diff --git a/invokeai/app/invocations/spandrel_image_to_image.py b/invokeai/app/invocations/spandrel_image_to_image.py index 788a59f36b..650c9bb547 100644 --- a/invokeai/app/invocations/spandrel_image_to_image.py +++ b/invokeai/app/invocations/spandrel_image_to_image.py @@ -1,4 +1,6 @@ +import numpy as np import torch +from PIL import Image from tqdm import tqdm from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation @@ -48,29 +50,6 @@ class SpandrelImageToImageInvocation(BaseInvocation, WithMetadata, WithBoard): ), ) - def _merge_tiles(self, tiles: list[Tile], tile_tensors: list[torch.Tensor], out_tensor: torch.Tensor): - """A simple tile merging algorithm. tile_tensors are merged into out_tensor. When adjacent tiles overlap, we - split the overlap in half. No 'blending' is applied. - """ - # Sort tiles and images first by left x coordinate, then by top y coordinate. During tile processing, we want to - # iterate over tiles left-to-right, top-to-bottom. - tiles_and_tensors = list(zip(tiles, tile_tensors, strict=True)) - tiles_and_tensors = sorted(tiles_and_tensors, key=lambda x: x[0].coords.left) - tiles_and_tensors = sorted(tiles_and_tensors, key=lambda x: x[0].coords.top) - - for tile, tile_tensor in tiles_and_tensors: - # We only keep half of the overlap on the top and left side of the tile. We do this in case there are edge - # artifacts. We don't bother with any 'blending' in the current implementation - for most upscalers it seems - # unnecessary, but we may find a need in the future. - top_overlap = tile.overlap.top // 2 - left_overlap = tile.overlap.left // 2 - out_tensor[ - :, - :, - tile.coords.top + top_overlap : tile.coords.bottom, - tile.coords.left + left_overlap : tile.coords.right, - ] = tile_tensor[:, :, top_overlap:, left_overlap:] - @torch.inference_mode() def invoke(self, context: InvocationContext) -> ImageOutput: # Images are converted to RGB, because most models don't support an alpha channel. In the future, we may want to @@ -97,6 +76,11 @@ class SpandrelImageToImageInvocation(BaseInvocation, WithMetadata, WithBoard): ) ] + # Sort tiles first by left x coordinate, then by top y coordinate. During tile processing, we want to iterate + # over tiles left-to-right, top-to-bottom. + tiles = sorted(tiles, key=lambda x: x.coords.left) + tiles = sorted(tiles, key=lambda x: x.coords.top) + # Prepare input image for inference. image_tensor = SpandrelImageToImageModel.pil_to_tensor(image) @@ -104,8 +88,6 @@ class SpandrelImageToImageInvocation(BaseInvocation, WithMetadata, WithBoard): spandrel_model_info = context.models.load(self.image_to_image_model) # Run the model on each tile. - output_tiles: list[torch.Tensor] = [] - scale: int = 1 with spandrel_model_info as spandrel_model: assert isinstance(spandrel_model, SpandrelImageToImageModel) @@ -113,27 +95,45 @@ class SpandrelImageToImageInvocation(BaseInvocation, WithMetadata, WithBoard): scale = spandrel_model.scale scaled_tiles = [self._scale_tile(tile, scale=scale) for tile in tiles] + # Prepare the output tensor. + _, channels, height, width = image_tensor.shape + output_tensor = torch.zeros( + (height * scale, width * scale, channels), dtype=torch.uint8, device=torch.device("cpu") + ) + image_tensor = image_tensor.to(device=spandrel_model.device, dtype=spandrel_model.dtype) - for tile in tqdm(tiles, desc="Upscaling Tiles"): - output_tile = spandrel_model.run( - image_tensor[:, :, tile.coords.top : tile.coords.bottom, tile.coords.left : tile.coords.right] - ) - output_tiles.append(output_tile) + for tile, scaled_tile in tqdm(list(zip(tiles, scaled_tiles, strict=True)), desc="Upscaling Tiles"): + # Extract the current tile from the input tensor. + input_tile = image_tensor[ + :, :, tile.coords.top : tile.coords.bottom, tile.coords.left : tile.coords.right + ].to(device=spandrel_model.device, dtype=spandrel_model.dtype) - # TODO(ryand): There are opportunities to reduce peak VRAM utilization here if it becomes an issue: - # - Keep the input tensor on the CPU. - # - Move each tile to the GPU as it is processed. - # - Move output tensors back to the CPU as they are produced, and merge them into the output tensor. + # Run the model on the tile. + output_tile = spandrel_model.run(input_tile) - # Merge the tiles to an output tensor. - batch_size, channels, height, width = image_tensor.shape - output_tensor = torch.zeros( - (batch_size, channels, height * scale, width * scale), dtype=image_tensor.dtype, device=image_tensor.device - ) - self._merge_tiles(scaled_tiles, output_tiles, output_tensor) + # Convert the output tile into the output tensor's format. + # (N, C, H, W) -> (C, H, W) + output_tile = output_tile.squeeze(0) + # (C, H, W) -> (H, W, C) + output_tile = output_tile.permute(1, 2, 0) + output_tile = output_tile.clamp(0, 1) + output_tile = (output_tile * 255).to(dtype=torch.uint8, device=torch.device("cpu")) + + # Merge the output tile into the output tensor. + # We only keep half of the overlap on the top and left side of the tile. We do this in case there are + # edge artifacts. We don't bother with any 'blending' in the current implementation - for most upscalers + # it seems unnecessary, but we may find a need in the future. + top_overlap = scaled_tile.overlap.top // 2 + left_overlap = scaled_tile.overlap.left // 2 + output_tensor[ + scaled_tile.coords.top + top_overlap : scaled_tile.coords.bottom, + scaled_tile.coords.left + left_overlap : scaled_tile.coords.right, + :, + ] = output_tile[top_overlap:, left_overlap:, :] # Convert the output tensor to a PIL image. - pil_image = SpandrelImageToImageModel.tensor_to_pil(output_tensor) + np_image = output_tensor.detach().numpy().astype(np.uint8) + pil_image = Image.fromarray(np_image) image_dto = context.images.save(image=pil_image) return ImageOutput.build(image_dto)