mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Merge branch 'psyche/fix/nodes/processor-cpu-usage' into lstein/feat/multi-gpu
This commit is contained in:
commit
cef51ad80d
@ -122,152 +122,150 @@ class DefaultSessionProcessor(SessionProcessorBase):
|
|||||||
# Middle processor try block; any unhandled exception is a non-fatal processor error
|
# Middle processor try block; any unhandled exception is a non-fatal processor error
|
||||||
try:
|
try:
|
||||||
# If we are paused, wait for resume event
|
# If we are paused, wait for resume event
|
||||||
if resume_event.is_set():
|
resume_event.wait()
|
||||||
# Get the next session to process
|
|
||||||
self._queue_item = self._invoker.services.session_queue.dequeue()
|
|
||||||
|
|
||||||
if self._queue_item is not None:
|
# Get the next session to process
|
||||||
self._invoker.services.logger.debug(f"Executing queue item {self._queue_item.item_id}")
|
self._queue_item = self._invoker.services.session_queue.dequeue()
|
||||||
cancel_event.clear()
|
|
||||||
|
|
||||||
# If profiling is enabled, start the profiler
|
if self._queue_item is None:
|
||||||
if self._profiler is not None:
|
# The queue was empty, wait for next polling interval or event to try again
|
||||||
self._profiler.start(profile_id=self._queue_item.session_id)
|
self._invoker.services.logger.debug("Waiting for next polling interval or event")
|
||||||
|
poll_now_event.wait(self._polling_interval)
|
||||||
|
continue
|
||||||
|
|
||||||
# Prepare invocations and take the first
|
self._invoker.services.logger.debug(f"Executing queue item {self._queue_item.item_id}")
|
||||||
self._invocation = self._queue_item.session.next()
|
cancel_event.clear()
|
||||||
|
|
||||||
# Loop over invocations until the session is complete or canceled
|
# If profiling is enabled, start the profiler
|
||||||
while self._invocation is not None and not cancel_event.is_set():
|
if self._profiler is not None:
|
||||||
# get the source node id to provide to clients (the prepared node id is not as useful)
|
self._profiler.start(profile_id=self._queue_item.session_id)
|
||||||
source_invocation_id = self._queue_item.session.prepared_source_mapping[
|
|
||||||
self._invocation.id
|
|
||||||
]
|
|
||||||
|
|
||||||
# Send starting event
|
# Prepare invocations and take the first
|
||||||
self._invoker.services.events.emit_invocation_started(
|
self._invocation = self._queue_item.session.next()
|
||||||
|
|
||||||
|
# Loop over invocations until the session is complete or canceled
|
||||||
|
while self._invocation is not None and not cancel_event.is_set():
|
||||||
|
# get the source node id to provide to clients (the prepared node id is not as useful)
|
||||||
|
source_invocation_id = self._queue_item.session.prepared_source_mapping[self._invocation.id]
|
||||||
|
|
||||||
|
# Send starting event
|
||||||
|
self._invoker.services.events.emit_invocation_started(
|
||||||
|
queue_batch_id=self._queue_item.batch_id,
|
||||||
|
queue_item_id=self._queue_item.item_id,
|
||||||
|
queue_id=self._queue_item.queue_id,
|
||||||
|
graph_execution_state_id=self._queue_item.session_id,
|
||||||
|
node=self._invocation.model_dump(),
|
||||||
|
source_node_id=source_invocation_id,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Innermost processor try block; any unhandled exception is an invocation error & will fail the graph
|
||||||
|
try:
|
||||||
|
with self._invoker.services.performance_statistics.collect_stats(
|
||||||
|
self._invocation, self._queue_item.session.id
|
||||||
|
):
|
||||||
|
# Build invocation context (the node-facing API)
|
||||||
|
data = InvocationContextData(
|
||||||
|
invocation=self._invocation,
|
||||||
|
source_invocation_id=source_invocation_id,
|
||||||
|
queue_item=self._queue_item,
|
||||||
|
)
|
||||||
|
context = build_invocation_context(
|
||||||
|
data=data,
|
||||||
|
services=self._invoker.services,
|
||||||
|
cancel_event=self._cancel_event,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Invoke the node
|
||||||
|
outputs = self._invocation.invoke_internal(
|
||||||
|
context=context, services=self._invoker.services
|
||||||
|
)
|
||||||
|
|
||||||
|
# Save outputs and history
|
||||||
|
self._queue_item.session.complete(self._invocation.id, outputs)
|
||||||
|
|
||||||
|
# Send complete event
|
||||||
|
self._invoker.services.events.emit_invocation_complete(
|
||||||
queue_batch_id=self._queue_item.batch_id,
|
queue_batch_id=self._queue_item.batch_id,
|
||||||
queue_item_id=self._queue_item.item_id,
|
queue_item_id=self._queue_item.item_id,
|
||||||
queue_id=self._queue_item.queue_id,
|
queue_id=self._queue_item.queue_id,
|
||||||
graph_execution_state_id=self._queue_item.session_id,
|
graph_execution_state_id=self._queue_item.session.id,
|
||||||
node=self._invocation.model_dump(),
|
node=self._invocation.model_dump(),
|
||||||
source_node_id=source_invocation_id,
|
source_node_id=source_invocation_id,
|
||||||
|
result=outputs.model_dump(),
|
||||||
)
|
)
|
||||||
|
|
||||||
# Innermost processor try block; any unhandled exception is an invocation error & will fail the graph
|
except KeyboardInterrupt:
|
||||||
try:
|
# TODO(MM2): Create an event for this
|
||||||
with self._invoker.services.performance_statistics.collect_stats(
|
pass
|
||||||
self._invocation, self._queue_item.session.id
|
|
||||||
):
|
|
||||||
# Build invocation context (the node-facing API)
|
|
||||||
data = InvocationContextData(
|
|
||||||
invocation=self._invocation,
|
|
||||||
source_invocation_id=source_invocation_id,
|
|
||||||
queue_item=self._queue_item,
|
|
||||||
)
|
|
||||||
context = build_invocation_context(
|
|
||||||
data=data,
|
|
||||||
services=self._invoker.services,
|
|
||||||
cancel_event=self._cancel_event,
|
|
||||||
)
|
|
||||||
|
|
||||||
# Invoke the node
|
except CanceledException:
|
||||||
outputs = self._invocation.invoke_internal(
|
# When the user cancels the graph, we first set the cancel event. The event is checked
|
||||||
context=context, services=self._invoker.services
|
# between invocations, in this loop. Some invocations are long-running, and we need to
|
||||||
)
|
# be able to cancel them mid-execution.
|
||||||
|
#
|
||||||
|
# For example, denoising is a long-running invocation with many steps. A step callback
|
||||||
|
# is executed after each step. This step callback checks if the canceled event is set,
|
||||||
|
# then raises a CanceledException to stop execution immediately.
|
||||||
|
#
|
||||||
|
# When we get a CanceledException, we don't need to do anything - just pass and let the
|
||||||
|
# loop go to its next iteration, and the cancel event will be handled correctly.
|
||||||
|
pass
|
||||||
|
|
||||||
# Save outputs and history
|
except Exception as e:
|
||||||
self._queue_item.session.complete(self._invocation.id, outputs)
|
error = traceback.format_exc()
|
||||||
|
|
||||||
# Send complete event
|
# Save error
|
||||||
self._invoker.services.events.emit_invocation_complete(
|
self._queue_item.session.set_node_error(self._invocation.id, error)
|
||||||
queue_batch_id=self._queue_item.batch_id,
|
self._invoker.services.logger.error(
|
||||||
queue_item_id=self._queue_item.item_id,
|
f"Error while invoking session {self._queue_item.session_id}, invocation {self._invocation.id} ({self._invocation.get_type()}):\n{e}"
|
||||||
queue_id=self._queue_item.queue_id,
|
)
|
||||||
graph_execution_state_id=self._queue_item.session.id,
|
self._invoker.services.logger.error(error)
|
||||||
node=self._invocation.model_dump(),
|
|
||||||
source_node_id=source_invocation_id,
|
|
||||||
result=outputs.model_dump(),
|
|
||||||
)
|
|
||||||
|
|
||||||
except KeyboardInterrupt:
|
# Send error event
|
||||||
# TODO(MM2): Create an event for this
|
self._invoker.services.events.emit_invocation_error(
|
||||||
pass
|
queue_batch_id=self._queue_item.session_id,
|
||||||
|
queue_item_id=self._queue_item.item_id,
|
||||||
|
queue_id=self._queue_item.queue_id,
|
||||||
|
graph_execution_state_id=self._queue_item.session.id,
|
||||||
|
node=self._invocation.model_dump(),
|
||||||
|
source_node_id=source_invocation_id,
|
||||||
|
error_type=e.__class__.__name__,
|
||||||
|
error=error,
|
||||||
|
)
|
||||||
|
pass
|
||||||
|
|
||||||
except CanceledException:
|
# The session is complete if the all invocations are complete or there was an error
|
||||||
# When the user cancels the graph, we first set the cancel event. The event is checked
|
if self._queue_item.session.is_complete() or cancel_event.is_set():
|
||||||
# between invocations, in this loop. Some invocations are long-running, and we need to
|
# Send complete event
|
||||||
# be able to cancel them mid-execution.
|
self._invoker.services.events.emit_graph_execution_complete(
|
||||||
#
|
queue_batch_id=self._queue_item.batch_id,
|
||||||
# For example, denoising is a long-running invocation with many steps. A step callback
|
queue_item_id=self._queue_item.item_id,
|
||||||
# is executed after each step. This step callback checks if the canceled event is set,
|
queue_id=self._queue_item.queue_id,
|
||||||
# then raises a CanceledException to stop execution immediately.
|
graph_execution_state_id=self._queue_item.session.id,
|
||||||
#
|
)
|
||||||
# When we get a CanceledException, we don't need to do anything - just pass and let the
|
# If we are profiling, stop the profiler and dump the profile & stats
|
||||||
# loop go to its next iteration, and the cancel event will be handled correctly.
|
if self._profiler:
|
||||||
pass
|
profile_path = self._profiler.stop()
|
||||||
|
stats_path = profile_path.with_suffix(".json")
|
||||||
|
self._invoker.services.performance_statistics.dump_stats(
|
||||||
|
graph_execution_state_id=self._queue_item.session.id, output_path=stats_path
|
||||||
|
)
|
||||||
|
# We'll get a GESStatsNotFoundError if we try to log stats for an untracked graph, but in the processor
|
||||||
|
# we don't care about that - suppress the error.
|
||||||
|
with suppress(GESStatsNotFoundError):
|
||||||
|
self._invoker.services.performance_statistics.log_stats(self._queue_item.session.id)
|
||||||
|
self._invoker.services.performance_statistics.reset_stats()
|
||||||
|
|
||||||
except Exception as e:
|
# Set the invocation to None to prepare for the next session
|
||||||
error = traceback.format_exc()
|
self._invocation = None
|
||||||
|
|
||||||
# Save error
|
|
||||||
self._queue_item.session.set_node_error(self._invocation.id, error)
|
|
||||||
self._invoker.services.logger.error(
|
|
||||||
f"Error while invoking session {self._queue_item.session_id}, invocation {self._invocation.id} ({self._invocation.get_type()}):\n{e}"
|
|
||||||
)
|
|
||||||
self._invoker.services.logger.error(error)
|
|
||||||
|
|
||||||
# Send error event
|
|
||||||
self._invoker.services.events.emit_invocation_error(
|
|
||||||
queue_batch_id=self._queue_item.session_id,
|
|
||||||
queue_item_id=self._queue_item.item_id,
|
|
||||||
queue_id=self._queue_item.queue_id,
|
|
||||||
graph_execution_state_id=self._queue_item.session.id,
|
|
||||||
node=self._invocation.model_dump(),
|
|
||||||
source_node_id=source_invocation_id,
|
|
||||||
error_type=e.__class__.__name__,
|
|
||||||
error=error,
|
|
||||||
)
|
|
||||||
pass
|
|
||||||
|
|
||||||
# The session is complete if the all invocations are complete or there was an error
|
|
||||||
if self._queue_item.session.is_complete() or cancel_event.is_set():
|
|
||||||
# Send complete event
|
|
||||||
self._invoker.services.events.emit_graph_execution_complete(
|
|
||||||
queue_batch_id=self._queue_item.batch_id,
|
|
||||||
queue_item_id=self._queue_item.item_id,
|
|
||||||
queue_id=self._queue_item.queue_id,
|
|
||||||
graph_execution_state_id=self._queue_item.session.id,
|
|
||||||
)
|
|
||||||
# If we are profiling, stop the profiler and dump the profile & stats
|
|
||||||
if self._profiler:
|
|
||||||
profile_path = self._profiler.stop()
|
|
||||||
stats_path = profile_path.with_suffix(".json")
|
|
||||||
self._invoker.services.performance_statistics.dump_stats(
|
|
||||||
graph_execution_state_id=self._queue_item.session.id, output_path=stats_path
|
|
||||||
)
|
|
||||||
# We'll get a GESStatsNotFoundError if we try to log stats for an untracked graph, but in the processor
|
|
||||||
# we don't care about that - suppress the error.
|
|
||||||
with suppress(GESStatsNotFoundError):
|
|
||||||
self._invoker.services.performance_statistics.log_stats(
|
|
||||||
self._queue_item.session.id
|
|
||||||
)
|
|
||||||
self._invoker.services.performance_statistics.reset_stats()
|
|
||||||
|
|
||||||
# Set the invocation to None to prepare for the next session
|
|
||||||
self._invocation = None
|
|
||||||
else:
|
|
||||||
# Prepare the next invocation
|
|
||||||
self._invocation = self._queue_item.session.next()
|
|
||||||
|
|
||||||
# The session is complete, immediately poll for next session
|
|
||||||
self._queue_item = None
|
|
||||||
poll_now_event.set()
|
|
||||||
else:
|
else:
|
||||||
# The queue was empty, wait for next polling interval or event to try again
|
# Prepare the next invocation
|
||||||
self._invoker.services.logger.debug("Waiting for next polling interval or event")
|
self._invocation = self._queue_item.session.next()
|
||||||
poll_now_event.wait(self._polling_interval)
|
else:
|
||||||
continue
|
# The queue was empty, wait for next polling interval or event to try again
|
||||||
|
self._invoker.services.logger.debug("Waiting for next polling interval or event")
|
||||||
|
poll_now_event.wait(self._polling_interval)
|
||||||
|
continue
|
||||||
except Exception:
|
except Exception:
|
||||||
# Non-fatal error in processor
|
# Non-fatal error in processor
|
||||||
self._invoker.services.logger.error(
|
self._invoker.services.logger.error(
|
||||||
|
Loading…
Reference in New Issue
Block a user