Merge branch 'main' into bugfix/release-updater

This commit is contained in:
Lincoln Stein 2023-04-07 18:56:21 -04:00 committed by GitHub
commit cd1b350dae
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
19 changed files with 1116 additions and 115 deletions

19
.github/stale.yaml vendored Normal file
View File

@ -0,0 +1,19 @@
# Number of days of inactivity before an issue becomes stale
daysUntilStale: 28
# Number of days of inactivity before a stale issue is closed
daysUntilClose: 14
# Issues with these labels will never be considered stale
exemptLabels:
- pinned
- security
# Label to use when marking an issue as stale
staleLabel: stale
# Comment to post when marking an issue as stale. Set to `false` to disable
markComment: >
This issue has been automatically marked as stale because it has not had
recent activity. It will be closed if no further activity occurs. Please
update the ticket if this is still a problem on the latest release.
# Comment to post when closing a stale issue. Set to `false` to disable
closeComment: >
Due to inactivity, this issue has been automatically closed. If this is
still a problem on the latest release, please recreate the issue.

View File

@ -268,7 +268,7 @@ model is so good at inpainting, a good substitute is to use the `clipseg` text
masking option: masking option:
```bash ```bash
invoke> a fluffy cat eating a hotdot invoke> a fluffy cat eating a hotdog
Outputs: Outputs:
[1010] outputs/000025.2182095108.png: a fluffy cat eating a hotdog [1010] outputs/000025.2182095108.png: a fluffy cat eating a hotdog
invoke> a smiling dog eating a hotdog -I 000025.2182095108.png -tm cat invoke> a smiling dog eating a hotdog -I 000025.2182095108.png -tm cat

View File

@ -3,6 +3,8 @@
import os import os
from argparse import Namespace from argparse import Namespace
from ..services.latent_storage import DiskLatentsStorage, ForwardCacheLatentsStorage
from ...backend import Globals from ...backend import Globals
from ..services.model_manager_initializer import get_model_manager from ..services.model_manager_initializer import get_model_manager
from ..services.restoration_services import RestorationServices from ..services.restoration_services import RestorationServices
@ -54,7 +56,9 @@ class ApiDependencies:
os.path.join(os.path.dirname(__file__), "../../../../outputs") os.path.join(os.path.dirname(__file__), "../../../../outputs")
) )
images = DiskImageStorage(output_folder) latents = ForwardCacheLatentsStorage(DiskLatentsStorage(f'{output_folder}/latents'))
images = DiskImageStorage(f'{output_folder}/images')
# TODO: build a file/path manager? # TODO: build a file/path manager?
db_location = os.path.join(output_folder, "invokeai.db") db_location = os.path.join(output_folder, "invokeai.db")
@ -62,6 +66,7 @@ class ApiDependencies:
services = InvocationServices( services = InvocationServices(
model_manager=get_model_manager(config), model_manager=get_model_manager(config),
events=events, events=events,
latents=latents,
images=images, images=images,
queue=MemoryInvocationQueue(), queue=MemoryInvocationQueue(),
graph_execution_manager=SqliteItemStorage[GraphExecutionState]( graph_execution_manager=SqliteItemStorage[GraphExecutionState](

View File

@ -0,0 +1,279 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
from typing import Annotated, Any, List, Literal, Optional, Union
from fastapi.routing import APIRouter
from pydantic import BaseModel, Field, parse_obj_as
from ..dependencies import ApiDependencies
models_router = APIRouter(prefix="/v1/models", tags=["models"])
class VaeRepo(BaseModel):
repo_id: str = Field(description="The repo ID to use for this VAE")
path: Optional[str] = Field(description="The path to the VAE")
subfolder: Optional[str] = Field(description="The subfolder to use for this VAE")
class ModelInfo(BaseModel):
description: Optional[str] = Field(description="A description of the model")
class CkptModelInfo(ModelInfo):
format: Literal['ckpt'] = 'ckpt'
config: str = Field(description="The path to the model config")
weights: str = Field(description="The path to the model weights")
vae: str = Field(description="The path to the model VAE")
width: Optional[int] = Field(description="The width of the model")
height: Optional[int] = Field(description="The height of the model")
class DiffusersModelInfo(ModelInfo):
format: Literal['diffusers'] = 'diffusers'
vae: Optional[VaeRepo] = Field(description="The VAE repo to use for this model")
repo_id: Optional[str] = Field(description="The repo ID to use for this model")
path: Optional[str] = Field(description="The path to the model")
class ModelsList(BaseModel):
models: dict[str, Annotated[Union[(CkptModelInfo,DiffusersModelInfo)], Field(discriminator="format")]]
@models_router.get(
"/",
operation_id="list_models",
responses={200: {"model": ModelsList }},
)
async def list_models() -> ModelsList:
"""Gets a list of models"""
models_raw = ApiDependencies.invoker.services.model_manager.list_models()
models = parse_obj_as(ModelsList, { "models": models_raw })
return models
# @socketio.on("requestSystemConfig")
# def handle_request_capabilities():
# print(">> System config requested")
# config = self.get_system_config()
# config["model_list"] = self.generate.model_manager.list_models()
# config["infill_methods"] = infill_methods()
# socketio.emit("systemConfig", config)
# @socketio.on("searchForModels")
# def handle_search_models(search_folder: str):
# try:
# if not search_folder:
# socketio.emit(
# "foundModels",
# {"search_folder": None, "found_models": None},
# )
# else:
# (
# search_folder,
# found_models,
# ) = self.generate.model_manager.search_models(search_folder)
# socketio.emit(
# "foundModels",
# {"search_folder": search_folder, "found_models": found_models},
# )
# except Exception as e:
# self.handle_exceptions(e)
# print("\n")
# @socketio.on("addNewModel")
# def handle_add_model(new_model_config: dict):
# try:
# model_name = new_model_config["name"]
# del new_model_config["name"]
# model_attributes = new_model_config
# if len(model_attributes["vae"]) == 0:
# del model_attributes["vae"]
# update = False
# current_model_list = self.generate.model_manager.list_models()
# if model_name in current_model_list:
# update = True
# print(f">> Adding New Model: {model_name}")
# self.generate.model_manager.add_model(
# model_name=model_name,
# model_attributes=model_attributes,
# clobber=True,
# )
# self.generate.model_manager.commit(opt.conf)
# new_model_list = self.generate.model_manager.list_models()
# socketio.emit(
# "newModelAdded",
# {
# "new_model_name": model_name,
# "model_list": new_model_list,
# "update": update,
# },
# )
# print(f">> New Model Added: {model_name}")
# except Exception as e:
# self.handle_exceptions(e)
# @socketio.on("deleteModel")
# def handle_delete_model(model_name: str):
# try:
# print(f">> Deleting Model: {model_name}")
# self.generate.model_manager.del_model(model_name)
# self.generate.model_manager.commit(opt.conf)
# updated_model_list = self.generate.model_manager.list_models()
# socketio.emit(
# "modelDeleted",
# {
# "deleted_model_name": model_name,
# "model_list": updated_model_list,
# },
# )
# print(f">> Model Deleted: {model_name}")
# except Exception as e:
# self.handle_exceptions(e)
# @socketio.on("requestModelChange")
# def handle_set_model(model_name: str):
# try:
# print(f">> Model change requested: {model_name}")
# model = self.generate.set_model(model_name)
# model_list = self.generate.model_manager.list_models()
# if model is None:
# socketio.emit(
# "modelChangeFailed",
# {"model_name": model_name, "model_list": model_list},
# )
# else:
# socketio.emit(
# "modelChanged",
# {"model_name": model_name, "model_list": model_list},
# )
# except Exception as e:
# self.handle_exceptions(e)
# @socketio.on("convertToDiffusers")
# def convert_to_diffusers(model_to_convert: dict):
# try:
# if model_info := self.generate.model_manager.model_info(
# model_name=model_to_convert["model_name"]
# ):
# if "weights" in model_info:
# ckpt_path = Path(model_info["weights"])
# original_config_file = Path(model_info["config"])
# model_name = model_to_convert["model_name"]
# model_description = model_info["description"]
# else:
# self.socketio.emit(
# "error", {"message": "Model is not a valid checkpoint file"}
# )
# else:
# self.socketio.emit(
# "error", {"message": "Could not retrieve model info."}
# )
# if not ckpt_path.is_absolute():
# ckpt_path = Path(Globals.root, ckpt_path)
# if original_config_file and not original_config_file.is_absolute():
# original_config_file = Path(Globals.root, original_config_file)
# diffusers_path = Path(
# ckpt_path.parent.absolute(), f"{model_name}_diffusers"
# )
# if model_to_convert["save_location"] == "root":
# diffusers_path = Path(
# global_converted_ckpts_dir(), f"{model_name}_diffusers"
# )
# if (
# model_to_convert["save_location"] == "custom"
# and model_to_convert["custom_location"] is not None
# ):
# diffusers_path = Path(
# model_to_convert["custom_location"], f"{model_name}_diffusers"
# )
# if diffusers_path.exists():
# shutil.rmtree(diffusers_path)
# self.generate.model_manager.convert_and_import(
# ckpt_path,
# diffusers_path,
# model_name=model_name,
# model_description=model_description,
# vae=None,
# original_config_file=original_config_file,
# commit_to_conf=opt.conf,
# )
# new_model_list = self.generate.model_manager.list_models()
# socketio.emit(
# "modelConverted",
# {
# "new_model_name": model_name,
# "model_list": new_model_list,
# "update": True,
# },
# )
# print(f">> Model Converted: {model_name}")
# except Exception as e:
# self.handle_exceptions(e)
# @socketio.on("mergeDiffusersModels")
# def merge_diffusers_models(model_merge_info: dict):
# try:
# models_to_merge = model_merge_info["models_to_merge"]
# model_ids_or_paths = [
# self.generate.model_manager.model_name_or_path(x)
# for x in models_to_merge
# ]
# merged_pipe = merge_diffusion_models(
# model_ids_or_paths,
# model_merge_info["alpha"],
# model_merge_info["interp"],
# model_merge_info["force"],
# )
# dump_path = global_models_dir() / "merged_models"
# if model_merge_info["model_merge_save_path"] is not None:
# dump_path = Path(model_merge_info["model_merge_save_path"])
# os.makedirs(dump_path, exist_ok=True)
# dump_path = dump_path / model_merge_info["merged_model_name"]
# merged_pipe.save_pretrained(dump_path, safe_serialization=1)
# merged_model_config = dict(
# model_name=model_merge_info["merged_model_name"],
# description=f'Merge of models {", ".join(models_to_merge)}',
# commit_to_conf=opt.conf,
# )
# if vae := self.generate.model_manager.config[models_to_merge[0]].get(
# "vae", None
# ):
# print(f">> Using configured VAE assigned to {models_to_merge[0]}")
# merged_model_config.update(vae=vae)
# self.generate.model_manager.import_diffuser_model(
# dump_path, **merged_model_config
# )
# new_model_list = self.generate.model_manager.list_models()
# socketio.emit(
# "modelsMerged",
# {
# "merged_models": models_to_merge,
# "merged_model_name": model_merge_info["merged_model_name"],
# "model_list": new_model_list,
# "update": True,
# },
# )
# print(f">> Models Merged: {models_to_merge}")
# print(f">> New Model Added: {model_merge_info['merged_model_name']}")
# except Exception as e:
# self.handle_exceptions(e)

View File

@ -14,7 +14,7 @@ from pydantic.schema import schema
from ..backend import Args from ..backend import Args
from .api.dependencies import ApiDependencies from .api.dependencies import ApiDependencies
from .api.routers import images, sessions from .api.routers import images, sessions, models
from .api.sockets import SocketIO from .api.sockets import SocketIO
from .invocations import * from .invocations import *
from .invocations.baseinvocation import BaseInvocation from .invocations.baseinvocation import BaseInvocation
@ -76,6 +76,8 @@ app.include_router(sessions.session_router, prefix="/api")
app.include_router(images.images_router, prefix="/api") app.include_router(images.images_router, prefix="/api")
app.include_router(models.models_router, prefix="/api")
# Build a custom OpenAPI to include all outputs # Build a custom OpenAPI to include all outputs
# TODO: can outputs be included on metadata of invocation schemas somehow? # TODO: can outputs be included on metadata of invocation schemas somehow?

View File

@ -4,7 +4,8 @@ from abc import ABC, abstractmethod
import argparse import argparse
from typing import Any, Callable, Iterable, Literal, get_args, get_origin, get_type_hints from typing import Any, Callable, Iterable, Literal, get_args, get_origin, get_type_hints
from pydantic import BaseModel, Field from pydantic import BaseModel, Field
import networkx as nx
import matplotlib.pyplot as plt
from ..invocations.image import ImageField from ..invocations.image import ImageField
from ..services.graph import GraphExecutionState from ..services.graph import GraphExecutionState
from ..services.invoker import Invoker from ..services.invoker import Invoker
@ -46,7 +47,7 @@ def add_parsers(
f"--{name}", f"--{name}",
dest=name, dest=name,
type=field_type, type=field_type,
default=field.default, default=field.default if field.default_factory is None else field.default_factory(),
choices=allowed_values, choices=allowed_values,
help=field.field_info.description, help=field.field_info.description,
) )
@ -55,7 +56,7 @@ def add_parsers(
f"--{name}", f"--{name}",
dest=name, dest=name,
type=field.type_, type=field.type_,
default=field.default, default=field.default if field.default_factory is None else field.default_factory(),
help=field.field_info.description, help=field.field_info.description,
) )
@ -200,3 +201,39 @@ class SetDefaultCommand(BaseCommand):
del context.defaults[self.field] del context.defaults[self.field]
else: else:
context.defaults[self.field] = self.value context.defaults[self.field] = self.value
class DrawGraphCommand(BaseCommand):
"""Debugs a graph"""
type: Literal['draw_graph'] = 'draw_graph'
def run(self, context: CliContext) -> None:
session: GraphExecutionState = context.invoker.services.graph_execution_manager.get(context.session.id)
nxgraph = session.graph.nx_graph_flat()
# Draw the networkx graph
plt.figure(figsize=(20, 20))
pos = nx.spectral_layout(nxgraph)
nx.draw_networkx_nodes(nxgraph, pos, node_size=1000)
nx.draw_networkx_edges(nxgraph, pos, width=2)
nx.draw_networkx_labels(nxgraph, pos, font_size=20, font_family="sans-serif")
plt.axis("off")
plt.show()
class DrawExecutionGraphCommand(BaseCommand):
"""Debugs an execution graph"""
type: Literal['draw_xgraph'] = 'draw_xgraph'
def run(self, context: CliContext) -> None:
session: GraphExecutionState = context.invoker.services.graph_execution_manager.get(context.session.id)
nxgraph = session.execution_graph.nx_graph_flat()
# Draw the networkx graph
plt.figure(figsize=(20, 20))
pos = nx.spectral_layout(nxgraph)
nx.draw_networkx_nodes(nxgraph, pos, node_size=1000)
nx.draw_networkx_edges(nxgraph, pos, width=2)
nx.draw_networkx_labels(nxgraph, pos, font_size=20, font_family="sans-serif")
plt.axis("off")
plt.show()

View File

@ -2,6 +2,7 @@
import argparse import argparse
import os import os
import re
import shlex import shlex
import time import time
from typing import ( from typing import (
@ -12,6 +13,8 @@ from typing import (
from pydantic import BaseModel from pydantic import BaseModel
from pydantic.fields import Field from pydantic.fields import Field
from .services.latent_storage import DiskLatentsStorage, ForwardCacheLatentsStorage
from ..backend import Args from ..backend import Args
from .cli.commands import BaseCommand, CliContext, ExitCli, add_parsers, get_graph_execution_history from .cli.commands import BaseCommand, CliContext, ExitCli, add_parsers, get_graph_execution_history
from .cli.completer import set_autocompleter from .cli.completer import set_autocompleter
@ -20,7 +23,7 @@ from .invocations.baseinvocation import BaseInvocation
from .services.events import EventServiceBase from .services.events import EventServiceBase
from .services.model_manager_initializer import get_model_manager from .services.model_manager_initializer import get_model_manager
from .services.restoration_services import RestorationServices from .services.restoration_services import RestorationServices
from .services.graph import Edge, EdgeConnection, GraphExecutionState from .services.graph import Edge, EdgeConnection, GraphExecutionState, are_connection_types_compatible
from .services.image_storage import DiskImageStorage from .services.image_storage import DiskImageStorage
from .services.invocation_queue import MemoryInvocationQueue from .services.invocation_queue import MemoryInvocationQueue
from .services.invocation_services import InvocationServices from .services.invocation_services import InvocationServices
@ -44,7 +47,7 @@ def add_invocation_args(command_parser):
"-l", "-l",
action="append", action="append",
nargs=3, nargs=3,
help="A link in the format 'dest_field source_node source_field'. source_node can be relative to history (e.g. -1)", help="A link in the format 'source_node source_field dest_field'. source_node can be relative to history (e.g. -1)",
) )
command_parser.add_argument( command_parser.add_argument(
@ -94,6 +97,9 @@ def generate_matching_edges(
invalid_fields = set(["type", "id"]) invalid_fields = set(["type", "id"])
matching_fields = matching_fields.difference(invalid_fields) matching_fields = matching_fields.difference(invalid_fields)
# Validate types
matching_fields = [f for f in matching_fields if are_connection_types_compatible(afields[f], bfields[f])]
edges = [ edges = [
Edge( Edge(
source=EdgeConnection(node_id=a.id, field=field), source=EdgeConnection(node_id=a.id, field=field),
@ -149,7 +155,8 @@ def invoke_cli():
services = InvocationServices( services = InvocationServices(
model_manager=model_manager, model_manager=model_manager,
events=events, events=events,
images=DiskImageStorage(output_folder), latents = ForwardCacheLatentsStorage(DiskLatentsStorage(f'{output_folder}/latents')),
images=DiskImageStorage(f'{output_folder}/images'),
queue=MemoryInvocationQueue(), queue=MemoryInvocationQueue(),
graph_execution_manager=SqliteItemStorage[GraphExecutionState]( graph_execution_manager=SqliteItemStorage[GraphExecutionState](
filename=db_location, table_name="graph_executions" filename=db_location, table_name="graph_executions"
@ -162,6 +169,8 @@ def invoke_cli():
session: GraphExecutionState = invoker.create_execution_state() session: GraphExecutionState = invoker.create_execution_state()
parser = get_command_parser() parser = get_command_parser()
re_negid = re.compile('^-[0-9]+$')
# Uncomment to print out previous sessions at startup # Uncomment to print out previous sessions at startup
# print(services.session_manager.list()) # print(services.session_manager.list())
@ -227,7 +236,11 @@ def invoke_cli():
# Parse provided links # Parse provided links
if "link_node" in args and args["link_node"]: if "link_node" in args and args["link_node"]:
for link in args["link_node"]: for link in args["link_node"]:
link_node = context.session.graph.get_node(link) node_id = link
if re_negid.match(node_id):
node_id = str(current_id + int(node_id))
link_node = context.session.graph.get_node(node_id)
matching_edges = generate_matching_edges( matching_edges = generate_matching_edges(
link_node, command.command link_node, command.command
) )
@ -237,10 +250,15 @@ def invoke_cli():
if "link" in args and args["link"]: if "link" in args and args["link"]:
for link in args["link"]: for link in args["link"]:
edges = [e for e in edges if e.destination.node_id != command.command.id and e.destination.field != link[2]] edges = [e for e in edges if e.destination.node_id != command.command.id or e.destination.field != link[2]]
node_id = link[0]
if re_negid.match(node_id):
node_id = str(current_id + int(node_id))
edges.append( edges.append(
Edge( Edge(
source=EdgeConnection(node_id=link[1], field=link[0]), source=EdgeConnection(node_id=node_id, field=link[1]),
destination=EdgeConnection( destination=EdgeConnection(
node_id=command.command.id, field=link[2] node_id=command.command.id, field=link[2]
) )

View File

@ -0,0 +1,50 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
from typing import Literal
import cv2 as cv
import numpy as np
import numpy.random
from PIL import Image, ImageOps
from pydantic import Field
from ..services.image_storage import ImageType
from .baseinvocation import BaseInvocation, InvocationContext, BaseInvocationOutput
from .image import ImageField, ImageOutput
class IntCollectionOutput(BaseInvocationOutput):
"""A collection of integers"""
type: Literal["int_collection"] = "int_collection"
# Outputs
collection: list[int] = Field(default=[], description="The int collection")
class RangeInvocation(BaseInvocation):
"""Creates a range"""
type: Literal["range"] = "range"
# Inputs
start: int = Field(default=0, description="The start of the range")
stop: int = Field(default=10, description="The stop of the range")
step: int = Field(default=1, description="The step of the range")
def invoke(self, context: InvocationContext) -> IntCollectionOutput:
return IntCollectionOutput(collection=list(range(self.start, self.stop, self.step)))
class RandomRangeInvocation(BaseInvocation):
"""Creates a collection of random numbers"""
type: Literal["random_range"] = "random_range"
# Inputs
low: int = Field(default=0, description="The inclusive low value")
high: int = Field(default=np.iinfo(np.int32).max, description="The exclusive high value")
size: int = Field(default=1, description="The number of values to generate")
def invoke(self, context: InvocationContext) -> IntCollectionOutput:
return IntCollectionOutput(collection=list(numpy.random.randint(self.low, self.high, size=self.size)))

View File

@ -0,0 +1,321 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
from typing import Literal, Optional
from pydantic import BaseModel, Field
from torch import Tensor
import torch
from ...backend.model_management.model_manager import ModelManager
from ...backend.util.devices import CUDA_DEVICE, torch_dtype
from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import PostprocessingSettings
from ...backend.image_util.seamless import configure_model_padding
from ...backend.prompting.conditioning import get_uc_and_c_and_ec
from ...backend.stable_diffusion.diffusers_pipeline import ConditioningData, StableDiffusionGeneratorPipeline
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext
import numpy as np
from accelerate.utils import set_seed
from ..services.image_storage import ImageType
from .baseinvocation import BaseInvocation, InvocationContext
from .image import ImageField, ImageOutput
from ...backend.generator import Generator
from ...backend.stable_diffusion import PipelineIntermediateState
from ...backend.util.util import image_to_dataURL
from diffusers.schedulers import SchedulerMixin as Scheduler
import diffusers
from diffusers import DiffusionPipeline
class LatentsField(BaseModel):
"""A latents field used for passing latents between invocations"""
latents_name: Optional[str] = Field(default=None, description="The name of the latents")
class LatentsOutput(BaseInvocationOutput):
"""Base class for invocations that output latents"""
#fmt: off
type: Literal["latent_output"] = "latent_output"
latents: LatentsField = Field(default=None, description="The output latents")
#fmt: on
class NoiseOutput(BaseInvocationOutput):
"""Invocation noise output"""
#fmt: off
type: Literal["noise_output"] = "noise_output"
noise: LatentsField = Field(default=None, description="The output noise")
#fmt: on
# TODO: this seems like a hack
scheduler_map = dict(
ddim=diffusers.DDIMScheduler,
dpmpp_2=diffusers.DPMSolverMultistepScheduler,
k_dpm_2=diffusers.KDPM2DiscreteScheduler,
k_dpm_2_a=diffusers.KDPM2AncestralDiscreteScheduler,
k_dpmpp_2=diffusers.DPMSolverMultistepScheduler,
k_euler=diffusers.EulerDiscreteScheduler,
k_euler_a=diffusers.EulerAncestralDiscreteScheduler,
k_heun=diffusers.HeunDiscreteScheduler,
k_lms=diffusers.LMSDiscreteScheduler,
plms=diffusers.PNDMScheduler,
)
SAMPLER_NAME_VALUES = Literal[
tuple(list(scheduler_map.keys()))
]
def get_scheduler(scheduler_name:str, model: StableDiffusionGeneratorPipeline)->Scheduler:
scheduler_class = scheduler_map.get(scheduler_name,'ddim')
scheduler = scheduler_class.from_config(model.scheduler.config)
# hack copied over from generate.py
if not hasattr(scheduler, 'uses_inpainting_model'):
scheduler.uses_inpainting_model = lambda: False
return scheduler
def get_noise(width:int, height:int, device:torch.device, seed:int = 0, latent_channels:int=4, use_mps_noise:bool=False, downsampling_factor:int = 8):
# limit noise to only the diffusion image channels, not the mask channels
input_channels = min(latent_channels, 4)
use_device = "cpu" if (use_mps_noise or device.type == "mps") else device
generator = torch.Generator(device=use_device).manual_seed(seed)
x = torch.randn(
[
1,
input_channels,
height // downsampling_factor,
width // downsampling_factor,
],
dtype=torch_dtype(device),
device=use_device,
generator=generator,
).to(device)
# if self.perlin > 0.0:
# perlin_noise = self.get_perlin_noise(
# width // self.downsampling_factor, height // self.downsampling_factor
# )
# x = (1 - self.perlin) * x + self.perlin * perlin_noise
return x
class NoiseInvocation(BaseInvocation):
"""Generates latent noise."""
type: Literal["noise"] = "noise"
# Inputs
seed: int = Field(default=0, ge=0, le=np.iinfo(np.uint32).max, description="The seed to use", )
width: int = Field(default=512, multiple_of=64, gt=0, description="The width of the resulting noise", )
height: int = Field(default=512, multiple_of=64, gt=0, description="The height of the resulting noise", )
def invoke(self, context: InvocationContext) -> NoiseOutput:
device = torch.device(CUDA_DEVICE)
noise = get_noise(self.width, self.height, device, self.seed)
name = f'{context.graph_execution_state_id}__{self.id}'
context.services.latents.set(name, noise)
return NoiseOutput(
noise=LatentsField(latents_name=name)
)
# Text to image
class TextToLatentsInvocation(BaseInvocation):
"""Generates latents from a prompt."""
type: Literal["t2l"] = "t2l"
# Inputs
# TODO: consider making prompt optional to enable providing prompt through a link
# fmt: off
prompt: Optional[str] = Field(description="The prompt to generate an image from")
seed: int = Field(default=-1,ge=-1, le=np.iinfo(np.uint32).max, description="The seed to use (-1 for a random seed)", )
noise: Optional[LatentsField] = Field(description="The noise to use")
steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image")
width: int = Field(default=512, multiple_of=64, gt=0, description="The width of the resulting image", )
height: int = Field(default=512, multiple_of=64, gt=0, description="The height of the resulting image", )
cfg_scale: float = Field(default=7.5, gt=0, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
sampler_name: SAMPLER_NAME_VALUES = Field(default="k_lms", description="The sampler to use" )
seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
seamless_axes: str = Field(default="", description="The axes to tile the image on, 'x' and/or 'y'")
model: str = Field(default="", description="The model to use (currently ignored)")
progress_images: bool = Field(default=False, description="Whether or not to produce progress images during generation", )
# fmt: on
# TODO: pass this an emitter method or something? or a session for dispatching?
def dispatch_progress(
self, context: InvocationContext, sample: Tensor, step: int
) -> None:
# TODO: only output a preview image when requested
image = Generator.sample_to_lowres_estimated_image(sample)
(width, height) = image.size
width *= 8
height *= 8
dataURL = image_to_dataURL(image, image_format="JPEG")
context.services.events.emit_generator_progress(
context.graph_execution_state_id,
self.id,
{
"width": width,
"height": height,
"dataURL": dataURL
},
step,
self.steps,
)
def get_model(self, model_manager: ModelManager) -> StableDiffusionGeneratorPipeline:
model_info = model_manager.get_model(self.model)
model_name = model_info['model_name']
model_hash = model_info['hash']
model: StableDiffusionGeneratorPipeline = model_info['model']
model.scheduler = get_scheduler(
model=model,
scheduler_name=self.sampler_name
)
if isinstance(model, DiffusionPipeline):
for component in [model.unet, model.vae]:
configure_model_padding(component,
self.seamless,
self.seamless_axes
)
else:
configure_model_padding(model,
self.seamless,
self.seamless_axes
)
return model
def get_conditioning_data(self, model: StableDiffusionGeneratorPipeline) -> ConditioningData:
uc, c, extra_conditioning_info = get_uc_and_c_and_ec(self.prompt, model=model)
conditioning_data = ConditioningData(
uc,
c,
self.cfg_scale,
extra_conditioning_info,
postprocessing_settings=PostprocessingSettings(
threshold=0.0,#threshold,
warmup=0.2,#warmup,
h_symmetry_time_pct=None,#h_symmetry_time_pct,
v_symmetry_time_pct=None#v_symmetry_time_pct,
),
).add_scheduler_args_if_applicable(model.scheduler, eta=None)#ddim_eta)
return conditioning_data
def invoke(self, context: InvocationContext) -> LatentsOutput:
noise = context.services.latents.get(self.noise.latents_name)
def step_callback(state: PipelineIntermediateState):
self.dispatch_progress(context, state.latents, state.step)
model = self.get_model(context.services.model_manager)
conditioning_data = self.get_conditioning_data(model)
# TODO: Verify the noise is the right size
result_latents, result_attention_map_saver = model.latents_from_embeddings(
latents=torch.zeros_like(noise, dtype=torch_dtype(model.device)),
noise=noise,
num_inference_steps=self.steps,
conditioning_data=conditioning_data,
callback=step_callback
)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
torch.cuda.empty_cache()
name = f'{context.graph_execution_state_id}__{self.id}'
context.services.latents.set(name, result_latents)
return LatentsOutput(
latents=LatentsField(latents_name=name)
)
class LatentsToLatentsInvocation(TextToLatentsInvocation):
"""Generates latents using latents as base image."""
type: Literal["l2l"] = "l2l"
# Inputs
latents: Optional[LatentsField] = Field(description="The latents to use as a base image")
strength: float = Field(default=0.5, description="The strength of the latents to use")
def invoke(self, context: InvocationContext) -> LatentsOutput:
noise = context.services.latents.get(self.noise.latents_name)
latent = context.services.latents.get(self.latents.latents_name)
def step_callback(state: PipelineIntermediateState):
self.dispatch_progress(context, state.latents, state.step)
model = self.get_model(context.services.model_manager)
conditioning_data = self.get_conditioning_data(model)
# TODO: Verify the noise is the right size
initial_latents = latent if self.strength < 1.0 else torch.zeros_like(
latent, device=model.device, dtype=latent.dtype
)
timesteps, _ = model.get_img2img_timesteps(
self.steps,
self.strength,
device=model.device,
)
result_latents, result_attention_map_saver = model.latents_from_embeddings(
latents=initial_latents,
timesteps=timesteps,
noise=noise,
num_inference_steps=self.steps,
conditioning_data=conditioning_data,
callback=step_callback
)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
torch.cuda.empty_cache()
name = f'{context.graph_execution_state_id}__{self.id}'
context.services.latents.set(name, result_latents)
return LatentsOutput(
latents=LatentsField(latents_name=name)
)
# Latent to image
class LatentsToImageInvocation(BaseInvocation):
"""Generates an image from latents."""
type: Literal["l2i"] = "l2i"
# Inputs
latents: Optional[LatentsField] = Field(description="The latents to generate an image from")
model: str = Field(default="", description="The model to use")
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.services.latents.get(self.latents.latents_name)
# TODO: this only really needs the vae
model_info = context.services.model_manager.get_model(self.model)
model: StableDiffusionGeneratorPipeline = model_info['model']
with torch.inference_mode():
np_image = model.decode_latents(latents)
image = model.numpy_to_pil(np_image)[0]
image_type = ImageType.RESULT
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, image)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
)

View File

@ -0,0 +1,68 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
from datetime import datetime, timezone
from typing import Literal, Optional
import numpy
from PIL import Image, ImageFilter, ImageOps
from pydantic import BaseModel, Field
from ..services.image_storage import ImageType
from ..services.invocation_services import InvocationServices
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext
class IntOutput(BaseInvocationOutput):
"""An integer output"""
#fmt: off
type: Literal["int_output"] = "int_output"
a: int = Field(default=None, description="The output integer")
#fmt: on
class AddInvocation(BaseInvocation):
"""Adds two numbers"""
#fmt: off
type: Literal["add"] = "add"
a: int = Field(default=0, description="The first number")
b: int = Field(default=0, description="The second number")
#fmt: on
def invoke(self, context: InvocationContext) -> IntOutput:
return IntOutput(a=self.a + self.b)
class SubtractInvocation(BaseInvocation):
"""Subtracts two numbers"""
#fmt: off
type: Literal["sub"] = "sub"
a: int = Field(default=0, description="The first number")
b: int = Field(default=0, description="The second number")
#fmt: on
def invoke(self, context: InvocationContext) -> IntOutput:
return IntOutput(a=self.a - self.b)
class MultiplyInvocation(BaseInvocation):
"""Multiplies two numbers"""
#fmt: off
type: Literal["mul"] = "mul"
a: int = Field(default=0, description="The first number")
b: int = Field(default=0, description="The second number")
#fmt: on
def invoke(self, context: InvocationContext) -> IntOutput:
return IntOutput(a=self.a * self.b)
class DivideInvocation(BaseInvocation):
"""Divides two numbers"""
#fmt: off
type: Literal["div"] = "div"
a: int = Field(default=0, description="The first number")
b: int = Field(default=0, description="The second number")
#fmt: on
def invoke(self, context: InvocationContext) -> IntOutput:
return IntOutput(a=int(self.a / self.b))

View File

@ -1069,9 +1069,8 @@ class GraphExecutionState(BaseModel):
n n
for n in prepared_nodes for n in prepared_nodes
if all( if all(
pit nx.has_path(execution_graph, pit[0], n)
for pit in parent_iterators for pit in parent_iterators
if nx.has_path(execution_graph, pit[0], n)
) )
), ),
None, None,

View File

@ -2,6 +2,7 @@
from invokeai.backend import ModelManager from invokeai.backend import ModelManager
from .events import EventServiceBase from .events import EventServiceBase
from .latent_storage import LatentsStorageBase
from .image_storage import ImageStorageBase from .image_storage import ImageStorageBase
from .restoration_services import RestorationServices from .restoration_services import RestorationServices
from .invocation_queue import InvocationQueueABC from .invocation_queue import InvocationQueueABC
@ -11,6 +12,7 @@ class InvocationServices:
"""Services that can be used by invocations""" """Services that can be used by invocations"""
events: EventServiceBase events: EventServiceBase
latents: LatentsStorageBase
images: ImageStorageBase images: ImageStorageBase
queue: InvocationQueueABC queue: InvocationQueueABC
model_manager: ModelManager model_manager: ModelManager
@ -24,6 +26,7 @@ class InvocationServices:
self, self,
model_manager: ModelManager, model_manager: ModelManager,
events: EventServiceBase, events: EventServiceBase,
latents: LatentsStorageBase,
images: ImageStorageBase, images: ImageStorageBase,
queue: InvocationQueueABC, queue: InvocationQueueABC,
graph_execution_manager: ItemStorageABC["GraphExecutionState"], graph_execution_manager: ItemStorageABC["GraphExecutionState"],
@ -32,6 +35,7 @@ class InvocationServices:
): ):
self.model_manager = model_manager self.model_manager = model_manager
self.events = events self.events = events
self.latents = latents
self.images = images self.images = images
self.queue = queue self.queue = queue
self.graph_execution_manager = graph_execution_manager self.graph_execution_manager = graph_execution_manager

View File

@ -33,7 +33,6 @@ class Invoker:
self.services.graph_execution_manager.set(graph_execution_state) self.services.graph_execution_manager.set(graph_execution_state)
# Queue the invocation # Queue the invocation
print(f"queueing item {invocation.id}")
self.services.queue.put( self.services.queue.put(
InvocationQueueItem( InvocationQueueItem(
# session_id = session.id, # session_id = session.id,

View File

@ -0,0 +1,93 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
import os
from abc import ABC, abstractmethod
from pathlib import Path
from queue import Queue
from typing import Dict
import torch
class LatentsStorageBase(ABC):
"""Responsible for storing and retrieving latents."""
@abstractmethod
def get(self, name: str) -> torch.Tensor:
pass
@abstractmethod
def set(self, name: str, data: torch.Tensor) -> None:
pass
@abstractmethod
def delete(self, name: str) -> None:
pass
class ForwardCacheLatentsStorage(LatentsStorageBase):
"""Caches the latest N latents in memory, writing-thorugh to and reading from underlying storage"""
__cache: Dict[str, torch.Tensor]
__cache_ids: Queue
__max_cache_size: int
__underlying_storage: LatentsStorageBase
def __init__(self, underlying_storage: LatentsStorageBase, max_cache_size: int = 20):
self.__underlying_storage = underlying_storage
self.__cache = dict()
self.__cache_ids = Queue()
self.__max_cache_size = max_cache_size
def get(self, name: str) -> torch.Tensor:
cache_item = self.__get_cache(name)
if cache_item is not None:
return cache_item
latent = self.__underlying_storage.get(name)
self.__set_cache(name, latent)
return latent
def set(self, name: str, data: torch.Tensor) -> None:
self.__underlying_storage.set(name, data)
self.__set_cache(name, data)
def delete(self, name: str) -> None:
self.__underlying_storage.delete(name)
if name in self.__cache:
del self.__cache[name]
def __get_cache(self, name: str) -> torch.Tensor|None:
return None if name not in self.__cache else self.__cache[name]
def __set_cache(self, name: str, data: torch.Tensor):
if not name in self.__cache:
self.__cache[name] = data
self.__cache_ids.put(name)
if self.__cache_ids.qsize() > self.__max_cache_size:
self.__cache.pop(self.__cache_ids.get())
class DiskLatentsStorage(LatentsStorageBase):
"""Stores latents in a folder on disk without caching"""
__output_folder: str
def __init__(self, output_folder: str):
self.__output_folder = output_folder
Path(output_folder).mkdir(parents=True, exist_ok=True)
def get(self, name: str) -> torch.Tensor:
latent_path = self.get_path(name)
return torch.load(latent_path)
def set(self, name: str, data: torch.Tensor) -> None:
latent_path = self.get_path(name)
torch.save(data, latent_path)
def delete(self, name: str) -> None:
latent_path = self.get_path(name)
os.remove(latent_path)
def get_path(self, name: str) -> str:
return os.path.join(self.__output_folder, name)

View File

@ -7,3 +7,4 @@ from .convert_ckpt_to_diffusers import (
) )
from .model_manager import ModelManager from .model_manager import ModelManager

View File

@ -1,4 +1,4 @@
""" """enum
Manage a cache of Stable Diffusion model files for fast switching. Manage a cache of Stable Diffusion model files for fast switching.
They are moved between GPU and CPU as necessary. If CPU memory falls They are moved between GPU and CPU as necessary. If CPU memory falls
below a preset minimum, the least recently used model will be below a preset minimum, the least recently used model will be
@ -15,7 +15,7 @@ import sys
import textwrap import textwrap
import time import time
import warnings import warnings
from enum import Enum from enum import Enum, auto
from pathlib import Path from pathlib import Path
from shutil import move, rmtree from shutil import move, rmtree
from typing import Any, Optional, Union, Callable from typing import Any, Optional, Union, Callable
@ -24,8 +24,12 @@ import safetensors
import safetensors.torch import safetensors.torch
import torch import torch
import transformers import transformers
from diffusers import AutoencoderKL from diffusers import (
from diffusers import logging as dlogging AutoencoderKL,
UNet2DConditionModel,
SchedulerMixin,
logging as dlogging,
)
from huggingface_hub import scan_cache_dir from huggingface_hub import scan_cache_dir
from omegaconf import OmegaConf from omegaconf import OmegaConf
from omegaconf.dictconfig import DictConfig from omegaconf.dictconfig import DictConfig
@ -33,31 +37,52 @@ from picklescan.scanner import scan_file_path
from invokeai.backend.globals import Globals, global_cache_dir from invokeai.backend.globals import Globals, global_cache_dir
from ..stable_diffusion import StableDiffusionGeneratorPipeline from transformers import (
CLIPTextModel,
CLIPTokenizer,
CLIPFeatureExtractor,
)
from diffusers.pipelines.stable_diffusion.safety_checker import (
StableDiffusionSafetyChecker,
)
from ..stable_diffusion import (
StableDiffusionGeneratorPipeline,
)
from ..util import CUDA_DEVICE, ask_user, download_with_resume from ..util import CUDA_DEVICE, ask_user, download_with_resume
class SDLegacyType(Enum): class SDLegacyType(Enum):
V1 = 1 V1 = auto()
V1_INPAINT = 2 V1_INPAINT = auto()
V2 = 3 V2 = auto()
V2_e = 4 V2_e = auto()
V2_v = 5 V2_v = auto()
UNKNOWN = 99 UNKNOWN = auto()
class SDModelComponent(Enum):
vae="vae"
text_encoder="text_encoder"
tokenizer="tokenizer"
unet="unet"
scheduler="scheduler"
safety_checker="safety_checker"
feature_extractor="feature_extractor"
DEFAULT_MAX_MODELS = 2 DEFAULT_MAX_MODELS = 2
class ModelManager(object): class ModelManager(object):
''' """
Model manager handles loading, caching, importing, deleting, converting, and editing models. Model manager handles loading, caching, importing, deleting, converting, and editing models.
''' """
def __init__( def __init__(
self, self,
config: OmegaConf|Path, config: OmegaConf | Path,
device_type: torch.device = CUDA_DEVICE, device_type: torch.device = CUDA_DEVICE,
precision: str = "float16", precision: str = "float16",
max_loaded_models=DEFAULT_MAX_MODELS, max_loaded_models=DEFAULT_MAX_MODELS,
sequential_offload=False, sequential_offload=False,
embedding_path: Path=None, embedding_path: Path = None,
): ):
""" """
Initialize with the path to the models.yaml config file or Initialize with the path to the models.yaml config file or
@ -87,14 +112,24 @@ class ModelManager(object):
""" """
return model_name in self.config return model_name in self.config
def get_model(self, model_name: str=None)->dict: def get_model(self, model_name: str = None) -> dict:
""" """Given a model named identified in models.yaml, return a dict
Given a model named identified in models.yaml, return containing the model object and some of its key features. If
the model object. If in RAM will load into GPU VRAM. in RAM will load into GPU VRAM. If on disk, will load from
If on disk, will load from there. there.
The dict has the following keys:
'model': The StableDiffusionGeneratorPipeline object
'model_name': The name of the model in models.yaml
'width': The width of images trained by this model
'height': The height of images trained by this model
'hash': A unique hash of this model's files on disk.
""" """
if not model_name: if not model_name:
return self.get_model(self.current_model) if self.current_model else self.get_model(self.default_model()) return (
self.get_model(self.current_model)
if self.current_model
else self.get_model(self.default_model())
)
if not self.valid_model(model_name): if not self.valid_model(model_name):
print( print(
@ -135,6 +170,81 @@ class ModelManager(object):
"hash": hash, "hash": hash,
} }
def get_model_vae(self, model_name: str=None)->AutoencoderKL:
"""Given a model name identified in models.yaml, load the model into
GPU if necessary and return its assigned VAE as an
AutoencoderKL object. If no model name is provided, return the
vae from the model currently in the GPU.
"""
return self._get_sub_model(model_name, SDModelComponent.vae)
def get_model_tokenizer(self, model_name: str=None)->CLIPTokenizer:
"""Given a model name identified in models.yaml, load the model into
GPU if necessary and return its assigned CLIPTokenizer. If no
model name is provided, return the tokenizer from the model
currently in the GPU.
"""
return self._get_sub_model(model_name, SDModelComponent.tokenizer)
def get_model_unet(self, model_name: str=None)->UNet2DConditionModel:
"""Given a model name identified in models.yaml, load the model into
GPU if necessary and return its assigned UNet2DConditionModel. If no model
name is provided, return the UNet from the model
currently in the GPU.
"""
return self._get_sub_model(model_name, SDModelComponent.unet)
def get_model_text_encoder(self, model_name: str=None)->CLIPTextModel:
"""Given a model name identified in models.yaml, load the model into
GPU if necessary and return its assigned CLIPTextModel. If no
model name is provided, return the text encoder from the model
currently in the GPU.
"""
return self._get_sub_model(model_name, SDModelComponent.text_encoder)
def get_model_feature_extractor(self, model_name: str=None)->CLIPFeatureExtractor:
"""Given a model name identified in models.yaml, load the model into
GPU if necessary and return its assigned CLIPFeatureExtractor. If no
model name is provided, return the text encoder from the model
currently in the GPU.
"""
return self._get_sub_model(model_name, SDModelComponent.feature_extractor)
def get_model_scheduler(self, model_name: str=None)->SchedulerMixin:
"""Given a model name identified in models.yaml, load the model into
GPU if necessary and return its assigned scheduler. If no
model name is provided, return the text encoder from the model
currently in the GPU.
"""
return self._get_sub_model(model_name, SDModelComponent.scheduler)
def _get_sub_model(
self,
model_name: str=None,
model_part: SDModelComponent=SDModelComponent.vae,
) -> Union[
AutoencoderKL,
CLIPTokenizer,
CLIPFeatureExtractor,
UNet2DConditionModel,
CLIPTextModel,
StableDiffusionSafetyChecker,
]:
"""Given a model name identified in models.yaml, and the part of the
model you wish to retrieve, return that part. Parts are in an Enum
class named SDModelComponent, and consist of:
SDModelComponent.vae
SDModelComponent.text_encoder
SDModelComponent.tokenizer
SDModelComponent.unet
SDModelComponent.scheduler
SDModelComponent.safety_checker
SDModelComponent.feature_extractor
"""
model_dict = self.get_model(model_name)
model = model_dict["model"]
return getattr(model, model_part.value)
def default_model(self) -> str | None: def default_model(self) -> str | None:
""" """
Returns the name of the default model, or None Returns the name of the default model, or None
@ -454,14 +564,18 @@ class ModelManager(object):
from . import load_pipeline_from_original_stable_diffusion_ckpt from . import load_pipeline_from_original_stable_diffusion_ckpt
try: try:
if self.list_models()[self.current_model]['status'] == 'active': if self.list_models()[self.current_model]["status"] == "active":
self.offload_model(self.current_model) self.offload_model(self.current_model)
except Exception as e: except Exception as e:
pass pass
vae_path = None vae_path = None
if vae: if vae:
vae_path = vae if os.path.isabs(vae) else os.path.normpath(os.path.join(Globals.root, vae)) vae_path = (
vae
if os.path.isabs(vae)
else os.path.normpath(os.path.join(Globals.root, vae))
)
if self._has_cuda(): if self._has_cuda():
torch.cuda.empty_cache() torch.cuda.empty_cache()
pipeline = load_pipeline_from_original_stable_diffusion_ckpt( pipeline = load_pipeline_from_original_stable_diffusion_ckpt(
@ -571,9 +685,7 @@ class ModelManager(object):
models.yaml file. models.yaml file.
""" """
model_name = model_name or Path(repo_or_path).stem model_name = model_name or Path(repo_or_path).stem
model_description = ( model_description = description or f"Imported diffusers model {model_name}"
description or f"Imported diffusers model {model_name}"
)
new_config = dict( new_config = dict(
description=model_description, description=model_description,
vae=vae, vae=vae,
@ -602,7 +714,7 @@ class ModelManager(object):
SDLegacyType.V2_v (V2 using 'v_prediction' prediction type) SDLegacyType.V2_v (V2 using 'v_prediction' prediction type)
SDLegacyType.UNKNOWN SDLegacyType.UNKNOWN
""" """
global_step = checkpoint.get('global_step') global_step = checkpoint.get("global_step")
state_dict = checkpoint.get("state_dict") or checkpoint state_dict = checkpoint.get("state_dict") or checkpoint
try: try:
@ -628,13 +740,13 @@ class ModelManager(object):
return SDLegacyType.UNKNOWN return SDLegacyType.UNKNOWN
def heuristic_import( def heuristic_import(
self, self,
path_url_or_repo: str, path_url_or_repo: str,
model_name: str = None, model_name: str = None,
description: str = None, description: str = None,
model_config_file: Path = None, model_config_file: Path = None,
commit_to_conf: Path = None, commit_to_conf: Path = None,
config_file_callback: Callable[[Path], Path] = None, config_file_callback: Callable[[Path], Path] = None,
) -> str: ) -> str:
"""Accept a string which could be: """Accept a string which could be:
- a HF diffusers repo_id - a HF diffusers repo_id
@ -738,8 +850,8 @@ class ModelManager(object):
# another round of heuristics to guess the correct config file. # another round of heuristics to guess the correct config file.
checkpoint = None checkpoint = None
if model_path.suffix in [".ckpt",".pt"]: if model_path.suffix in [".ckpt", ".pt"]:
self.scan_model(model_path,model_path) self.scan_model(model_path, model_path)
checkpoint = torch.load(model_path) checkpoint = torch.load(model_path)
else: else:
checkpoint = safetensors.torch.load_file(model_path) checkpoint = safetensors.torch.load_file(model_path)
@ -761,19 +873,16 @@ class ModelManager(object):
elif model_type == SDLegacyType.V1_INPAINT: elif model_type == SDLegacyType.V1_INPAINT:
print(" | SD-v1 inpainting model detected") print(" | SD-v1 inpainting model detected")
model_config_file = Path( model_config_file = Path(
Globals.root, "configs/stable-diffusion/v1-inpainting-inference.yaml" Globals.root,
"configs/stable-diffusion/v1-inpainting-inference.yaml",
) )
elif model_type == SDLegacyType.V2_v: elif model_type == SDLegacyType.V2_v:
print( print(" | SD-v2-v model detected")
" | SD-v2-v model detected"
)
model_config_file = Path( model_config_file = Path(
Globals.root, "configs/stable-diffusion/v2-inference-v.yaml" Globals.root, "configs/stable-diffusion/v2-inference-v.yaml"
) )
elif model_type == SDLegacyType.V2_e: elif model_type == SDLegacyType.V2_e:
print( print(" | SD-v2-e model detected")
" | SD-v2-e model detected"
)
model_config_file = Path( model_config_file = Path(
Globals.root, "configs/stable-diffusion/v2-inference.yaml" Globals.root, "configs/stable-diffusion/v2-inference.yaml"
) )
@ -820,16 +929,16 @@ class ModelManager(object):
return model_name return model_name
def convert_and_import( def convert_and_import(
self, self,
ckpt_path: Path, ckpt_path: Path,
diffusers_path: Path, diffusers_path: Path,
model_name=None, model_name=None,
model_description=None, model_description=None,
vae:dict=None, vae: dict = None,
vae_path:Path=None, vae_path: Path = None,
original_config_file: Path = None, original_config_file: Path = None,
commit_to_conf: Path = None, commit_to_conf: Path = None,
scan_needed: bool=True, scan_needed: bool = True,
) -> str: ) -> str:
""" """
Convert a legacy ckpt weights file to diffuser model and import Convert a legacy ckpt weights file to diffuser model and import
@ -857,10 +966,10 @@ class ModelManager(object):
try: try:
# By passing the specified VAE to the conversion function, the autoencoder # By passing the specified VAE to the conversion function, the autoencoder
# will be built into the model rather than tacked on afterward via the config file # will be built into the model rather than tacked on afterward via the config file
vae_model=None vae_model = None
if vae: if vae:
vae_model=self._load_vae(vae) vae_model = self._load_vae(vae)
vae_path=None vae_path = None
convert_ckpt_to_diffusers( convert_ckpt_to_diffusers(
ckpt_path, ckpt_path,
diffusers_path, diffusers_path,
@ -976,15 +1085,15 @@ class ModelManager(object):
legacy_locations = [ legacy_locations = [
Path( Path(
models_dir, models_dir,
"CompVis/stable-diffusion-safety-checker/models--CompVis--stable-diffusion-safety-checker" "CompVis/stable-diffusion-safety-checker/models--CompVis--stable-diffusion-safety-checker",
), ),
Path(models_dir, "bert-base-uncased/models--bert-base-uncased"), Path(models_dir, "bert-base-uncased/models--bert-base-uncased"),
Path( Path(
models_dir, models_dir,
"openai/clip-vit-large-patch14/models--openai--clip-vit-large-patch14" "openai/clip-vit-large-patch14/models--openai--clip-vit-large-patch14",
), ),
] ]
legacy_locations.extend(list(global_cache_dir("diffusers").glob('*'))) legacy_locations.extend(list(global_cache_dir("diffusers").glob("*")))
legacy_layout = False legacy_layout = False
for model in legacy_locations: for model in legacy_locations:
@ -1003,7 +1112,7 @@ class ModelManager(object):
>> make adjustments, please press ctrl-C now to abort and relaunch InvokeAI when you are ready. >> make adjustments, please press ctrl-C now to abort and relaunch InvokeAI when you are ready.
>> Otherwise press <enter> to continue.""" >> Otherwise press <enter> to continue."""
) )
input('continue> ') input("continue> ")
# transformer files get moved into the hub directory # transformer files get moved into the hub directory
if cls._is_huggingface_hub_directory_present(): if cls._is_huggingface_hub_directory_present():

View File

@ -576,6 +576,7 @@ def do_command(command: str, gen, opt: Args, completer) -> tuple:
elif command.startswith("!replay"): elif command.startswith("!replay"):
file_path = command.replace("!replay", "", 1).strip() file_path = command.replace("!replay", "", 1).strip()
file_path = os.path.join(opt.outdir, file_path)
if infile is None and os.path.isfile(file_path): if infile is None and os.path.isfile(file_path):
infile = open(file_path, "r", encoding="utf-8") infile = open(file_path, "r", encoding="utf-8")
completer.add_history(command) completer.add_history(command)

View File

@ -1,6 +1,8 @@
from .test_invoker import create_edge from .test_invoker import create_edge
from .test_nodes import ImageTestInvocation, ListPassThroughInvocation, PromptTestInvocation, PromptCollectionTestInvocation from .test_nodes import ImageTestInvocation, ListPassThroughInvocation, PromptTestInvocation, PromptCollectionTestInvocation
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext
from invokeai.app.invocations.collections import RangeInvocation
from invokeai.app.invocations.math import AddInvocation, MultiplyInvocation
from invokeai.app.services.processor import DefaultInvocationProcessor from invokeai.app.services.processor import DefaultInvocationProcessor
from invokeai.app.services.sqlite import SqliteItemStorage, sqlite_memory from invokeai.app.services.sqlite import SqliteItemStorage, sqlite_memory
from invokeai.app.services.invocation_queue import MemoryInvocationQueue from invokeai.app.services.invocation_queue import MemoryInvocationQueue
@ -21,13 +23,14 @@ def simple_graph():
def mock_services(): def mock_services():
# NOTE: none of these are actually called by the test invocations # NOTE: none of these are actually called by the test invocations
return InvocationServices( return InvocationServices(
model_manager = None, model_manager = None, # type: ignore
events = None, events = None, # type: ignore
images = None, images = None, # type: ignore
latents = None, # type: ignore
queue = MemoryInvocationQueue(), queue = MemoryInvocationQueue(),
graph_execution_manager = SqliteItemStorage[GraphExecutionState](filename = sqlite_memory, table_name = 'graph_executions'), graph_execution_manager = SqliteItemStorage[GraphExecutionState](filename = sqlite_memory, table_name = 'graph_executions'),
processor = DefaultInvocationProcessor(), processor = DefaultInvocationProcessor(),
restoration = None, restoration = None, # type: ignore
) )
def invoke_next(g: GraphExecutionState, services: InvocationServices) -> tuple[BaseInvocation, BaseInvocationOutput]: def invoke_next(g: GraphExecutionState, services: InvocationServices) -> tuple[BaseInvocation, BaseInvocationOutput]:
@ -73,31 +76,23 @@ def test_graph_is_not_complete(simple_graph, mock_services):
def test_graph_state_expands_iterator(mock_services): def test_graph_state_expands_iterator(mock_services):
graph = Graph() graph = Graph()
test_prompts = ["Banana sushi", "Cat sushi"] graph.add_node(RangeInvocation(id = "0", start = 0, stop = 3, step = 1))
graph.add_node(PromptCollectionTestInvocation(id = "1", collection = list(test_prompts))) graph.add_node(IterateInvocation(id = "1"))
graph.add_node(IterateInvocation(id = "2")) graph.add_node(MultiplyInvocation(id = "2", b = 10))
graph.add_node(ImageTestInvocation(id = "3")) graph.add_node(AddInvocation(id = "3", b = 1))
graph.add_edge(create_edge("1", "collection", "2", "collection")) graph.add_edge(create_edge("0", "collection", "1", "collection"))
graph.add_edge(create_edge("2", "item", "3", "prompt")) graph.add_edge(create_edge("1", "item", "2", "a"))
graph.add_edge(create_edge("2", "a", "3", "a"))
g = GraphExecutionState(graph = graph) g = GraphExecutionState(graph = graph)
n1 = invoke_next(g, mock_services) while not g.is_complete():
n2 = invoke_next(g, mock_services) invoke_next(g, mock_services)
n3 = invoke_next(g, mock_services)
n4 = invoke_next(g, mock_services)
n5 = invoke_next(g, mock_services)
assert g.prepared_source_mapping[n1[0].id] == "1" prepared_add_nodes = g.source_prepared_mapping['3']
assert g.prepared_source_mapping[n2[0].id] == "2" results = set([g.results[n].a for n in prepared_add_nodes])
assert g.prepared_source_mapping[n3[0].id] == "2" expected = set([1, 11, 21])
assert g.prepared_source_mapping[n4[0].id] == "3" assert results == expected
assert g.prepared_source_mapping[n5[0].id] == "3"
assert isinstance(n4[0], ImageTestInvocation)
assert isinstance(n5[0], ImageTestInvocation)
prompts = [n4[0].prompt, n5[0].prompt]
assert sorted(prompts) == sorted(test_prompts)
def test_graph_state_collects(mock_services): def test_graph_state_collects(mock_services):
graph = Graph() graph = Graph()

View File

@ -24,10 +24,11 @@ def mock_services() -> InvocationServices:
model_manager = None, # type: ignore model_manager = None, # type: ignore
events = TestEventService(), events = TestEventService(),
images = None, # type: ignore images = None, # type: ignore
latents = None, # type: ignore
queue = MemoryInvocationQueue(), queue = MemoryInvocationQueue(),
graph_execution_manager = SqliteItemStorage[GraphExecutionState](filename = sqlite_memory, table_name = 'graph_executions'), graph_execution_manager = SqliteItemStorage[GraphExecutionState](filename = sqlite_memory, table_name = 'graph_executions'),
processor = DefaultInvocationProcessor(), processor = DefaultInvocationProcessor(),
restoration = None, restoration = None, # type: ignore
) )
@pytest.fixture() @pytest.fixture()