
||||
|
||||
def __call__(self, block_num, block_size, total_size):
|
||||
if not self.pbar:
|
||||
self.pbar=tqdm(desc=self.name,
|
||||
initial=0,
|
||||
unit='iB',
|
||||
unit_scale=True,
|
||||
unit_divisor=1000,
|
||||
total=total_size)
|
||||
self.pbar.update(block_size)
|
||||
# -------------------------------------
|
||||
def download_with_resume(url: str, dest: Path, access_token: str = None) -> Path:
|
||||
'''
|
||||
Download a model file.
|
||||
:param url: https, http or ftp URL
|
||||
:param dest: A Path object. If path exists and is a directory, then we try to derive the filename
|
||||
from the URL's Content-Disposition header and copy the URL contents into
|
||||
dest/filename
|
||||
:param access_token: Access token to access this resource
|
||||
'''
|
||||
resp = requests.get(url, stream=True)
|
||||
total = int(resp.headers.get("content-length", 0))
|
||||
|
||||
if dest.is_dir():
|
||||
try:
|
||||
file_name = re.search('filename="(.+)"', resp.headers.get("Content-Disposition")).group(1)
|
||||
except:
|
||||
file_name = os.path.basename(url)
|
||||
dest = dest / file_name
|
||||
else:
|
||||
dest.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
print(f'DEBUG: after many manipulations, dest={dest}')
|
||||
|
||||
header = {"Authorization": f"Bearer {access_token}"} if access_token else {}
|
||||
open_mode = "wb"
|
||||
exist_size = 0
|
||||
|
||||
if dest.exists():
|
||||
exist_size = dest.stat().st_size
|
||||
header["Range"] = f"bytes={exist_size}-"
|
||||
open_mode = "ab"
|
||||
|
||||
if (
|
||||
resp.status_code == 416
|
||||
): # "range not satisfiable", which means nothing to return
|
||||
print(f"* {dest}: complete file found. Skipping.")
|
||||
return dest
|
||||
elif resp.status_code != 200:
|
||||
print(f"** An error occurred during downloading {dest}: {resp.reason}")
|
||||
elif exist_size > 0:
|
||||
print(f"* {dest}: partial file found. Resuming...")
|
||||
else:
|
||||
print(f"* {dest}: Downloading...")
|
||||
|
||||
def download_with_progress_bar(url:str, dest:Path)->bool:
|
||||
try:
|
||||
if not dest.exists():
|
||||
dest.parent.mkdir(parents=True, exist_ok=True)
|
||||
request.urlretrieve(url,dest,ProgressBar(dest.stem))
|
||||
return True
|
||||
else:
|
||||
return True
|
||||
except OSError:
|
||||
print(traceback.format_exc())
|
||||
return False
|
||||
if total < 2000:
|
||||
print(f"*** ERROR DOWNLOADING {url}: {resp.text}")
|
||||
return None
|
||||
|
||||
with open(dest, open_mode) as file, tqdm(
|
||||
desc=str(dest),
|
||||
initial=exist_size,
|
||||
total=total + exist_size,
|
||||
unit="iB",
|
||||
unit_scale=True,
|
||||
unit_divisor=1000,
|
||||
) as bar:
|
||||
for data in resp.iter_content(chunk_size=1024):
|
||||
size = file.write(data)
|
||||
bar.update(size)
|
||||
except Exception as e:
|
||||
print(f"An error occurred while downloading {dest}: {str(e)}")
|
||||
return None
|
||||
|
||||
return dest
|
||||
|
||||
|
||||
def url_attachment_name(url: str) -> dict:
|
||||
try:
|
||||
resp = requests.get(url, stream=True)
|
||||
match = re.search('filename="(.+)"', resp.headers.get("Content-Disposition"))
|
||||
return match.group(1)
|
||||
except:
|
||||
return None
|
||||
|
||||
|
||||
def download_with_progress_bar(url: str, dest: Path) -> bool:
|
||||
result = download_with_resume(url, dest, access_token=None)
|
||||
return result is not None
|
||||
|
Loading…
Reference in New Issue
Block a user