Merge branch 'development' into patch-2
@ -5,8 +5,7 @@ SAMPLES_DIR=${OUT_DIR}
|
||||
python scripts/dream.py \
|
||||
--from_file ${PROMPT_FILE} \
|
||||
--outdir ${OUT_DIR} \
|
||||
--sampler plms \
|
||||
--full_precision
|
||||
--sampler plms
|
||||
|
||||
# original output by CompVis/stable-diffusion
|
||||
IMAGE1=".dev_scripts/images/v1_4_astronaut_rides_horse_plms_step50_seed42.png"
|
||||
|
28
.github/workflows/mkdocs-flow.yml
vendored
Normal file
@ -0,0 +1,28 @@
|
||||
name: Deploy
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
pull_request:
|
||||
branches:
|
||||
- main
|
||||
jobs:
|
||||
build:
|
||||
name: Deploy docs to GitHub Pages
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v3
|
||||
with:
|
||||
fetch-depth: 0
|
||||
- name: Build
|
||||
uses: Tiryoh/actions-mkdocs@v0
|
||||
with:
|
||||
mkdocs_version: 'latest' # option
|
||||
requirements: '/requirements-mkdocs.txt' # option
|
||||
configfile: '/mkdocs.yml' # option
|
||||
- name: Deploy
|
||||
uses: peaceiris/actions-gh-pages@v3
|
||||
with:
|
||||
github_token: ${{ secrets.GITHUB_TOKEN }}
|
||||
publish_dir: ./site
|
4
.github/workflows/test-dream-conda.yml
vendored
@ -85,9 +85,9 @@ jobs:
|
||||
fi
|
||||
# Utterly hacky, but I don't know how else to do this
|
||||
if [[ ${{ github.ref }} == 'refs/heads/master' ]]; then
|
||||
time ${{ steps.vars.outputs.PYTHON_BIN }} scripts/dream.py --from_file tests/preflight_prompts.txt --full_precision
|
||||
time ${{ steps.vars.outputs.PYTHON_BIN }} scripts/dream.py --from_file tests/preflight_prompts.txt
|
||||
elif [[ ${{ github.ref }} == 'refs/heads/development' ]]; then
|
||||
time ${{ steps.vars.outputs.PYTHON_BIN }} scripts/dream.py --from_file tests/dev_prompts.txt --full_precision
|
||||
time ${{ steps.vars.outputs.PYTHON_BIN }} scripts/dream.py --from_file tests/dev_prompts.txt
|
||||
fi
|
||||
mkdir -p outputs/img-samples
|
||||
- name: Archive results
|
||||
|
16
.gitignore
vendored
@ -1,6 +1,10 @@
|
||||
# ignore default image save location and model symbolic link
|
||||
outputs/
|
||||
models/ldm/stable-diffusion-v1/model.ckpt
|
||||
ldm/dream/restoration/codeformer/weights
|
||||
|
||||
# ignore the Anaconda/Miniconda installer used while building Docker image
|
||||
anaconda.sh
|
||||
|
||||
# ignore a directory which serves as a place for initial images
|
||||
inputs/
|
||||
@ -77,9 +81,6 @@ db.sqlite3-journal
|
||||
instance/
|
||||
.webassets-cache
|
||||
|
||||
# WebUI temp files:
|
||||
img2img-tmp.png
|
||||
|
||||
# Scrapy stuff:
|
||||
.scrapy
|
||||
|
||||
@ -186,3 +187,12 @@ testtube
|
||||
checkpoints
|
||||
# If it's a Mac
|
||||
.DS_Store
|
||||
|
||||
# Let the frontend manage its own gitignore
|
||||
!frontend/*
|
||||
|
||||
# Scratch folder
|
||||
.scratch/
|
||||
.vscode/
|
||||
gfpgan/
|
||||
models/ldm/stable-diffusion-v1/model.sha256
|
||||
|
13
.prettierrc.yaml
Normal file
@ -0,0 +1,13 @@
|
||||
endOfLine: lf
|
||||
tabWidth: 2
|
||||
useTabs: false
|
||||
singleQuote: true
|
||||
quoteProps: as-needed
|
||||
embeddedLanguageFormatting: auto
|
||||
overrides:
|
||||
- files: '*.md'
|
||||
options:
|
||||
proseWrap: always
|
||||
printWidth: 80
|
||||
parser: markdown
|
||||
cursorOffset: -1
|
226
README.md
@ -1,23 +1,6 @@
|
||||
<h1 align='center'><b>InvokeAI: A Stable Diffusion Toolkit</b></h1>
|
||||
<div align="center">
|
||||
|
||||
<p align='center'>
|
||||
<img src="docs/assets/logo.png"/>
|
||||
</p>
|
||||
|
||||
<p align="center">
|
||||
<img src="https://img.shields.io/github/last-commit/invoke-ai/InvokeAI?logo=Python&logoColor=green&style=for-the-badge" alt="last-commit"/>
|
||||
<img src="https://img.shields.io/github/stars/invoke-ai/InvokeAI?logo=GitHub&style=for-the-badge" alt="stars"/>
|
||||
<br>
|
||||
<img src="https://img.shields.io/github/issues/invoke-ai/InvokeAI?logo=GitHub&style=for-the-badge" alt="issues"/>
|
||||
<img src="https://img.shields.io/github/issues-pr/invoke-ai/InvokeAI?logo=GitHub&style=for-the-badge" alt="pull-requests"/>
|
||||
</p>
|
||||
|
||||
This is a fork of
|
||||
[CompVis/stable-diffusion](https://github.com/CompVis/stable-diffusion),
|
||||
the open source text-to-image generator. It provides a streamlined
|
||||
process with various new features and options to aid the image
|
||||
generation process. It runs on Windows, Mac and Linux machines,
|
||||
and runs on GPU cards with as little as 4 GB or RAM.
|
||||
# InvokeAI: A Stable Diffusion Toolkit
|
||||
|
||||
_Note: This fork is rapidly evolving. Please use the
|
||||
[Issues](https://github.com/invoke-ai/InvokeAI/issues) tab to
|
||||
@ -28,138 +11,189 @@ _This repository was formally known as lstein/stable-diffusion_
|
||||
|
||||
# **Table of Contents**
|
||||
|
||||
![project logo](docs/assets/logo.png)
|
||||
|
||||
[![discord badge]][discord link]
|
||||
|
||||
[![latest release badge]][latest release link] [![github stars badge]][github stars link] [![github forks badge]][github forks link]
|
||||
|
||||
[![CI checks on main badge]][CI checks on main link] [![CI checks on dev badge]][CI checks on dev link] [![latest commit to dev badge]][latest commit to dev link]
|
||||
|
||||
[![github open issues badge]][github open issues link] [![github open prs badge]][github open prs link]
|
||||
|
||||
[CI checks on dev badge]: https://flat.badgen.net/github/checks/invoke-ai/InvokeAI/development?label=CI%20status%20on%20dev&cache=900&icon=github
|
||||
[CI checks on dev link]: https://github.com/invoke-ai/InvokeAI/actions?query=branch%3Adevelopment
|
||||
[CI checks on main badge]: https://flat.badgen.net/github/checks/invoke-ai/InvokeAI/main?label=CI%20status%20on%20main&cache=900&icon=github
|
||||
[CI checks on main link]: https://github.com/invoke-ai/InvokeAI/actions/workflows/test-dream-conda.yml
|
||||
[discord badge]: https://flat.badgen.net/discord/members/htRgbc7e?icon=discord
|
||||
[discord link]: https://discord.gg/ZmtBAhwWhy
|
||||
[github forks badge]: https://flat.badgen.net/github/forks/invoke-ai/InvokeAI?icon=github
|
||||
[github forks link]: https://useful-forks.github.io/?repo=invoke-ai%2FInvokeAI
|
||||
[github open issues badge]: https://flat.badgen.net/github/open-issues/invoke-ai/InvokeAI?icon=github
|
||||
[github open issues link]: https://github.com/invoke-ai/InvokeAI/issues?q=is%3Aissue+is%3Aopen
|
||||
[github open prs badge]: https://flat.badgen.net/github/open-prs/invoke-ai/InvokeAI?icon=github
|
||||
[github open prs link]: https://github.com/invoke-ai/InvokeAI/pulls?q=is%3Apr+is%3Aopen
|
||||
[github stars badge]: https://flat.badgen.net/github/stars/invoke-ai/InvokeAI?icon=github
|
||||
[github stars link]: https://github.com/invoke-ai/InvokeAI/stargazers
|
||||
[latest commit to dev badge]: https://flat.badgen.net/github/last-commit/invoke-ai/InvokeAI/development?icon=github&color=yellow&label=last%20dev%20commit&cache=900
|
||||
[latest commit to dev link]: https://github.com/invoke-ai/InvokeAI/commits/development
|
||||
[latest release badge]: https://flat.badgen.net/github/release/invoke-ai/InvokeAI/development?icon=github
|
||||
[latest release link]: https://github.com/invoke-ai/InvokeAI/releases
|
||||
</div>
|
||||
|
||||
This is a fork of [CompVis/stable-diffusion](https://github.com/CompVis/stable-diffusion), the open
|
||||
source text-to-image generator. It provides a streamlined process with various new features and
|
||||
options to aid the image generation process. It runs on Windows, Mac and Linux machines, and runs on
|
||||
GPU cards with as little as 4 GB or RAM.
|
||||
|
||||
_Note: This fork is rapidly evolving. Please use the
|
||||
[Issues](https://github.com/invoke-ai/InvokeAI/issues) tab to report bugs and make feature
|
||||
requests. Be sure to use the provided templates. They will help aid diagnose issues faster._
|
||||
|
||||
## Table of Contents
|
||||
|
||||
1. [Installation](#installation)
|
||||
2. [Major Features](#features)
|
||||
3. [Changelog](#latest-changes)
|
||||
4. [Troubleshooting](#troubleshooting)
|
||||
5. [Contributing](#contributing)
|
||||
6. [Support](#support)
|
||||
2. [Hardware Requirements](#hardware-requirements)
|
||||
3. [Features](#features)
|
||||
4. [Latest Changes](#latest-changes)
|
||||
5. [Troubleshooting](#troubleshooting)
|
||||
6. [Contributing](#contributing)
|
||||
7. [Contributors](#contributors)
|
||||
8. [Support](#support)
|
||||
9. [Further Reading](#further-reading)
|
||||
|
||||
# Installation
|
||||
### Installation
|
||||
|
||||
This fork is supported across multiple platforms. You can find individual installation instructions below.
|
||||
This fork is supported across multiple platforms. You can find individual installation instructions
|
||||
below.
|
||||
|
||||
- ## [Linux](docs/installation/INSTALL_LINUX.md)
|
||||
- ## [Windows](docs/installation/INSTALL_WINDOWS.md)
|
||||
- ## [Macintosh](docs/installation/INSTALL_MAC.md)
|
||||
- #### [Linux](docs/installation/INSTALL_LINUX.md)
|
||||
|
||||
## **Hardware Requirements**
|
||||
- #### [Windows](docs/installation/INSTALL_WINDOWS.md)
|
||||
|
||||
**System**
|
||||
- #### [Macintosh](docs/installation/INSTALL_MAC.md)
|
||||
|
||||
### Hardware Requirements
|
||||
|
||||
#### System
|
||||
|
||||
You wil need one of the following:
|
||||
|
||||
- An NVIDIA-based graphics card with 4 GB or more VRAM memory.
|
||||
- An Apple computer with an M1 chip.
|
||||
|
||||
**Memory**
|
||||
#### Memory
|
||||
|
||||
- At least 12 GB Main Memory RAM.
|
||||
|
||||
**Disk**
|
||||
#### Disk
|
||||
|
||||
- At least 6 GB of free disk space for the machine learning model, Python, and all its dependencies.
|
||||
|
||||
**Note**
|
||||
#### Note
|
||||
|
||||
If you are have a Nvidia 10xx series card (e.g. the 1080ti), please
|
||||
run the dream script in full-precision mode as shown below.
|
||||
Precision is auto configured based on the device. If however you encounter
|
||||
errors like 'expected type Float but found Half' or 'not implemented for Half'
|
||||
you can try starting `dream.py` with the `--precision=float32` flag:
|
||||
|
||||
Similarly, specify full-precision mode on Apple M1 hardware.
|
||||
|
||||
To run in full-precision mode, start `dream.py` with the
|
||||
`--full_precision` flag:
|
||||
|
||||
```
|
||||
(ldm) ~/stable-diffusion$ python scripts/dream.py --full_precision
|
||||
```bash
|
||||
(ldm) ~/stable-diffusion$ python scripts/dream.py --precision=float32
|
||||
```
|
||||
|
||||
# Features
|
||||
### Features
|
||||
|
||||
## **Major Features**
|
||||
#### Major Features
|
||||
|
||||
- ## [Interactive Command Line Interface](docs/features/CLI.md)
|
||||
- [Interactive Command Line Interface](docs/features/CLI.md)
|
||||
- [Image To Image](docs/features/IMG2IMG.md)
|
||||
- [Inpainting Support](docs/features/INPAINTING.md)
|
||||
- [Outpainting Support](docs/features/OUTPAINTING.md)
|
||||
- [GFPGAN and Real-ESRGAN Support](docs/features/UPSCALE.md)
|
||||
- [Seamless Tiling](docs/features/OTHER.md#seamless-tiling)
|
||||
- [Google Colab](docs/features/OTHER.md#google-colab)
|
||||
- [Web Server](docs/features/WEB.md)
|
||||
- [Reading Prompts From File](docs/features/PROMPTS.md#reading-prompts-from-a-file)
|
||||
- [Shortcut: Reusing Seeds](docs/features/OTHER.md#shortcuts-reusing-seeds)
|
||||
- [Weighted Prompts](docs/features/PROMPTS.md#weighted-prompts)
|
||||
- [Negative/Unconditioned Prompts](docs/features/PROMPTS.md#negative-and-unconditioned-prompts)
|
||||
- [Variations](docs/features/VARIATIONS.md)
|
||||
- [Personalizing Text-to-Image Generation](docs/features/TEXTUAL_INVERSION.md)
|
||||
- [Simplified API for text to image generation](docs/features/OTHER.md#simplified-api)
|
||||
|
||||
- ## [Image To Image](docs/features/IMG2IMG.md)
|
||||
#### Other Features
|
||||
|
||||
- ## [Inpainting Support](docs/features/INPAINTING.md)
|
||||
- [Creating Transparent Regions for Inpainting](docs/features/INPAINTING.md#creating-transparent-regions-for-inpainting)
|
||||
- [Preload Models](docs/features/OTHER.md#preload-models)
|
||||
|
||||
- ## [GFPGAN and Real-ESRGAN Support](docs/features/UPSCALE.md)
|
||||
### Latest Changes
|
||||
|
||||
- ## [Seamless Tiling](docs/features/OTHER.md#seamless-tiling)
|
||||
- vNEXT (TODO 2022)
|
||||
|
||||
- ## [Google Colab](docs/features/OTHER.md#google-colab)
|
||||
|
||||
- ## [Web Server](docs/features/WEB.md)
|
||||
|
||||
- ## [Reading Prompts From File](docs/features/OTHER.md#reading-prompts-from-a-file)
|
||||
|
||||
- ## [Shortcut: Reusing Seeds](docs/features/OTHER.md#shortcuts-reusing-seeds)
|
||||
|
||||
- ## [Weighted Prompts](docs/features/OTHER.md#weighted-prompts)
|
||||
|
||||
- ## [Variations](docs/features/VARIATIONS.md)
|
||||
|
||||
- ## [Personalizing Text-to-Image Generation](docs/features/TEXTUAL_INVERSION.md)
|
||||
|
||||
- ## [Simplified API for text to image generation](docs/features/OTHER.md#simplified-api)
|
||||
|
||||
## **Other Features**
|
||||
|
||||
- ### [Creating Transparent Regions for Inpainting](docs/features/INPAINTING.md#creating-transparent-regions-for-inpainting)
|
||||
|
||||
- ### [Preload Models](docs/features/OTHER.md#preload-models)
|
||||
|
||||
# Latest Changes
|
||||
- Deprecated `--full_precision` / `-F`. Simply omit it and `dream.py` will auto
|
||||
configure. To switch away from auto use the new flag like `--precision=float32`.
|
||||
|
||||
- v1.14 (11 September 2022)
|
||||
|
||||
- Memory optimizations for small-RAM cards. 512x512 now possible on 4 GB GPUs.
|
||||
- Full support for Apple hardware with M1 or M2 chips.
|
||||
- Add "seamless mode" for circular tiling of image. Generates beautiful effects. ([prixt](https://github.com/prixt)).
|
||||
- Add "seamless mode" for circular tiling of image. Generates beautiful effects.
|
||||
([prixt](https://github.com/prixt)).
|
||||
- Inpainting support.
|
||||
- Improved web server GUI.
|
||||
- Lots of code and documentation cleanups.
|
||||
|
||||
- v1.13 (3 September 2022
|
||||
|
||||
- Support image variations (see [VARIATIONS](docs/features/VARIATIONS.md) ([Kevin Gibbons](https://github.com/bakkot) and many contributors and reviewers)
|
||||
- Supports a Google Colab notebook for a standalone server running on Google hardware [Arturo Mendivil](https://github.com/artmen1516)
|
||||
- WebUI supports GFPGAN/ESRGAN facial reconstruction and upscaling [Kevin Gibbons](https://github.com/bakkot)
|
||||
- WebUI supports incremental display of in-progress images during generation [Kevin Gibbons](https://github.com/bakkot)
|
||||
- A new configuration file scheme that allows new models (including upcoming stable-diffusion-v1.5)
|
||||
to be added without altering the code. ([David Wager](https://github.com/maddavid12))
|
||||
- Support image variations (see [VARIATIONS](docs/features/VARIATIONS.md)
|
||||
([Kevin Gibbons](https://github.com/bakkot) and many contributors and reviewers)
|
||||
- Supports a Google Colab notebook for a standalone server running on Google hardware
|
||||
[Arturo Mendivil](https://github.com/artmen1516)
|
||||
- WebUI supports GFPGAN/ESRGAN facial reconstruction and upscaling
|
||||
[Kevin Gibbons](https://github.com/bakkot)
|
||||
- WebUI supports incremental display of in-progress images during generation
|
||||
[Kevin Gibbons](https://github.com/bakkot)
|
||||
- A new configuration file scheme that allows new models (including upcoming
|
||||
stable-diffusion-v1.5) to be added without altering the code.
|
||||
([David Wager](https://github.com/maddavid12))
|
||||
- Can specify --grid on dream.py command line as the default.
|
||||
- Miscellaneous internal bug and stability fixes.
|
||||
- Works on M1 Apple hardware.
|
||||
- Multiple bug fixes.
|
||||
|
||||
For older changelogs, please visit **[CHANGELOGS](docs/CHANGELOG.md)**.
|
||||
For older changelogs, please visit the **[CHANGELOG](docs/features/CHANGELOG.md)**.
|
||||
|
||||
# Troubleshooting
|
||||
### Troubleshooting
|
||||
|
||||
Please check out our **[Q&A](docs/help/TROUBLESHOOT.md)** to get solutions for common installation problems and other issues.
|
||||
Please check out our **[Q&A](docs/help/TROUBLESHOOT.md)** to get solutions for common installation
|
||||
problems and other issues.
|
||||
|
||||
# Contributing
|
||||
|
||||
Anyone who wishes to contribute to this project, whether documentation, features, bug fixes, code cleanup, testing, or code reviews, is very much encouraged to do so. If you are unfamiliar with
|
||||
how to contribute to GitHub projects, here is a [Getting Started Guide](https://opensource.com/article/19/7/create-pull-request-github).
|
||||
Anyone who wishes to contribute to this project, whether documentation, features, bug fixes, code
|
||||
cleanup, testing, or code reviews, is very much encouraged to do so. If you are unfamiliar with how
|
||||
to contribute to GitHub projects, here is a
|
||||
[Getting Started Guide](https://opensource.com/article/19/7/create-pull-request-github).
|
||||
|
||||
A full set of contribution guidelines, along with templates, are in progress, but for now the most important thing is to **make your pull request against the "development" branch**, and not against "main". This will help keep public breakage to a minimum and will allow you to propose more radical changes.
|
||||
A full set of contribution guidelines, along with templates, are in progress, but for now the most
|
||||
important thing is to **make your pull request against the "development" branch**, and not against
|
||||
"main". This will help keep public breakage to a minimum and will allow you to propose more radical
|
||||
changes.
|
||||
|
||||
## **Contributors**
|
||||
### Contributors
|
||||
|
||||
This fork is a combined effort of various people from across the world. [Check out the list of all these amazing people](docs/CONTRIBUTORS.md). We thank them for their time, hard work and effort.
|
||||
This fork is a combined effort of various people from across the world.
|
||||
[Check out the list of all these amazing people](docs/other/CONTRIBUTORS.md). We thank them for
|
||||
their time, hard work and effort.
|
||||
|
||||
# Support
|
||||
### Support
|
||||
|
||||
For support,
|
||||
please use this repository's GitHub Issues tracking service. Feel free
|
||||
to send me an email if you use and like the script.
|
||||
For support, please use this repository's GitHub Issues tracking service. Feel free to send me an
|
||||
email if you use and like the script.
|
||||
|
||||
Original portions of the software are Copyright (c) 2020 Lincoln D. Stein (https://github.com/lstein)
|
||||
Original portions of the software are Copyright (c) 2020
|
||||
[Lincoln D. Stein](https://github.com/lstein)
|
||||
|
||||
# Further Reading
|
||||
### Further Reading
|
||||
|
||||
Please see the original README for more information on this software
|
||||
and underlying algorithm, located in the file [README-CompViz.md](docs/README-CompViz.md).
|
||||
Please see the original README for more information on this software and underlying algorithm,
|
||||
located in the file [README-CompViz.md](docs/other/README-CompViz.md).
|
||||
|
49
backend/modules/create_cmd_parser.py
Normal file
@ -0,0 +1,49 @@
|
||||
import argparse
|
||||
import os
|
||||
from ldm.dream.args import PRECISION_CHOICES
|
||||
|
||||
|
||||
def create_cmd_parser():
|
||||
parser = argparse.ArgumentParser(description="InvokeAI web UI")
|
||||
parser.add_argument(
|
||||
"--host",
|
||||
type=str,
|
||||
help="The host to serve on",
|
||||
default="localhost",
|
||||
)
|
||||
parser.add_argument("--port", type=int, help="The port to serve on", default=9090)
|
||||
parser.add_argument(
|
||||
"--cors",
|
||||
nargs="*",
|
||||
type=str,
|
||||
help="Additional allowed origins, comma-separated",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--embedding_path",
|
||||
type=str,
|
||||
help="Path to a pre-trained embedding manager checkpoint - can only be set on command line",
|
||||
)
|
||||
# TODO: Can't get flask to serve images from any dir (saving to the dir does work when specified)
|
||||
# parser.add_argument(
|
||||
# "--output_dir",
|
||||
# default="outputs/",
|
||||
# type=str,
|
||||
# help="Directory for output images",
|
||||
# )
|
||||
parser.add_argument(
|
||||
"-v",
|
||||
"--verbose",
|
||||
action="store_true",
|
||||
help="Enables verbose logging",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--precision",
|
||||
dest="precision",
|
||||
type=str,
|
||||
choices=PRECISION_CHOICES,
|
||||
metavar="PRECISION",
|
||||
help=f'Set model precision. Defaults to auto selected based on device. Options: {", ".join(PRECISION_CHOICES)}',
|
||||
default="auto",
|
||||
)
|
||||
|
||||
return parser
|
61
backend/modules/parameters.py
Normal file
@ -0,0 +1,61 @@
|
||||
from modules.parse_seed_weights import parse_seed_weights
|
||||
import argparse
|
||||
|
||||
SAMPLER_CHOICES = [
|
||||
"ddim",
|
||||
"k_dpm_2_a",
|
||||
"k_dpm_2",
|
||||
"k_euler_a",
|
||||
"k_euler",
|
||||
"k_heun",
|
||||
"k_lms",
|
||||
"plms",
|
||||
]
|
||||
|
||||
|
||||
def parameters_to_command(params):
|
||||
"""
|
||||
Converts dict of parameters into a `dream.py` REPL command.
|
||||
"""
|
||||
|
||||
switches = list()
|
||||
|
||||
if "prompt" in params:
|
||||
switches.append(f'"{params["prompt"]}"')
|
||||
if "steps" in params:
|
||||
switches.append(f'-s {params["steps"]}')
|
||||
if "seed" in params:
|
||||
switches.append(f'-S {params["seed"]}')
|
||||
if "width" in params:
|
||||
switches.append(f'-W {params["width"]}')
|
||||
if "height" in params:
|
||||
switches.append(f'-H {params["height"]}')
|
||||
if "cfg_scale" in params:
|
||||
switches.append(f'-C {params["cfg_scale"]}')
|
||||
if "sampler_name" in params:
|
||||
switches.append(f'-A {params["sampler_name"]}')
|
||||
if "seamless" in params and params["seamless"] == True:
|
||||
switches.append(f"--seamless")
|
||||
if "init_img" in params and len(params["init_img"]) > 0:
|
||||
switches.append(f'-I {params["init_img"]}')
|
||||
if "init_mask" in params and len(params["init_mask"]) > 0:
|
||||
switches.append(f'-M {params["init_mask"]}')
|
||||
if "init_color" in params and len(params["init_color"]) > 0:
|
||||
switches.append(f'--init_color {params["init_color"]}')
|
||||
if "strength" in params and "init_img" in params:
|
||||
switches.append(f'-f {params["strength"]}')
|
||||
if "fit" in params and params["fit"] == True:
|
||||
switches.append(f"--fit")
|
||||
if "gfpgan_strength" in params and params["gfpgan_strength"]:
|
||||
switches.append(f'-G {params["gfpgan_strength"]}')
|
||||
if "upscale" in params and params["upscale"]:
|
||||
switches.append(f'-U {params["upscale"][0]} {params["upscale"][1]}')
|
||||
if "variation_amount" in params and params["variation_amount"] > 0:
|
||||
switches.append(f'-v {params["variation_amount"]}')
|
||||
if "with_variations" in params:
|
||||
seed_weight_pairs = ",".join(
|
||||
f"{seed}:{weight}" for seed, weight in params["with_variations"]
|
||||
)
|
||||
switches.append(f"-V {seed_weight_pairs}")
|
||||
|
||||
return " ".join(switches)
|
47
backend/modules/parse_seed_weights.py
Normal file
@ -0,0 +1,47 @@
|
||||
def parse_seed_weights(seed_weights):
|
||||
"""
|
||||
Accepts seed weights as string in "12345:0.1,23456:0.2,3456:0.3" format
|
||||
Validates them
|
||||
If valid: returns as [[12345, 0.1], [23456, 0.2], [3456, 0.3]]
|
||||
If invalid: returns False
|
||||
"""
|
||||
|
||||
# Must be a string
|
||||
if not isinstance(seed_weights, str):
|
||||
return False
|
||||
# String must not be empty
|
||||
if len(seed_weights) == 0:
|
||||
return False
|
||||
|
||||
pairs = []
|
||||
|
||||
for pair in seed_weights.split(","):
|
||||
split_values = pair.split(":")
|
||||
|
||||
# Seed and weight are required
|
||||
if len(split_values) != 2:
|
||||
return False
|
||||
|
||||
if len(split_values[0]) == 0 or len(split_values[1]) == 1:
|
||||
return False
|
||||
|
||||
# Try casting the seed to int and weight to float
|
||||
try:
|
||||
seed = int(split_values[0])
|
||||
weight = float(split_values[1])
|
||||
except ValueError:
|
||||
return False
|
||||
|
||||
# Seed must be 0 or above
|
||||
if not seed >= 0:
|
||||
return False
|
||||
|
||||
# Weight must be between 0 and 1
|
||||
if not (weight >= 0 and weight <= 1):
|
||||
return False
|
||||
|
||||
# This pair is valid
|
||||
pairs.append([seed, weight])
|
||||
|
||||
# All pairs are valid
|
||||
return pairs
|
767
backend/server.py
Normal file
@ -0,0 +1,767 @@
|
||||
import mimetypes
|
||||
import transformers
|
||||
import json
|
||||
import os
|
||||
import traceback
|
||||
import eventlet
|
||||
import glob
|
||||
import shlex
|
||||
import math
|
||||
import shutil
|
||||
import sys
|
||||
|
||||
sys.path.append(".")
|
||||
|
||||
from argparse import ArgumentTypeError
|
||||
from modules.create_cmd_parser import create_cmd_parser
|
||||
|
||||
parser = create_cmd_parser()
|
||||
opt = parser.parse_args()
|
||||
|
||||
|
||||
from flask_socketio import SocketIO
|
||||
from flask import Flask, send_from_directory, url_for, jsonify
|
||||
from pathlib import Path
|
||||
from PIL import Image
|
||||
from pytorch_lightning import logging
|
||||
from threading import Event
|
||||
from uuid import uuid4
|
||||
from send2trash import send2trash
|
||||
|
||||
|
||||
from ldm.generate import Generate
|
||||
from ldm.dream.restoration import Restoration
|
||||
from ldm.dream.pngwriter import PngWriter, retrieve_metadata
|
||||
from ldm.dream.args import APP_ID, APP_VERSION, calculate_init_img_hash
|
||||
from ldm.dream.conditioning import split_weighted_subprompts
|
||||
|
||||
from modules.parameters import parameters_to_command
|
||||
|
||||
|
||||
"""
|
||||
USER CONFIG
|
||||
"""
|
||||
if opt.cors and "*" in opt.cors:
|
||||
raise ArgumentTypeError('"*" is not an allowed CORS origin')
|
||||
|
||||
|
||||
output_dir = "outputs/" # Base output directory for images
|
||||
host = opt.host # Web & socket.io host
|
||||
port = opt.port # Web & socket.io port
|
||||
verbose = opt.verbose # enables copious socket.io logging
|
||||
precision = opt.precision
|
||||
embedding_path = opt.embedding_path
|
||||
additional_allowed_origins = (
|
||||
opt.cors if opt.cors else []
|
||||
) # additional CORS allowed origins
|
||||
model = "stable-diffusion-1.4"
|
||||
|
||||
"""
|
||||
END USER CONFIG
|
||||
"""
|
||||
|
||||
|
||||
print("* Initializing, be patient...\n")
|
||||
|
||||
|
||||
"""
|
||||
SERVER SETUP
|
||||
"""
|
||||
|
||||
|
||||
# fix missing mimetypes on windows due to registry wonkiness
|
||||
mimetypes.add_type("application/javascript", ".js")
|
||||
mimetypes.add_type("text/css", ".css")
|
||||
|
||||
app = Flask(__name__, static_url_path="", static_folder="../frontend/dist/")
|
||||
|
||||
|
||||
app.config["OUTPUTS_FOLDER"] = "../outputs"
|
||||
|
||||
|
||||
@app.route("/outputs/<path:filename>")
|
||||
def outputs(filename):
|
||||
return send_from_directory(app.config["OUTPUTS_FOLDER"], filename)
|
||||
|
||||
|
||||
@app.route("/", defaults={"path": ""})
|
||||
def serve(path):
|
||||
return send_from_directory(app.static_folder, "index.html")
|
||||
|
||||
|
||||
logger = True if verbose else False
|
||||
engineio_logger = True if verbose else False
|
||||
|
||||
# default 1,000,000, needs to be higher for socketio to accept larger images
|
||||
max_http_buffer_size = 10000000
|
||||
|
||||
cors_allowed_origins = [f"http://{host}:{port}"] + additional_allowed_origins
|
||||
|
||||
socketio = SocketIO(
|
||||
app,
|
||||
logger=logger,
|
||||
engineio_logger=engineio_logger,
|
||||
max_http_buffer_size=max_http_buffer_size,
|
||||
cors_allowed_origins=cors_allowed_origins,
|
||||
)
|
||||
|
||||
|
||||
"""
|
||||
END SERVER SETUP
|
||||
"""
|
||||
|
||||
|
||||
"""
|
||||
APP SETUP
|
||||
"""
|
||||
|
||||
|
||||
class CanceledException(Exception):
|
||||
pass
|
||||
|
||||
|
||||
try:
|
||||
gfpgan, codeformer, esrgan = None, None, None
|
||||
from ldm.dream.restoration.base import Restoration
|
||||
|
||||
restoration = Restoration()
|
||||
gfpgan, codeformer = restoration.load_face_restore_models()
|
||||
esrgan = restoration.load_esrgan()
|
||||
|
||||
# coreformer.process(self, image, strength, device, seed=None, fidelity=0.75)
|
||||
|
||||
except (ModuleNotFoundError, ImportError):
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
print(">> You may need to install the ESRGAN and/or GFPGAN modules")
|
||||
|
||||
canceled = Event()
|
||||
|
||||
# reduce logging outputs to error
|
||||
transformers.logging.set_verbosity_error()
|
||||
logging.getLogger("pytorch_lightning").setLevel(logging.ERROR)
|
||||
|
||||
# Initialize and load model
|
||||
generate = Generate(
|
||||
model,
|
||||
precision=precision,
|
||||
embedding_path=embedding_path,
|
||||
)
|
||||
generate.load_model()
|
||||
|
||||
|
||||
# location for "finished" images
|
||||
result_path = os.path.join(output_dir, "img-samples/")
|
||||
|
||||
# temporary path for intermediates
|
||||
intermediate_path = os.path.join(result_path, "intermediates/")
|
||||
|
||||
# path for user-uploaded init images and masks
|
||||
init_image_path = os.path.join(result_path, "init-images/")
|
||||
mask_image_path = os.path.join(result_path, "mask-images/")
|
||||
|
||||
# txt log
|
||||
log_path = os.path.join(result_path, "dream_log.txt")
|
||||
|
||||
# make all output paths
|
||||
[
|
||||
os.makedirs(path, exist_ok=True)
|
||||
for path in [result_path, intermediate_path, init_image_path, mask_image_path]
|
||||
]
|
||||
|
||||
|
||||
"""
|
||||
END APP SETUP
|
||||
"""
|
||||
|
||||
|
||||
"""
|
||||
SOCKET.IO LISTENERS
|
||||
"""
|
||||
|
||||
|
||||
@socketio.on("requestSystemConfig")
|
||||
def handle_request_capabilities():
|
||||
print(f">> System config requested")
|
||||
config = get_system_config()
|
||||
socketio.emit("systemConfig", config)
|
||||
|
||||
|
||||
@socketio.on("requestAllImages")
|
||||
def handle_request_all_images():
|
||||
print(f">> All images requested")
|
||||
paths = list(filter(os.path.isfile, glob.glob(result_path + "*.png")))
|
||||
paths.sort(key=lambda x: os.path.getmtime(x))
|
||||
image_array = []
|
||||
for path in paths:
|
||||
metadata = retrieve_metadata(path)
|
||||
image_array.append({"url": path, "metadata": metadata["sd-metadata"]})
|
||||
socketio.emit("galleryImages", {"images": image_array})
|
||||
eventlet.sleep(0)
|
||||
|
||||
|
||||
@socketio.on("generateImage")
|
||||
def handle_generate_image_event(
|
||||
generation_parameters, esrgan_parameters, gfpgan_parameters
|
||||
):
|
||||
print(
|
||||
f">> Image generation requested: {generation_parameters}\nESRGAN parameters: {esrgan_parameters}\nGFPGAN parameters: {gfpgan_parameters}"
|
||||
)
|
||||
generate_images(generation_parameters, esrgan_parameters, gfpgan_parameters)
|
||||
|
||||
|
||||
@socketio.on("runESRGAN")
|
||||
def handle_run_esrgan_event(original_image, esrgan_parameters):
|
||||
print(
|
||||
f'>> ESRGAN upscale requested for "{original_image["url"]}": {esrgan_parameters}'
|
||||
)
|
||||
progress = {
|
||||
"currentStep": 1,
|
||||
"totalSteps": 1,
|
||||
"currentIteration": 1,
|
||||
"totalIterations": 1,
|
||||
"currentStatus": "Preparing",
|
||||
"isProcessing": True,
|
||||
"currentStatusHasSteps": False,
|
||||
}
|
||||
|
||||
socketio.emit("progressUpdate", progress)
|
||||
eventlet.sleep(0)
|
||||
|
||||
image = Image.open(original_image["url"])
|
||||
|
||||
seed = (
|
||||
original_image["metadata"]["seed"]
|
||||
if "seed" in original_image["metadata"]
|
||||
else "unknown_seed"
|
||||
)
|
||||
|
||||
progress["currentStatus"] = "Upscaling"
|
||||
socketio.emit("progressUpdate", progress)
|
||||
eventlet.sleep(0)
|
||||
|
||||
image = esrgan.process(
|
||||
image=image,
|
||||
upsampler_scale=esrgan_parameters["upscale"][0],
|
||||
strength=esrgan_parameters["upscale"][1],
|
||||
seed=seed,
|
||||
)
|
||||
|
||||
progress["currentStatus"] = "Saving image"
|
||||
socketio.emit("progressUpdate", progress)
|
||||
eventlet.sleep(0)
|
||||
|
||||
esrgan_parameters["seed"] = seed
|
||||
metadata = parameters_to_post_processed_image_metadata(
|
||||
parameters=esrgan_parameters,
|
||||
original_image_path=original_image["url"],
|
||||
type="esrgan",
|
||||
)
|
||||
command = parameters_to_command(esrgan_parameters)
|
||||
|
||||
path = save_image(image, command, metadata, result_path, postprocessing="esrgan")
|
||||
|
||||
write_log_message(f'[Upscaled] "{original_image["url"]}" > "{path}": {command}')
|
||||
|
||||
progress["currentStatus"] = "Finished"
|
||||
progress["currentStep"] = 0
|
||||
progress["totalSteps"] = 0
|
||||
progress["currentIteration"] = 0
|
||||
progress["totalIterations"] = 0
|
||||
progress["isProcessing"] = False
|
||||
socketio.emit("progressUpdate", progress)
|
||||
eventlet.sleep(0)
|
||||
|
||||
socketio.emit(
|
||||
"esrganResult",
|
||||
{
|
||||
"url": os.path.relpath(path),
|
||||
"metadata": metadata,
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
@socketio.on("runGFPGAN")
|
||||
def handle_run_gfpgan_event(original_image, gfpgan_parameters):
|
||||
print(
|
||||
f'>> GFPGAN face fix requested for "{original_image["url"]}": {gfpgan_parameters}'
|
||||
)
|
||||
progress = {
|
||||
"currentStep": 1,
|
||||
"totalSteps": 1,
|
||||
"currentIteration": 1,
|
||||
"totalIterations": 1,
|
||||
"currentStatus": "Preparing",
|
||||
"isProcessing": True,
|
||||
"currentStatusHasSteps": False,
|
||||
}
|
||||
|
||||
socketio.emit("progressUpdate", progress)
|
||||
eventlet.sleep(0)
|
||||
|
||||
image = Image.open(original_image["url"])
|
||||
|
||||
seed = (
|
||||
original_image["metadata"]["seed"]
|
||||
if "seed" in original_image["metadata"]
|
||||
else "unknown_seed"
|
||||
)
|
||||
|
||||
progress["currentStatus"] = "Fixing faces"
|
||||
socketio.emit("progressUpdate", progress)
|
||||
eventlet.sleep(0)
|
||||
|
||||
image = gfpgan.process(
|
||||
image=image, strength=gfpgan_parameters["gfpgan_strength"], seed=seed
|
||||
)
|
||||
|
||||
progress["currentStatus"] = "Saving image"
|
||||
socketio.emit("progressUpdate", progress)
|
||||
eventlet.sleep(0)
|
||||
|
||||
gfpgan_parameters["seed"] = seed
|
||||
metadata = parameters_to_post_processed_image_metadata(
|
||||
parameters=gfpgan_parameters,
|
||||
original_image_path=original_image["url"],
|
||||
type="gfpgan",
|
||||
)
|
||||
command = parameters_to_command(gfpgan_parameters)
|
||||
|
||||
path = save_image(image, command, metadata, result_path, postprocessing="gfpgan")
|
||||
|
||||
write_log_message(f'[Fixed faces] "{original_image["url"]}" > "{path}": {command}')
|
||||
|
||||
progress["currentStatus"] = "Finished"
|
||||
progress["currentStep"] = 0
|
||||
progress["totalSteps"] = 0
|
||||
progress["currentIteration"] = 0
|
||||
progress["totalIterations"] = 0
|
||||
progress["isProcessing"] = False
|
||||
socketio.emit("progressUpdate", progress)
|
||||
eventlet.sleep(0)
|
||||
|
||||
socketio.emit(
|
||||
"gfpganResult",
|
||||
{
|
||||
"url": os.path.relpath(path),
|
||||
"metadata": metadata,
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
@socketio.on("cancel")
|
||||
def handle_cancel():
|
||||
print(f">> Cancel processing requested")
|
||||
canceled.set()
|
||||
socketio.emit("processingCanceled")
|
||||
|
||||
|
||||
# TODO: I think this needs a safety mechanism.
|
||||
@socketio.on("deleteImage")
|
||||
def handle_delete_image(path, uuid):
|
||||
print(f'>> Delete requested "{path}"')
|
||||
send2trash(path)
|
||||
socketio.emit("imageDeleted", {"url": path, "uuid": uuid})
|
||||
|
||||
|
||||
# TODO: I think this needs a safety mechanism.
|
||||
@socketio.on("uploadInitialImage")
|
||||
def handle_upload_initial_image(bytes, name):
|
||||
print(f'>> Init image upload requested "{name}"')
|
||||
uuid = uuid4().hex
|
||||
split = os.path.splitext(name)
|
||||
name = f"{split[0]}.{uuid}{split[1]}"
|
||||
file_path = os.path.join(init_image_path, name)
|
||||
os.makedirs(os.path.dirname(file_path), exist_ok=True)
|
||||
newFile = open(file_path, "wb")
|
||||
newFile.write(bytes)
|
||||
socketio.emit("initialImageUploaded", {"url": file_path, "uuid": ""})
|
||||
|
||||
|
||||
# TODO: I think this needs a safety mechanism.
|
||||
@socketio.on("uploadMaskImage")
|
||||
def handle_upload_mask_image(bytes, name):
|
||||
print(f'>> Mask image upload requested "{name}"')
|
||||
uuid = uuid4().hex
|
||||
split = os.path.splitext(name)
|
||||
name = f"{split[0]}.{uuid}{split[1]}"
|
||||
file_path = os.path.join(mask_image_path, name)
|
||||
os.makedirs(os.path.dirname(file_path), exist_ok=True)
|
||||
newFile = open(file_path, "wb")
|
||||
newFile.write(bytes)
|
||||
socketio.emit("maskImageUploaded", {"url": file_path, "uuid": ""})
|
||||
|
||||
|
||||
"""
|
||||
END SOCKET.IO LISTENERS
|
||||
"""
|
||||
|
||||
|
||||
"""
|
||||
ADDITIONAL FUNCTIONS
|
||||
"""
|
||||
|
||||
|
||||
def get_system_config():
|
||||
return {
|
||||
"model": "stable diffusion",
|
||||
"model_id": model,
|
||||
"model_hash": generate.model_hash,
|
||||
"app_id": APP_ID,
|
||||
"app_version": APP_VERSION,
|
||||
}
|
||||
|
||||
|
||||
def parameters_to_post_processed_image_metadata(parameters, original_image_path, type):
|
||||
# top-level metadata minus `image` or `images`
|
||||
metadata = get_system_config()
|
||||
|
||||
orig_hash = calculate_init_img_hash(original_image_path)
|
||||
|
||||
image = {"orig_path": original_image_path, "orig_hash": orig_hash}
|
||||
|
||||
if type == "esrgan":
|
||||
image["type"] = "esrgan"
|
||||
image["scale"] = parameters["upscale"][0]
|
||||
image["strength"] = parameters["upscale"][1]
|
||||
elif type == "gfpgan":
|
||||
image["type"] = "gfpgan"
|
||||
image["strength"] = parameters["gfpgan_strength"]
|
||||
else:
|
||||
raise TypeError(f"Invalid type: {type}")
|
||||
|
||||
metadata["image"] = image
|
||||
return metadata
|
||||
|
||||
|
||||
def parameters_to_generated_image_metadata(parameters):
|
||||
# top-level metadata minus `image` or `images`
|
||||
|
||||
metadata = get_system_config()
|
||||
# remove any image keys not mentioned in RFC #266
|
||||
rfc266_img_fields = [
|
||||
"type",
|
||||
"postprocessing",
|
||||
"sampler",
|
||||
"prompt",
|
||||
"seed",
|
||||
"variations",
|
||||
"steps",
|
||||
"cfg_scale",
|
||||
"step_number",
|
||||
"width",
|
||||
"height",
|
||||
"extra",
|
||||
"seamless",
|
||||
]
|
||||
|
||||
rfc_dict = {}
|
||||
|
||||
for item in parameters.items():
|
||||
key, value = item
|
||||
if key in rfc266_img_fields:
|
||||
rfc_dict[key] = value
|
||||
|
||||
postprocessing = []
|
||||
|
||||
# 'postprocessing' is either null or an
|
||||
if "gfpgan_strength" in parameters:
|
||||
|
||||
postprocessing.append(
|
||||
{"type": "gfpgan", "strength": float(parameters["gfpgan_strength"])}
|
||||
)
|
||||
|
||||
if "upscale" in parameters:
|
||||
postprocessing.append(
|
||||
{
|
||||
"type": "esrgan",
|
||||
"scale": int(parameters["upscale"][0]),
|
||||
"strength": float(parameters["upscale"][1]),
|
||||
}
|
||||
)
|
||||
|
||||
rfc_dict["postprocessing"] = postprocessing if len(postprocessing) > 0 else None
|
||||
|
||||
# semantic drift
|
||||
rfc_dict["sampler"] = parameters["sampler_name"]
|
||||
|
||||
# display weighted subprompts (liable to change)
|
||||
subprompts = split_weighted_subprompts(parameters["prompt"])
|
||||
subprompts = [{"prompt": x[0], "weight": x[1]} for x in subprompts]
|
||||
rfc_dict["prompt"] = subprompts
|
||||
|
||||
# 'variations' should always exist and be an array, empty or consisting of {'seed': seed, 'weight': weight} pairs
|
||||
variations = []
|
||||
|
||||
if "with_variations" in parameters:
|
||||
variations = [
|
||||
{"seed": x[0], "weight": x[1]} for x in parameters["with_variations"]
|
||||
]
|
||||
|
||||
rfc_dict["variations"] = variations
|
||||
|
||||
if "init_img" in parameters:
|
||||
rfc_dict["type"] = "img2img"
|
||||
rfc_dict["strength"] = parameters["strength"]
|
||||
rfc_dict["fit"] = parameters["fit"] # TODO: Noncompliant
|
||||
rfc_dict["orig_hash"] = calculate_init_img_hash(parameters["init_img"])
|
||||
rfc_dict["init_image_path"] = parameters["init_img"] # TODO: Noncompliant
|
||||
rfc_dict["sampler"] = "ddim" # TODO: FIX ME WHEN IMG2IMG SUPPORTS ALL SAMPLERS
|
||||
if "init_mask" in parameters:
|
||||
rfc_dict["mask_hash"] = calculate_init_img_hash(
|
||||
parameters["init_mask"]
|
||||
) # TODO: Noncompliant
|
||||
rfc_dict["mask_image_path"] = parameters["init_mask"] # TODO: Noncompliant
|
||||
else:
|
||||
rfc_dict["type"] = "txt2img"
|
||||
|
||||
metadata["image"] = rfc_dict
|
||||
|
||||
return metadata
|
||||
|
||||
|
||||
def make_unique_init_image_filename(name):
|
||||
uuid = uuid4().hex
|
||||
split = os.path.splitext(name)
|
||||
name = f"{split[0]}.{uuid}{split[1]}"
|
||||
return name
|
||||
|
||||
|
||||
def write_log_message(message, log_path=log_path):
|
||||
"""Logs the filename and parameters used to generate or process that image to log file"""
|
||||
message = f"{message}\n"
|
||||
with open(log_path, "a", encoding="utf-8") as file:
|
||||
file.writelines(message)
|
||||
|
||||
|
||||
def save_image(
|
||||
image, command, metadata, output_dir, step_index=None, postprocessing=False
|
||||
):
|
||||
pngwriter = PngWriter(output_dir)
|
||||
prefix = pngwriter.unique_prefix()
|
||||
|
||||
seed = "unknown_seed"
|
||||
|
||||
if "image" in metadata:
|
||||
if "seed" in metadata["image"]:
|
||||
seed = metadata["image"]["seed"]
|
||||
|
||||
filename = f"{prefix}.{seed}"
|
||||
|
||||
if step_index:
|
||||
filename += f".{step_index}"
|
||||
if postprocessing:
|
||||
filename += f".postprocessed"
|
||||
|
||||
filename += ".png"
|
||||
|
||||
path = pngwriter.save_image_and_prompt_to_png(
|
||||
image=image, dream_prompt=command, metadata=metadata, name=filename
|
||||
)
|
||||
|
||||
return path
|
||||
|
||||
|
||||
def calculate_real_steps(steps, strength, has_init_image):
|
||||
return math.floor(strength * steps) if has_init_image else steps
|
||||
|
||||
|
||||
def generate_images(generation_parameters, esrgan_parameters, gfpgan_parameters):
|
||||
canceled.clear()
|
||||
|
||||
step_index = 1
|
||||
prior_variations = (
|
||||
generation_parameters["with_variations"]
|
||||
if "with_variations" in generation_parameters
|
||||
else []
|
||||
)
|
||||
"""
|
||||
If a result image is used as an init image, and then deleted, we will want to be
|
||||
able to use it as an init image in the future. Need to copy it.
|
||||
|
||||
If the init/mask image doesn't exist in the init_image_path/mask_image_path,
|
||||
make a unique filename for it and copy it there.
|
||||
"""
|
||||
if "init_img" in generation_parameters:
|
||||
filename = os.path.basename(generation_parameters["init_img"])
|
||||
if not os.path.exists(os.path.join(init_image_path, filename)):
|
||||
unique_filename = make_unique_init_image_filename(filename)
|
||||
new_path = os.path.join(init_image_path, unique_filename)
|
||||
shutil.copy(generation_parameters["init_img"], new_path)
|
||||
generation_parameters["init_img"] = new_path
|
||||
if "init_mask" in generation_parameters:
|
||||
filename = os.path.basename(generation_parameters["init_mask"])
|
||||
if not os.path.exists(os.path.join(mask_image_path, filename)):
|
||||
unique_filename = make_unique_init_image_filename(filename)
|
||||
new_path = os.path.join(init_image_path, unique_filename)
|
||||
shutil.copy(generation_parameters["init_img"], new_path)
|
||||
generation_parameters["init_mask"] = new_path
|
||||
|
||||
totalSteps = calculate_real_steps(
|
||||
steps=generation_parameters["steps"],
|
||||
strength=generation_parameters["strength"]
|
||||
if "strength" in generation_parameters
|
||||
else None,
|
||||
has_init_image="init_img" in generation_parameters,
|
||||
)
|
||||
|
||||
progress = {
|
||||
"currentStep": 1,
|
||||
"totalSteps": totalSteps,
|
||||
"currentIteration": 1,
|
||||
"totalIterations": generation_parameters["iterations"],
|
||||
"currentStatus": "Preparing",
|
||||
"isProcessing": True,
|
||||
"currentStatusHasSteps": False,
|
||||
}
|
||||
|
||||
socketio.emit("progressUpdate", progress)
|
||||
eventlet.sleep(0)
|
||||
|
||||
def image_progress(sample, step):
|
||||
if canceled.is_set():
|
||||
raise CanceledException
|
||||
|
||||
nonlocal step_index
|
||||
nonlocal generation_parameters
|
||||
nonlocal progress
|
||||
|
||||
progress["currentStep"] = step + 1
|
||||
progress["currentStatus"] = "Generating"
|
||||
progress["currentStatusHasSteps"] = True
|
||||
|
||||
if (
|
||||
generation_parameters["progress_images"]
|
||||
and step % 5 == 0
|
||||
and step < generation_parameters["steps"] - 1
|
||||
):
|
||||
image = generate.sample_to_image(sample)
|
||||
path = save_image(
|
||||
image, generation_parameters, intermediate_path, step_index
|
||||
)
|
||||
|
||||
step_index += 1
|
||||
socketio.emit(
|
||||
"intermediateResult",
|
||||
{"url": os.path.relpath(path), "metadata": generation_parameters},
|
||||
)
|
||||
socketio.emit("progressUpdate", progress)
|
||||
eventlet.sleep(0)
|
||||
|
||||
def image_done(image, seed, first_seed):
|
||||
nonlocal generation_parameters
|
||||
nonlocal esrgan_parameters
|
||||
nonlocal gfpgan_parameters
|
||||
nonlocal progress
|
||||
|
||||
step_index = 1
|
||||
nonlocal prior_variations
|
||||
|
||||
progress["currentStatus"] = "Generation complete"
|
||||
socketio.emit("progressUpdate", progress)
|
||||
eventlet.sleep(0)
|
||||
|
||||
all_parameters = generation_parameters
|
||||
postprocessing = False
|
||||
|
||||
if (
|
||||
"variation_amount" in all_parameters
|
||||
and all_parameters["variation_amount"] > 0
|
||||
):
|
||||
first_seed = first_seed or seed
|
||||
this_variation = [[seed, all_parameters["variation_amount"]]]
|
||||
all_parameters["with_variations"] = prior_variations + this_variation
|
||||
|
||||
if esrgan_parameters:
|
||||
progress["currentStatus"] = "Upscaling"
|
||||
progress["currentStatusHasSteps"] = False
|
||||
socketio.emit("progressUpdate", progress)
|
||||
eventlet.sleep(0)
|
||||
|
||||
image = esrgan.process(
|
||||
image=image,
|
||||
upsampler_scale=esrgan_parameters["level"],
|
||||
strength=esrgan_parameters["strength"],
|
||||
seed=seed,
|
||||
)
|
||||
|
||||
postprocessing = True
|
||||
all_parameters["upscale"] = [
|
||||
esrgan_parameters["level"],
|
||||
esrgan_parameters["strength"],
|
||||
]
|
||||
|
||||
if gfpgan_parameters:
|
||||
progress["currentStatus"] = "Fixing faces"
|
||||
progress["currentStatusHasSteps"] = False
|
||||
socketio.emit("progressUpdate", progress)
|
||||
eventlet.sleep(0)
|
||||
|
||||
image = gfpgan.process(
|
||||
image=image, strength=gfpgan_parameters["strength"], seed=seed
|
||||
)
|
||||
postprocessing = True
|
||||
all_parameters["gfpgan_strength"] = gfpgan_parameters["strength"]
|
||||
|
||||
all_parameters["seed"] = first_seed
|
||||
progress["currentStatus"] = "Saving image"
|
||||
socketio.emit("progressUpdate", progress)
|
||||
eventlet.sleep(0)
|
||||
|
||||
metadata = parameters_to_generated_image_metadata(all_parameters)
|
||||
command = parameters_to_command(all_parameters)
|
||||
|
||||
path = save_image(
|
||||
image, command, metadata, result_path, postprocessing=postprocessing
|
||||
)
|
||||
|
||||
print(f'>> Image generated: "{path}"')
|
||||
write_log_message(f'[Generated] "{path}": {command}')
|
||||
|
||||
if progress["totalIterations"] > progress["currentIteration"]:
|
||||
progress["currentStep"] = 1
|
||||
progress["currentIteration"] += 1
|
||||
progress["currentStatus"] = "Iteration finished"
|
||||
progress["currentStatusHasSteps"] = False
|
||||
else:
|
||||
progress["currentStep"] = 0
|
||||
progress["totalSteps"] = 0
|
||||
progress["currentIteration"] = 0
|
||||
progress["totalIterations"] = 0
|
||||
progress["currentStatus"] = "Finished"
|
||||
progress["isProcessing"] = False
|
||||
|
||||
socketio.emit("progressUpdate", progress)
|
||||
eventlet.sleep(0)
|
||||
|
||||
socketio.emit(
|
||||
"generationResult",
|
||||
{"url": os.path.relpath(path), "metadata": metadata},
|
||||
)
|
||||
eventlet.sleep(0)
|
||||
|
||||
try:
|
||||
generate.prompt2image(
|
||||
**generation_parameters,
|
||||
step_callback=image_progress,
|
||||
image_callback=image_done,
|
||||
)
|
||||
|
||||
except KeyboardInterrupt:
|
||||
raise
|
||||
except CanceledException:
|
||||
pass
|
||||
except Exception as e:
|
||||
socketio.emit("error", {"message": (str(e))})
|
||||
print("\n")
|
||||
traceback.print_exc()
|
||||
print("\n")
|
||||
|
||||
|
||||
"""
|
||||
END ADDITIONAL FUNCTIONS
|
||||
"""
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(f">> Starting server at http://{host}:{port}")
|
||||
socketio.run(app, host=host, port=port)
|
57
docker-build/Dockerfile
Normal file
@ -0,0 +1,57 @@
|
||||
FROM debian
|
||||
|
||||
ARG gsd
|
||||
ENV GITHUB_STABLE_DIFFUSION $gsd
|
||||
|
||||
ARG rsd
|
||||
ENV REQS $rsd
|
||||
|
||||
ARG cs
|
||||
ENV CONDA_SUBDIR $cs
|
||||
|
||||
ENV PIP_EXISTS_ACTION="w"
|
||||
|
||||
# TODO: Optimize image size
|
||||
|
||||
SHELL ["/bin/bash", "-c"]
|
||||
|
||||
WORKDIR /
|
||||
RUN apt update && apt upgrade -y \
|
||||
&& apt install -y \
|
||||
git \
|
||||
libgl1-mesa-glx \
|
||||
libglib2.0-0 \
|
||||
pip \
|
||||
python3 \
|
||||
&& git clone $GITHUB_STABLE_DIFFUSION
|
||||
|
||||
# Install Anaconda or Miniconda
|
||||
COPY anaconda.sh .
|
||||
RUN bash anaconda.sh -b -u -p /anaconda && /anaconda/bin/conda init bash
|
||||
|
||||
# SD
|
||||
WORKDIR /stable-diffusion
|
||||
RUN source ~/.bashrc \
|
||||
&& conda create -y --name ldm && conda activate ldm \
|
||||
&& conda config --env --set subdir $CONDA_SUBDIR \
|
||||
&& pip3 install -r $REQS \
|
||||
&& pip3 install basicsr facexlib realesrgan \
|
||||
&& mkdir models/ldm/stable-diffusion-v1 \
|
||||
&& ln -s "/data/sd-v1-4.ckpt" models/ldm/stable-diffusion-v1/model.ckpt
|
||||
|
||||
# Face restoreation
|
||||
# by default expected in a sibling directory to stable-diffusion
|
||||
WORKDIR /
|
||||
RUN git clone https://github.com/TencentARC/GFPGAN.git
|
||||
|
||||
WORKDIR /GFPGAN
|
||||
RUN pip3 install -r requirements.txt \
|
||||
&& python3 setup.py develop \
|
||||
&& ln -s "/data/GFPGANv1.4.pth" experiments/pretrained_models/GFPGANv1.4.pth
|
||||
|
||||
WORKDIR /stable-diffusion
|
||||
RUN python3 scripts/preload_models.py
|
||||
|
||||
WORKDIR /
|
||||
COPY entrypoint.sh .
|
||||
ENTRYPOINT ["/entrypoint.sh"]
|
10
docker-build/entrypoint.sh
Executable file
@ -0,0 +1,10 @@
|
||||
#!/bin/bash
|
||||
|
||||
cd /stable-diffusion
|
||||
|
||||
if [ $# -eq 0 ]; then
|
||||
python3 scripts/dream.py --full_precision -o /data
|
||||
# bash
|
||||
else
|
||||
python3 scripts/dream.py --full_precision -o /data "$@"
|
||||
fi
|
@ -1,137 +0,0 @@
|
||||
# **Changelog**
|
||||
|
||||
## v1.13 (in process)
|
||||
|
||||
- Supports a Google Colab notebook for a standalone server running on Google hardware [Arturo Mendivil](https://github.com/artmen1516)
|
||||
- WebUI supports GFPGAN/ESRGAN facial reconstruction and upscaling [Kevin Gibbons](https://github.com/bakkot)
|
||||
- WebUI supports incremental display of in-progress images during generation [Kevin Gibbons](https://github.com/bakkot)
|
||||
- Output directory can be specified on the dream> command line.
|
||||
- The grid was displaying duplicated images when not enough images to fill the final row [Muhammad Usama](https://github.com/SMUsamaShah)
|
||||
- Can specify --grid on dream.py command line as the default.
|
||||
- Miscellaneous internal bug and stability fixes.
|
||||
|
||||
---
|
||||
|
||||
## v1.12 (28 August 2022)
|
||||
|
||||
- Improved file handling, including ability to read prompts from standard input.
|
||||
(kudos to [Yunsaki](https://github.com/yunsaki)
|
||||
- The web server is now integrated with the dream.py script. Invoke by adding --web to
|
||||
the dream.py command arguments.
|
||||
- Face restoration and upscaling via GFPGAN and Real-ESGAN are now automatically
|
||||
enabled if the GFPGAN directory is located as a sibling to Stable Diffusion.
|
||||
VRAM requirements are modestly reduced. Thanks to both [Blessedcoolant](https://github.com/blessedcoolant) and
|
||||
[Oceanswave](https://github.com/oceanswave) for their work on this.
|
||||
- You can now swap samplers on the dream> command line. [Blessedcoolant](https://github.com/blessedcoolant)
|
||||
|
||||
---
|
||||
|
||||
## v1.11 (26 August 2022)
|
||||
|
||||
- NEW FEATURE: Support upscaling and face enhancement using the GFPGAN module. (kudos to [Oceanswave](https://github.com/Oceanswave)
|
||||
- You now can specify a seed of -1 to use the previous image's seed, -2 to use the seed for the image generated before that, etc.
|
||||
Seed memory only extends back to the previous command, but will work on all images generated with the -n# switch.
|
||||
- Variant generation support temporarily disabled pending more general solution.
|
||||
- Created a feature branch named **yunsaki-morphing-dream** which adds experimental support for
|
||||
iteratively modifying the prompt and its parameters. Please see[ Pull Request #86](https://github.com/lstein/stable-diffusion/pull/86)
|
||||
for a synopsis of how this works. Note that when this feature is eventually added to the main branch, it will may be modified
|
||||
significantly.
|
||||
|
||||
---
|
||||
|
||||
## v1.10 (25 August 2022)
|
||||
|
||||
- A barebones but fully functional interactive web server for online generation of txt2img and img2img.
|
||||
|
||||
---
|
||||
|
||||
## v1.09 (24 August 2022)
|
||||
|
||||
- A new -v option allows you to generate multiple variants of an initial image
|
||||
in img2img mode. (kudos to [Oceanswave](https://github.com/Oceanswave). [
|
||||
See this discussion in the PR for examples and details on use](https://github.com/lstein/stable-diffusion/pull/71#issuecomment-1226700810))
|
||||
- Added ability to personalize text to image generation (kudos to [Oceanswave](https://github.com/Oceanswave) and [nicolai256](https://github.com/nicolai256))
|
||||
- Enabled all of the samplers from k_diffusion
|
||||
|
||||
---
|
||||
|
||||
## v1.08 (24 August 2022)
|
||||
|
||||
- Escape single quotes on the dream> command before trying to parse. This avoids
|
||||
parse errors.
|
||||
- Removed instruction to get Python3.8 as first step in Windows install.
|
||||
Anaconda3 does it for you.
|
||||
- Added bounds checks for numeric arguments that could cause crashes.
|
||||
- Cleaned up the copyright and license agreement files.
|
||||
|
||||
---
|
||||
|
||||
## v1.07 (23 August 2022)
|
||||
|
||||
- Image filenames will now never fill gaps in the sequence, but will be assigned the
|
||||
next higher name in the chosen directory. This ensures that the alphabetic and chronological
|
||||
sort orders are the same.
|
||||
|
||||
---
|
||||
|
||||
## v1.06 (23 August 2022)
|
||||
|
||||
- Added weighted prompt support contributed by [xraxra](https://github.com/xraxra)
|
||||
- Example of using weighted prompts to tweak a demonic figure contributed by [bmaltais](https://github.com/bmaltais)
|
||||
|
||||
---
|
||||
|
||||
## v1.05 (22 August 2022 - after the drop)
|
||||
|
||||
- Filenames now use the following formats:
|
||||
000010.95183149.png -- Two files produced by the same command (e.g. -n2),
|
||||
000010.26742632.png -- distinguished by a different seed.
|
||||
|
||||
000011.455191342.01.png -- Two files produced by the same command using
|
||||
000011.455191342.02.png -- a batch size>1 (e.g. -b2). They have the same seed.
|
||||
|
||||
000011.4160627868.grid#1-4.png -- a grid of four images (-g); the whole grid can
|
||||
be regenerated with the indicated key
|
||||
|
||||
- It should no longer be possible for one image to overwrite another
|
||||
- You can use the "cd" and "pwd" commands at the dream> prompt to set and retrieve
|
||||
the path of the output directory.
|
||||
|
||||
---
|
||||
|
||||
## v1.04 (22 August 2022 - after the drop)
|
||||
|
||||
- Updated README to reflect installation of the released weights.
|
||||
- Suppressed very noisy and inconsequential warning when loading the frozen CLIP
|
||||
tokenizer.
|
||||
|
||||
---
|
||||
|
||||
## v1.03 (22 August 2022)
|
||||
|
||||
- The original txt2img and img2img scripts from the CompViz repository have been moved into
|
||||
a subfolder named "orig_scripts", to reduce confusion.
|
||||
|
||||
---
|
||||
|
||||
## v1.02 (21 August 2022)
|
||||
|
||||
- A copy of the prompt and all of its switches and options is now stored in the corresponding
|
||||
image in a tEXt metadata field named "Dream". You can read the prompt using scripts/images2prompt.py,
|
||||
or an image editor that allows you to explore the full metadata.
|
||||
**Please run "conda env update -f environment.yaml" to load the k_lms dependencies!!**
|
||||
|
||||
---
|
||||
|
||||
## v1.01 (21 August 2022)
|
||||
|
||||
- added k_lms sampling.
|
||||
**Please run "conda env update -f environment.yaml" to load the k_lms dependencies!!**
|
||||
- use half precision arithmetic by default, resulting in faster execution and lower memory requirements
|
||||
Pass argument --full_precision to dream.py to get slower but more accurate image generation
|
||||
|
||||
---
|
||||
|
||||
## Links
|
||||
|
||||
- **[Read Me](../readme.md)**
|
BIN
docs/assets/join-us-on-discord-image.png
Normal file
After Width: | Height: | Size: 25 KiB |
Before Width: | Height: | Size: 22 KiB After Width: | Height: | Size: 22 KiB |
BIN
docs/assets/negative_prompt_walkthru/step1.png
Normal file
After Width: | Height: | Size: 451 KiB |
BIN
docs/assets/negative_prompt_walkthru/step2.png
Normal file
After Width: | Height: | Size: 453 KiB |
BIN
docs/assets/negative_prompt_walkthru/step3.png
Normal file
After Width: | Height: | Size: 463 KiB |
BIN
docs/assets/negative_prompt_walkthru/step4.png
Normal file
After Width: | Height: | Size: 435 KiB |
BIN
docs/assets/outpainting/elven_princess.outpainted.png
Normal file
After Width: | Height: | Size: 572 KiB |
BIN
docs/assets/outpainting/elven_princess.png
Normal file
After Width: | Height: | Size: 538 KiB |
Before Width: | Height: | Size: 643 KiB After Width: | Height: | Size: 643 KiB |
Before Width: | Height: | Size: 641 KiB After Width: | Height: | Size: 641 KiB |
Before Width: | Height: | Size: 174 KiB After Width: | Height: | Size: 174 KiB |
Before Width: | Height: | Size: 2.5 MiB After Width: | Height: | Size: 2.5 MiB |
Before Width: | Height: | Size: 2.5 MiB After Width: | Height: | Size: 2.5 MiB |
Before Width: | Height: | Size: 2.3 MiB After Width: | Height: | Size: 2.3 MiB |
Before Width: | Height: | Size: 70 KiB After Width: | Height: | Size: 70 KiB |
143
docs/features/CHANGELOG.md
Normal file
@ -0,0 +1,143 @@
|
||||
---
|
||||
title: Changelog
|
||||
---
|
||||
|
||||
# :octicons-log-16: Changelog
|
||||
|
||||
## v1.13 <small>(in process)</small>
|
||||
|
||||
- Supports a Google Colab notebook for a standalone server running on Google
|
||||
hardware [Arturo Mendivil](https://github.com/artmen1516)
|
||||
- WebUI supports GFPGAN/ESRGAN facial reconstruction and upscaling
|
||||
[Kevin Gibbons](https://github.com/bakkot)
|
||||
- WebUI supports incremental display of in-progress images during generation
|
||||
[Kevin Gibbons](https://github.com/bakkot)
|
||||
- Output directory can be specified on the dream> command line.
|
||||
- The grid was displaying duplicated images when not enough images to fill the
|
||||
final row [Muhammad Usama](https://github.com/SMUsamaShah)
|
||||
- Can specify --grid on dream.py command line as the default.
|
||||
- Miscellaneous internal bug and stability fixes.
|
||||
|
||||
---
|
||||
|
||||
## v1.12 <small>(28 August 2022)</small>
|
||||
|
||||
- Improved file handling, including ability to read prompts from standard input.
|
||||
(kudos to [Yunsaki](https://github.com/yunsaki)
|
||||
- The web server is now integrated with the dream.py script. Invoke by adding
|
||||
--web to the dream.py command arguments.
|
||||
- Face restoration and upscaling via GFPGAN and Real-ESGAN are now automatically
|
||||
enabled if the GFPGAN directory is located as a sibling to Stable Diffusion.
|
||||
VRAM requirements are modestly reduced. Thanks to both
|
||||
[Blessedcoolant](https://github.com/blessedcoolant) and
|
||||
[Oceanswave](https://github.com/oceanswave) for their work on this.
|
||||
- You can now swap samplers on the dream> command line.
|
||||
[Blessedcoolant](https://github.com/blessedcoolant)
|
||||
|
||||
---
|
||||
|
||||
## v1.11 <small>(26 August 2022)</small>
|
||||
|
||||
- NEW FEATURE: Support upscaling and face enhancement using the GFPGAN module.
|
||||
(kudos to [Oceanswave](https://github.com/Oceanswave))
|
||||
- You now can specify a seed of -1 to use the previous image's seed, -2 to use
|
||||
the seed for the image generated before that, etc. Seed memory only extends
|
||||
back to the previous command, but will work on all images generated with the
|
||||
-n# switch.
|
||||
- Variant generation support temporarily disabled pending more general solution.
|
||||
- Created a feature branch named **yunsaki-morphing-dream** which adds
|
||||
experimental support for iteratively modifying the prompt and its parameters.
|
||||
Please
|
||||
see[ Pull Request #86](https://github.com/lstein/stable-diffusion/pull/86) for
|
||||
a synopsis of how this works. Note that when this feature is eventually added
|
||||
to the main branch, it will may be modified significantly.
|
||||
|
||||
---
|
||||
|
||||
## v1.10 <small>(25 August 2022)</small>
|
||||
|
||||
- A barebones but fully functional interactive web server for online generation
|
||||
of txt2img and img2img.
|
||||
|
||||
---
|
||||
|
||||
## v1.09 <small>(24 August 2022)</small>
|
||||
|
||||
- A new -v option allows you to generate multiple variants of an initial image
|
||||
in img2img mode. (kudos to [Oceanswave](https://github.com/Oceanswave).
|
||||
- [See this discussion in the PR for examples and details on use](https://github.com/lstein/stable-diffusion/pull/71#issuecomment-1226700810))
|
||||
- Added ability to personalize text to image generation (kudos to
|
||||
[Oceanswave](https://github.com/Oceanswave) and
|
||||
[nicolai256](https://github.com/nicolai256))
|
||||
- Enabled all of the samplers from k_diffusion
|
||||
|
||||
---
|
||||
|
||||
## v1.08 <small>(24 August 2022)</small>
|
||||
|
||||
- Escape single quotes on the dream> command before trying to parse. This avoids
|
||||
parse errors.
|
||||
- Removed instruction to get Python3.8 as first step in Windows install.
|
||||
Anaconda3 does it for you.
|
||||
- Added bounds checks for numeric arguments that could cause crashes.
|
||||
- Cleaned up the copyright and license agreement files.
|
||||
|
||||
---
|
||||
|
||||
## v1.07 <small>(23 August 2022)</small>
|
||||
|
||||
- Image filenames will now never fill gaps in the sequence, but will be assigned
|
||||
the next higher name in the chosen directory. This ensures that the alphabetic
|
||||
and chronological sort orders are the same.
|
||||
|
||||
---
|
||||
|
||||
## v1.06 <small>(23 August 2022)</small>
|
||||
|
||||
- Added weighted prompt support contributed by
|
||||
[xraxra](https://github.com/xraxra)
|
||||
- Example of using weighted prompts to tweak a demonic figure contributed by
|
||||
[bmaltais](https://github.com/bmaltais)
|
||||
|
||||
---
|
||||
|
||||
## v1.05 <small>(22 August 2022 - after the drop)</small>
|
||||
|
||||
- Filenames now use the following formats: 000010.95183149.png -- Two files
|
||||
produced by the same command (e.g. -n2), 000010.26742632.png -- distinguished
|
||||
by a different seed.
|
||||
000011.455191342.01.png -- Two files produced by the same command using
|
||||
000011.455191342.02.png -- a batch size>1 (e.g. -b2). They have the same seed.
|
||||
000011.4160627868.grid#1-4.png -- a grid of four images (-g); the whole grid
|
||||
can be regenerated with the indicated key
|
||||
|
||||
- It should no longer be possible for one image to overwrite another
|
||||
- You can use the "cd" and "pwd" commands at the dream> prompt to set and
|
||||
retrieve the path of the output directory.
|
||||
|
||||
## v1.04 <small>(22 August 2022 - after the drop)</small>
|
||||
|
||||
- Updated README to reflect installation of the released weights.
|
||||
- Suppressed very noisy and inconsequential warning when loading the frozen CLIP
|
||||
tokenizer.
|
||||
|
||||
## v1.03 <small>(22 August 2022)</small>
|
||||
|
||||
- The original txt2img and img2img scripts from the CompViz repository have been
|
||||
moved into a subfolder named "orig_scripts", to reduce confusion.
|
||||
|
||||
## v1.02 <small>(21 August 2022)</small>
|
||||
|
||||
- A copy of the prompt and all of its switches and options is now stored in the
|
||||
corresponding image in a tEXt metadata field named "Dream". You can read the
|
||||
prompt using scripts/images2prompt.py, or an image editor that allows you to
|
||||
explore the full metadata. **Please run "conda env update -f environment.yaml"
|
||||
to load the k_lms dependencies!!**
|
||||
|
||||
## v1.01 <small>(21 August 2022)</small>
|
||||
|
||||
- added k_lms sampling. **Please run "conda env update -f environment.yaml" to
|
||||
load the k_lms dependencies!!**
|
||||
- use half precision arithmetic by default, resulting in faster execution and
|
||||
lower memory requirements Pass argument --full_precision to dream.py to get
|
||||
slower but more accurate image generation
|
@ -1,19 +1,39 @@
|
||||
# **Interactive Command-Line Interface**
|
||||
---
|
||||
title: CLI
|
||||
hide:
|
||||
- toc
|
||||
---
|
||||
|
||||
The `dream.py` script, located in `scripts/dream.py`, provides an interactive interface to image generation similar to the "dream mothership" bot that Stable AI provided on its Discord server.
|
||||
# :material-bash: CLI
|
||||
|
||||
Unlike the txt2img.py and img2img.py scripts provided in the original CompViz/stable-diffusion source code repository, the time-consuming initialization of the AI model initialization only happens once. After that image generation
|
||||
from the command-line interface is very fast.
|
||||
## **Interactive Command Line Interface**
|
||||
|
||||
The script uses the readline library to allow for in-line editing, command history (up and down arrows), autocompletion, and more. To help keep track of which prompts generated which images, the script writes a log file of image names and prompts to the selected output directory.
|
||||
The `dream.py` script, located in `scripts/dream.py`, provides an interactive
|
||||
interface to image generation similar to the "dream mothership" bot that Stable
|
||||
AI provided on its Discord server.
|
||||
|
||||
In addition, as of version 1.02, it also writes the prompt into the PNG file's metadata where it can be retrieved using scripts/images2prompt.py
|
||||
Unlike the `txt2img.py` and `img2img.py` scripts provided in the original
|
||||
[CompVis/stable-diffusion](https://github.com/CompVis/stable-diffusion) source
|
||||
code repository, the time-consuming initialization of the AI model
|
||||
initialization only happens once. After that image generation from the
|
||||
command-line interface is very fast.
|
||||
|
||||
The script uses the readline library to allow for in-line editing, command
|
||||
history (++up++ and ++down++), autocompletion, and more. To help keep track of
|
||||
which prompts generated which images, the script writes a log file of image
|
||||
names and prompts to the selected output directory.
|
||||
|
||||
In addition, as of version 1.02, it also writes the prompt into the PNG file's
|
||||
metadata where it can be retrieved using `scripts/images2prompt.py`
|
||||
|
||||
The script is confirmed to work on Linux, Windows and Mac systems.
|
||||
|
||||
_Note:_ This script runs from the command-line or can be used as a Web application. The Web GUI is currently rudimentary, but a much better replacement is on its way.
|
||||
!!! note
|
||||
|
||||
```
|
||||
This script runs from the command-line or can be used as a Web application. The Web GUI is
|
||||
currently rudimentary, but a much better replacement is on its way.
|
||||
|
||||
```bash
|
||||
(ldm) ~/stable-diffusion$ python3 ./scripts/dream.py
|
||||
* Initializing, be patient...
|
||||
Loading model from models/ldm/text2img-large/model.ckpt
|
||||
@ -37,53 +57,53 @@ dream> q
|
||||
00011.png: "there's a fly in my soup" -n6 -g -S 2685670268
|
||||
```
|
||||
|
||||
<p align='center'>
|
||||
<img src="../assets/dream-py-demo.png"/>
|
||||
</p>
|
||||
![dream-py-demo](../assets/dream-py-demo.png)
|
||||
|
||||
The `dream>` prompt's arguments are pretty much identical to those
|
||||
used in the Discord bot, except you don't need to type "!dream" (it
|
||||
doesn't hurt if you do). A significant change is that creation of
|
||||
individual images is now the default unless --grid (-g) is given. A
|
||||
full list is given in [List of prompt arguments]
|
||||
(#list-of-prompt-arguments).
|
||||
The `dream>` prompt's arguments are pretty much identical to those used in the
|
||||
Discord bot, except you don't need to type "!dream" (it doesn't hurt if you do).
|
||||
A significant change is that creation of individual images is now the default
|
||||
unless `--grid` (`-g`) is given. A full list is given in
|
||||
[List of prompt arguments](#list-of-prompt-arguments).
|
||||
|
||||
# Arguments
|
||||
## Arguments
|
||||
|
||||
The script itself also recognizes a series of command-line switches
|
||||
that will change important global defaults, such as the directory for
|
||||
image outputs and the location of the model weight files.
|
||||
The script itself also recognizes a series of command-line switches that will
|
||||
change important global defaults, such as the directory for image outputs and
|
||||
the location of the model weight files.
|
||||
|
||||
## List of arguments recognized at the command line:
|
||||
### List of arguments recognized at the command line
|
||||
|
||||
These command-line arguments can be passed to dream.py when you first
|
||||
run it from the Windows, Mac or Linux command line. Some set defaults
|
||||
that can be overridden on a per-prompt basis (see [List of prompt
|
||||
arguments] (#list-of-prompt-arguments). Others
|
||||
These command-line arguments can be passed to `dream.py` when you first run it
|
||||
from the Windows, Mac or Linux command line. Some set defaults that can be
|
||||
overridden on a per-prompt basis (see [List of prompt arguments]
|
||||
(#list-of-prompt-arguments). Others
|
||||
|
||||
| Argument | Shortcut | Default | Description |
|
||||
|--------------------|------------|---------------------|--------------|
|
||||
| --help | -h | | Print a concise help message. |
|
||||
| --outdir <path> | -o<path> | outputs/img_samples | Location for generated images. |
|
||||
| --prompt_as_dir | -p | False | Name output directories using the prompt text. |
|
||||
| --from_file <path> | | None | Read list of prompts from a file. Use "-" to read from standard input |
|
||||
| --model <modelname>| | stable-diffusion-1.4| Loads model specified in configs/models.yaml. Currently one of "stable-diffusion-1.4" or "laion400m"|
|
||||
| --full_precision | -F | False | Run in slower full-precision mode. Needed for Macintosh M1/M2 hardware and some older video cards. |
|
||||
| --web | | False | Start in web server mode |
|
||||
| --host <ip addr> | | localhost | Which network interface web server should listen on. Set to 0.0.0.0 to listen on any. |
|
||||
| --port <port> | | 9090 | Which port web server should listen for requests on. |
|
||||
| --config <path> | | configs/models.yaml | Configuration file for models and their weights. |
|
||||
| --iterations <int> | -n<int> | 1 | How many images to generate per prompt. |
|
||||
| --grid | -g | False | Save all image series as a grid rather than individually. |
|
||||
| --sampler <sampler>| -A<sampler>| k_lms | Sampler to use. Use -h to get list of available samplers. |
|
||||
| --seamless | | False | Create interesting effects by tiling elements of the image. |
|
||||
| --embedding_path <path>| | None | Path to pre-trained embedding manager checkpoints, for custom models |
|
||||
| --gfpgan_dir | | src/gfpgan | Path to where GFPGAN is installed. |
|
||||
| --gfpgan_model_path| | experiments/pretrained_models/GFPGANv1.3.pth| Path to GFPGAN model file, relative to --gfpgan_dir. |
|
||||
| --device <device> | -d<device>| torch.cuda.current_device() | Device to run SD on, e.g. "cuda:0" |
|
||||
| Argument <img width="240" align="right"/> | Shortcut <img width="100" align="right"/> | Default <img width="320" align="right"/> | Description |
|
||||
| ----------------------------------------- | ----------------------------------------- | ---------------------------------------------- | ---------------------------------------------------------------------------------------------------- |
|
||||
| `--help` | `-h` | | Print a concise help message. |
|
||||
| `--outdir <path>` | `-o<path>` | `outputs/img_samples` | Location for generated images. |
|
||||
| `--prompt_as_dir` | `-p` | `False` | Name output directories using the prompt text. |
|
||||
| `--from_file <path>` | | `None` | Read list of prompts from a file. Use `-` to read from standard input |
|
||||
| `--model <modelname>` | | `stable-diffusion-1.4` | Loads model specified in configs/models.yaml. Currently one of "stable-diffusion-1.4" or "laion400m" |
|
||||
| `--full_precision` | `-F` | `False` | Run in slower full-precision mode. Needed for Macintosh M1/M2 hardware and some older video cards. |
|
||||
| `--web` | | `False` | Start in web server mode |
|
||||
| `--host <ip addr>` | | `localhost` | Which network interface web server should listen on. Set to 0.0.0.0 to listen on any. |
|
||||
| `--port <port>` | | `9090` | Which port web server should listen for requests on. |
|
||||
| `--config <path>` | | `configs/models.yaml` | Configuration file for models and their weights. |
|
||||
| `--iterations <int>` | `-n<int>` | `1` | How many images to generate per prompt. |
|
||||
| `--grid` | `-g` | `False` | Save all image series as a grid rather than individually. |
|
||||
| `--sampler <sampler>` | `-A<sampler>` | `k_lms` | Sampler to use. Use `-h` to get list of available samplers. |
|
||||
| `--seamless` | | `False` | Create interesting effects by tiling elements of the image. |
|
||||
| `--embedding_path <path>` | | `None` | Path to pre-trained embedding manager checkpoints, for custom models |
|
||||
| `--gfpgan_dir` | | `src/gfpgan` | Path to where GFPGAN is installed. |
|
||||
| `--gfpgan_model_path` | | `experiments/pretrained_models/GFPGANv1.4.pth` | Path to GFPGAN model file, relative to `--gfpgan_dir`. |
|
||||
| `--device <device>` | `-d<device>` | `torch.cuda.current_device()` | Device to run SD on, e.g. "cuda:0" |
|
||||
|
||||
#### deprecated
|
||||
|
||||
These arguments are deprecated but still work:
|
||||
|
||||
|
||||
| Argument | Shortcut | Default | Description |
|
||||
|--------------------|------------|---------------------|--------------|
|
||||
| --weights <path> | | None | Pth to weights file; use `--model stable-diffusion-1.4` instead |
|
||||
@ -220,9 +240,8 @@ the path with a slash ("/") or "./". For example:
|
||||
dream> zebra with a mustache -I./test-pictures<TAB>
|
||||
-I./test-pictures/Lincoln-and-Parrot.png -I./test-pictures/zebra.jpg -I./test-pictures/madonna.png
|
||||
-I./test-pictures/bad-sketch.png -I./test-pictures/man_with_eagle/
|
||||
~~~
|
||||
```
|
||||
|
||||
You can then type "z", hit tab again, and it will autofill to "zebra.jpg".
|
||||
You can then type ++z++, hit ++tab++ again, and it will autofill to `zebra.jpg`.
|
||||
|
||||
More text completion features (such as autocompleting seeds) are on their way.
|
||||
|
||||
|
154
docs/features/EMBIGGEN.md
Normal file
@ -0,0 +1,154 @@
|
||||
---
|
||||
title: Embiggen
|
||||
---
|
||||
|
||||
# :material-loupe: Embiggen
|
||||
|
||||
**upscale your images on limited memory machines**
|
||||
|
||||
GFPGAN and Real-ESRGAN are both memory intensive. In order to avoid
|
||||
crashes and memory overloads during the Stable Diffusion process,
|
||||
these effects are applied after Stable Diffusion has completed its
|
||||
work.
|
||||
|
||||
In single image generations, you will see the output right away but
|
||||
when you are using multiple iterations, the images will first be
|
||||
generated and then upscaled and face restored after that process is
|
||||
complete. While the image generation is taking place, you will still
|
||||
be able to preview the base images.
|
||||
|
||||
If you wish to stop during the image generation but want to upscale or
|
||||
face restore a particular generated image, pass it again with the same
|
||||
prompt and generated seed along with the `-U` and `-G` prompt
|
||||
arguments to perform those actions.
|
||||
|
||||
## Embiggen
|
||||
|
||||
If you wanted to be able to do more (pixels) without running out of VRAM,
|
||||
or you want to upscale with details that couldn't possibly appear
|
||||
without the context of a prompt, this is the feature to try out.
|
||||
|
||||
Embiggen automates the process of taking an init image, upscaling it,
|
||||
cutting it into smaller tiles that slightly overlap, running all the
|
||||
tiles through img2img to refine details with respect to the prompt,
|
||||
and "stitching" the tiles back together into a cohesive image.
|
||||
|
||||
It automatically computes how many tiles are needed, and so it can be fed
|
||||
*ANY* size init image and perform Img2Img on it (though it will be run only
|
||||
one tile at a time, which can cause problems, see the Note at the end).
|
||||
|
||||
If you're familiar with "GoBig" (ala [progrock-stable](https://github.com/lowfuel/progrock-stable))
|
||||
it's similar to that, except it can work up to an arbitrarily large size
|
||||
(instead of just 2x), with tile overlaps configurable as a ratio, and
|
||||
has extra logic to re-run any number of the tile sub-sections of the image
|
||||
if for example a small part of a huge run got messed up.
|
||||
|
||||
## Usage
|
||||
|
||||
`-embiggen <scaling_factor> <esrgan_strength> <overlap_ratio OR overlap_pixels>`
|
||||
|
||||
Takes a scaling factor relative to the size of the `--init_img` (`-I`), followed by
|
||||
ESRGAN upscaling strength (0 - 1.0), followed by minimum amount of overlap
|
||||
between tiles as a decimal ratio (0 - 1.0) *OR* a number of pixels.
|
||||
|
||||
The scaling factor is how much larger than the `--init_img` the output
|
||||
should be, and will multiply both x and y axis, so an image that is a
|
||||
scaling factor of 3.0 has 3*3= 9 times as many pixels, and will take
|
||||
(at least) 9 times as long (see overlap for why it might be
|
||||
longer). If the `--init_img` is already the right size `-embiggen 1`,
|
||||
and it can also be less than one if the init_img is too big.
|
||||
|
||||
Esrgan_strength defaults to 0.75, and the overlap_ratio defaults to
|
||||
0.25, both are optional.
|
||||
|
||||
Unlike Img2Img, the `--width` (`-W`) and `--height` (`-H`) arguments
|
||||
do not control the size of the image as a whole, but the size of the
|
||||
tiles used to Embiggen the image.
|
||||
|
||||
ESRGAN is used to upscale the `--init_img` prior to cutting it into
|
||||
tiles/pieces to run through img2img and then stitch back
|
||||
together. Embiggen can be run without ESRGAN; just set the strength to
|
||||
zero (e.g. `-embiggen 1.75 0`). The output of Embiggen can also be
|
||||
upscaled after it's finished (`-U`).
|
||||
|
||||
The overlap is the minimum that tiles will overlap with adjacent
|
||||
tiles, specified as either a ratio or a number of pixels. How much the
|
||||
tiles overlap determines the likelihood the tiling will be noticable,
|
||||
really small overlaps (e.g. a couple of pixels) may produce noticeable
|
||||
grid-like fuzzy distortions in the final stitched image. Though, as
|
||||
the overlapping space doesn't contribute to making the image bigger,
|
||||
and the larger the overlap the more tiles (and the more time) it will
|
||||
take to finish.
|
||||
|
||||
Because the overlapping parts of tiles don't "contribute" to
|
||||
increasing size, every tile after the first in a row or column
|
||||
effectively only covers an extra `1 - overlap_ratio` on each axis. If
|
||||
the input/`--init_img` is same size as a tile, the ideal (for time)
|
||||
scaling factors with the default overlap (0.25) are 1.75, 2.5, 3.25,
|
||||
4.0 etc..
|
||||
|
||||
`-embiggen_tiles <spaced list of tiles>`
|
||||
|
||||
An advanced usage useful if you only want to alter parts of the image
|
||||
while running Embiggen. It takes a list of tiles by number to run and
|
||||
replace onto the initial image e.g. `1 3 5`. It's useful for either
|
||||
fixing problem spots from a previous Embiggen run, or selectively
|
||||
altering the prompt for sections of an image - for creative or
|
||||
coherency reasons.
|
||||
|
||||
Tiles are numbered starting with one, and left-to-right,
|
||||
top-to-bottom. So, if you are generating a 3x3 tiled image, the
|
||||
middle row would be `4 5 6`.
|
||||
|
||||
## Example Usage
|
||||
|
||||
Running Embiggen with 512x512 tiles on an existing image, scaling up by a factor of 2.5x;
|
||||
and doing the same again (default ESRGAN strength is 0.75, default overlap between tiles is 0.25):
|
||||
|
||||
```bash
|
||||
dream > a photo of a forest at sunset -s 100 -W 512 -H 512 -I outputs/forest.png -f 0.4 -embiggen 2.5
|
||||
dream > a photo of a forest at sunset -s 100 -W 512 -H 512 -I outputs/forest.png -f 0.4 -embiggen 2.5 0.75 0.25
|
||||
```
|
||||
|
||||
If your starting image was also 512x512 this should have taken 9 tiles.
|
||||
|
||||
If there weren't enough clouds in the sky of that forest you just made
|
||||
(and that image is about 1280 pixels (512*2.5) wide A.K.A. three
|
||||
512x512 tiles with 0.25 overlaps wide) we can replace that top row of
|
||||
tiles:
|
||||
|
||||
```bash
|
||||
dream> a photo of puffy clouds over a forest at sunset -s 100 -W 512 -H 512 -I outputs/000002.seed.png -f 0.5 -embiggen_tiles 1 2 3
|
||||
```
|
||||
|
||||
## Fixing Previously-Generated Images
|
||||
|
||||
It is easy to apply embiggen to any previously-generated file without having to
|
||||
look up the original prompt and provide an initial image. Just use the
|
||||
syntax `!fix path/to/file.png <embiggen>`. For example, you can rewrite the
|
||||
previous command to look like this:
|
||||
|
||||
~~~~
|
||||
dream> !fix ./outputs/000002.seed.png -embiggen_tiles 1 2 3
|
||||
~~~~
|
||||
|
||||
A new file named `000002.seed.fixed.png` will be created in the output directory. Note that
|
||||
the `!fix` command does not replace the original file, unlike the behavior at generate time.
|
||||
You do not need to provide the prompt, and `!fix` automatically selects a good strength for
|
||||
embiggen-ing.
|
||||
|
||||
|
||||
**Note**
|
||||
Because the same prompt is used on all the tiled images, and the model
|
||||
doesn't have the context of anything outside the tile being run - it
|
||||
can end up creating repeated pattern (also called 'motifs') across all
|
||||
the tiles based on that prompt. The best way to combat this is
|
||||
lowering the `--strength` (`-f`) to stay more true to the init image,
|
||||
and increasing the number of steps so there is more compute-time to
|
||||
create the detail. Anecdotally `--strength` 0.35-0.45 works pretty
|
||||
well on most things. It may also work great in some examples even with
|
||||
the `--strength` set high for patterns, landscapes, or subjects that
|
||||
are more abstract. Because this is (relatively) fast, you can also
|
||||
preserve the best parts from each.
|
||||
|
||||
Author: [Travco](https://github.com/travco)
|
@ -1,30 +1,30 @@
|
||||
# **Image-to-Image**
|
||||
---
|
||||
title: Image-to-Image
|
||||
---
|
||||
|
||||
This script also provides an img2img feature that lets you seed your
|
||||
creations with an initial drawing or photo. This is a really cool
|
||||
feature that tells stable diffusion to build the prompt on top of the
|
||||
image you provide, preserving the original's basic shape and
|
||||
layout. To use it, provide the `--init_img` option as shown here:
|
||||
# :material-image-multiple: **IMG2IMG**
|
||||
|
||||
```
|
||||
This script also provides an `img2img` feature that lets you seed your creations with an initial
|
||||
drawing or photo. This is a really cool feature that tells stable diffusion to build the prompt on
|
||||
top of the image you provide, preserving the original's basic shape and layout. To use it, provide
|
||||
the `--init_img` option as shown here:
|
||||
|
||||
```bash
|
||||
dream> "waterfall and rainbow" --init_img=./init-images/crude_drawing.png --strength=0.5 -s100 -n4
|
||||
```
|
||||
|
||||
The `--init_img (-I)` option gives the path to the seed
|
||||
picture. `--strength (-f)` controls how much the original will be
|
||||
modified, ranging from `0.0` (keep the original intact), to `1.0`
|
||||
(ignore the original completely). The default is `0.75`, and ranges
|
||||
from `0.25-0.75` give interesting results.
|
||||
The `--init_img (-I)` option gives the path to the seed picture. `--strength (-f)` controls how much
|
||||
the original will be modified, ranging from `0.0` (keep the original intact), to `1.0` (ignore the
|
||||
original completely). The default is `0.75`, and ranges from `0.25-0.75` give interesting results.
|
||||
|
||||
You may also pass a `-v<count>` option to generate count variants on
|
||||
You may also pass a `-v<variation_amount>` option to generate `-n<iterations>` count variants on
|
||||
the original image. This is done by passing the first generated image
|
||||
back into img2img the requested number of times. It generates
|
||||
interesting variants.
|
||||
|
||||
If the initial image contains transparent regions, then Stable
|
||||
Diffusion will only draw within the transparent regions, a process
|
||||
called "inpainting". However, for this to work correctly, the color
|
||||
information underneath the transparent needs to be preserved, not
|
||||
erased. See [Creating Transparent Images For
|
||||
Inpainting](./INPAINTING.md#creating-transparent-regions-for-inpainting)
|
||||
for details.
|
||||
If the initial image contains transparent regions, then Stable Diffusion will only draw within the
|
||||
transparent regions, a process called "inpainting". However, for this to work correctly, the color
|
||||
information underneath the transparent needs to be preserved, not erased.
|
||||
|
||||
More Details can be found here:
|
||||
[Creating Transparent Images For Inpainting](./INPAINTING.md#creating-transparent-regions-for-inpainting)
|
||||
|
@ -1,31 +1,35 @@
|
||||
# **Creating Transparent Regions for Inpainting**
|
||||
---
|
||||
title: Inpainting
|
||||
---
|
||||
|
||||
Inpainting is really cool. To do it, you start with an initial image
|
||||
and use a photoeditor to make one or more regions transparent
|
||||
(i.e. they have a "hole" in them). You then provide the path to this
|
||||
image at the dream> command line using the `-I` switch. Stable
|
||||
Diffusion will only paint within the transparent region.
|
||||
# :octicons-paintbrush-16: Inpainting
|
||||
|
||||
There's a catch. In the current implementation, you have to prepare
|
||||
the initial image correctly so that the underlying colors are
|
||||
preserved under the transparent area. Many imaging editing
|
||||
applications will by default erase the color information under the
|
||||
transparent pixels and replace them with white or black, which will
|
||||
lead to suboptimal inpainting. You also must take care to export the
|
||||
PNG file in such a way that the color information is preserved.
|
||||
## **Creating Transparent Regions for Inpainting**
|
||||
|
||||
If your photoeditor is erasing the underlying color information,
|
||||
`dream.py` will give you a big fat warning. If you can't find a way to
|
||||
coax your photoeditor to retain color values under transparent areas,
|
||||
then you can combine the `-I` and `-M` switches to provide both the
|
||||
original unedited image and the masked (partially transparent) image:
|
||||
Inpainting is really cool. To do it, you start with an initial image and use a photoeditor to make
|
||||
one or more regions transparent (i.e. they have a "hole" in them). You then provide the path to this
|
||||
image at the dream> command line using the `-I` switch. Stable Diffusion will only paint within the
|
||||
transparent region.
|
||||
|
||||
```
|
||||
dream> man with cat on shoulder -I./images/man.png -M./images/man-transparent.png
|
||||
There's a catch. In the current implementation, you have to prepare the initial image correctly so
|
||||
that the underlying colors are preserved under the transparent area. Many imaging editing
|
||||
applications will by default erase the color information under the transparent pixels and replace
|
||||
them with white or black, which will lead to suboptimal inpainting. You also must take care to
|
||||
export the PNG file in such a way that the color information is preserved.
|
||||
|
||||
If your photoeditor is erasing the underlying color information, `dream.py` will give you a big fat
|
||||
warning. If you can't find a way to coax your photoeditor to retain color values under transparent
|
||||
areas, then you can combine the `-I` and `-M` switches to provide both the original unedited image
|
||||
and the masked (partially transparent) image:
|
||||
|
||||
```bash
|
||||
dream> "man with cat on shoulder" -I./images/man.png -M./images/man-transparent.png
|
||||
```
|
||||
|
||||
We are hoping to get rid of the need for this workaround in an upcoming release.
|
||||
|
||||
---
|
||||
|
||||
## Recipe for GIMP
|
||||
|
||||
[GIMP](https://www.gimp.org/) is a popular Linux photoediting tool.
|
||||
@ -34,7 +38,7 @@ We are hoping to get rid of the need for this workaround in an upcoming release.
|
||||
2. Layer->Transparency->Add Alpha Channel
|
||||
3. Use lasoo tool to select region to mask
|
||||
4. Choose Select -> Float to create a floating selection
|
||||
5. Open the Layers toolbar (^L) and select "Floating Selection"
|
||||
5. Open the Layers toolbar (++ctrl+l++) and select "Floating Selection"
|
||||
6. Set opacity to 0%
|
||||
7. Export as PNG
|
||||
8. In the export dialogue, Make sure the "Save colour values from
|
||||
@ -44,35 +48,29 @@ We are hoping to get rid of the need for this workaround in an upcoming release.
|
||||
## Recipe for Adobe Photoshop
|
||||
|
||||
1. Open image in Photoshop
|
||||
<p align='left'>
|
||||
<img src="../assets/step1.png"/>
|
||||
</p>
|
||||
|
||||
![step1](../assets/step1.png)
|
||||
|
||||
2. Use any of the selection tools (Marquee, Lasso, or Wand) to select the area you desire to inpaint.
|
||||
<p align='left'>
|
||||
<img src="../assets/step2.png"/>
|
||||
</p>
|
||||
|
||||
3. Because we'll be applying a mask over the area we want to preserve, you should now select the inverse by using the Shift + Ctrl + I shortcut, or right clicking and using the "Select Inverse" option.
|
||||
![step2](../assets/step2.png)
|
||||
|
||||
4. You'll now create a mask by selecting the image layer, and Masking the selection. Make sure that you don't delete any of the underlying image, or your inpainting results will be dramatically impacted.
|
||||
<p align='left'>
|
||||
<img src="../assets/step4.png"/>
|
||||
</p>
|
||||
3. Because we'll be applying a mask over the area we want to preserve, you should now select the inverse by using the ++shift+ctrl+i++ shortcut, or right clicking and using the "Select Inverse" option.
|
||||
|
||||
4. You'll now create a mask by selecting the image layer, and Masking the selection. Make sure that you don't delete any of the undrlying image, or your inpainting results will be dramatically impacted.
|
||||
|
||||
![step4](../assets/step4.png)
|
||||
|
||||
5. Make sure to hide any background layers that are present. You should see the mask applied to your image layer, and the image on your canvas should display the checkered background.
|
||||
<p align='left'>
|
||||
<img src="../assets/step5.png"/>
|
||||
</p>
|
||||
|
||||
<p align='left'>
|
||||
<img src="../assets/step6.png"/>
|
||||
</p>
|
||||
![step5](../assets/step5.png)
|
||||
|
||||
6. Save the image as a transparent PNG by using the "Save a Copy" option in the File menu, or using the Alt + Ctrl + S keyboard shortcut.
|
||||
6. Save the image as a transparent PNG by using the "Save a Copy" option in the File menu, or using the Alt + Ctrl + S keyboard shortcut
|
||||
|
||||
![step6](../assets/step6.png)
|
||||
|
||||
7. After following the inpainting instructions above (either through the CLI or the Web UI), marvel at your newfound ability to selectively dream. Lookin' good!
|
||||
<p align='left'>
|
||||
<img src="../assets/step7.png"/>
|
||||
</p>
|
||||
|
||||
![step7](../assets/step7.png)
|
||||
|
||||
8. In the export dialogue, Make sure the "Save colour values from transparent pixels" checkbox is selected.
|
||||
|
@ -1,65 +1,47 @@
|
||||
---
|
||||
title: Others
|
||||
---
|
||||
|
||||
# :fontawesome-regular-share-from-square: Others
|
||||
|
||||
## **Google Colab**
|
||||
|
||||
Stable Diffusion AI Notebook: <a
|
||||
href="https://colab.research.google.com/github/lstein/stable-diffusion/blob/main/notebooks/Stable_Diffusion_AI_Notebook.ipynb"
|
||||
target="_parent"><img
|
||||
target="_parent">
|
||||
<img
|
||||
src="https://colab.research.google.com/assets/colab-badge.svg"
|
||||
alt="Open In Colab"/></a> <br> Open and follow instructions to use an
|
||||
isolated environment running Dream.<br>
|
||||
alt="Open In Colab"/></a> <br> Open and follow instructions to use an isolated environment running
|
||||
Dream.<br>
|
||||
|
||||
Output Example:
|
||||
![Colab Notebook](../assets/colab_notebook.png)
|
||||
Output Example: ![Colab Notebook](../assets/colab_notebook.png)
|
||||
|
||||
---
|
||||
|
||||
## **Seamless Tiling**
|
||||
|
||||
The seamless tiling mode causes generated images to seamlessly tile
|
||||
with itself. To use it, add the `--seamless` option when starting the
|
||||
script which will result in all generated images to tile, or for each
|
||||
`dream>` prompt as shown here:
|
||||
The seamless tiling mode causes generated images to seamlessly tile with itself. To use it, add the
|
||||
`--seamless` option when starting the script which will result in all generated images to tile, or
|
||||
for each `dream>` prompt as shown here:
|
||||
|
||||
```
|
||||
```python
|
||||
dream> "pond garden with lotus by claude monet" --seamless -s100 -n4
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## **Reading Prompts from a File**
|
||||
|
||||
You can automate `dream.py` by providing a text file with the prompts
|
||||
you want to run, one line per prompt. The text file must be composed
|
||||
with a text editor (e.g. Notepad) and not a word processor. Each line
|
||||
should look like what you would type at the dream> prompt:
|
||||
|
||||
```
|
||||
a beautiful sunny day in the park, children playing -n4 -C10
|
||||
stormy weather on a mountain top, goats grazing -s100
|
||||
innovative packaging for a squid's dinner -S137038382
|
||||
```
|
||||
|
||||
Then pass this file's name to `dream.py` when you invoke it:
|
||||
|
||||
```
|
||||
(ldm) ~/stable-diffusion$ python3 scripts/dream.py --from_file "path/to/prompts.txt"
|
||||
```
|
||||
|
||||
You may read a series of prompts from standard input by providing a filename of `-`:
|
||||
|
||||
```
|
||||
(ldm) ~/stable-diffusion$ echo "a beautiful day" | python3 scripts/dream.py --from_file -
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## **Shortcuts: Reusing Seeds**
|
||||
|
||||
Since it is so common to reuse seeds while refining a prompt, there is now a shortcut as of version 1.11. Provide a `**-S**` (or `**--seed**`)
|
||||
switch of `-1` to use the seed of the most recent image generated. If you produced multiple images with the `**-n**` switch, then you can go back further using -2, -3, etc. up to the first image generated by the previous command. Sorry, but you can't go back further than one command.
|
||||
Since it is so common to reuse seeds while refining a prompt, there is now a shortcut as of version
|
||||
1.11. Provide a `**-S**` (or `**--seed**`) switch of `-1` to use the seed of the most recent image
|
||||
generated. If you produced multiple images with the `**-n**` switch, then you can go back further
|
||||
using -2, -3, etc. up to the first image generated by the previous command. Sorry, but you can't go
|
||||
back further than one command.
|
||||
|
||||
Here's an example of using this to do a quick refinement. It also illustrates using the new `**-G**` switch to turn on upscaling and face enhancement (see previous section):
|
||||
Here's an example of using this to do a quick refinement. It also illustrates using the new `**-G**`
|
||||
switch to turn on upscaling and face enhancement (see previous section):
|
||||
|
||||
```
|
||||
```bash
|
||||
dream> a cute child playing hopscotch -G0.5
|
||||
[...]
|
||||
outputs/img-samples/000039.3498014304.png: "a cute child playing hopscotch" -s50 -W512 -H512 -C7.5 -mk_lms -S3498014304
|
||||
@ -73,29 +55,13 @@ outputs/img-samples/000040.3498014304.png: "a cute child playing hopscotch" -G1.
|
||||
|
||||
---
|
||||
|
||||
## **Weighted Prompts**
|
||||
|
||||
You may weight different sections of the prompt to tell the sampler to attach different levels of
|
||||
priority to them, by adding `:(number)` to the end of the section you wish to up- or downweight.
|
||||
For example consider this prompt:
|
||||
|
||||
```
|
||||
tabby cat:0.25 white duck:0.75 hybrid
|
||||
```
|
||||
|
||||
This will tell the sampler to invest 25% of its effort on the tabby
|
||||
cat aspect of the image and 75% on the white duck aspect
|
||||
(surprisingly, this example actually works). The prompt weights can
|
||||
use any combination of integers and floating point numbers, and they
|
||||
do not need to add up to 1.
|
||||
|
||||
---
|
||||
|
||||
## **Simplified API**
|
||||
|
||||
For programmers who wish to incorporate stable-diffusion into other products, this repository includes a simplified API for text to image generation, which lets you create images from a prompt in just three lines of code:
|
||||
For programmers who wish to incorporate stable-diffusion into other products, this repository
|
||||
includes a simplified API for text to image generation, which lets you create images from a prompt
|
||||
in just three lines of code:
|
||||
|
||||
```
|
||||
```bash
|
||||
from ldm.generate import Generate
|
||||
g = Generate()
|
||||
outputs = g.txt2img("a unicorn in manhattan")
|
||||
@ -109,16 +75,14 @@ Please see ldm/generate.py for more information. A set of example scripts is com
|
||||
|
||||
## **Preload Models**
|
||||
|
||||
In situations where you have limited internet connectivity or are
|
||||
blocked behind a firewall, you can use the preload script to preload
|
||||
the required files for Stable Diffusion to run.
|
||||
In situations where you have limited internet connectivity or are blocked behind a firewall, you can
|
||||
use the preload script to preload the required files for Stable Diffusion to run.
|
||||
|
||||
The preload script `scripts/preload_models.py` needs to be run once at
|
||||
least while connected to the internet. In the following runs, it will
|
||||
load up the cached versions of the required files from the `.cache`
|
||||
directory of the system.
|
||||
The preload script `scripts/preload_models.py` needs to be run once at least while connected to the
|
||||
internet. In the following runs, it will load up the cached versions of the required files from the
|
||||
`.cache` directory of the system.
|
||||
|
||||
```
|
||||
```bash
|
||||
(ldm) ~/stable-diffusion$ python3 ./scripts/preload_models.py
|
||||
preloading bert tokenizer...
|
||||
Downloading: 100%|██████████████████████████████████| 28.0/28.0 [00:00<00:00, 49.3kB/s]
|
||||
|
78
docs/features/OUTPAINTING.md
Normal file
@ -0,0 +1,78 @@
|
||||
---
|
||||
title: Outpainting
|
||||
---
|
||||
|
||||
# :octicons-paintbrush-16: Outpainting
|
||||
|
||||
## Continous outpainting
|
||||
|
||||
This extension uses the inpainting code to extend an existing image to
|
||||
any direction of "top", "right", "bottom" or "left". To use it you
|
||||
need to provide an initial image with -I and an extension direction
|
||||
with -D (direction). When extending using outpainting a higher img2img
|
||||
strength value of 0.83 is the default.
|
||||
|
||||
The code is not foolproof. Sometimes it will do a good job extending
|
||||
the image, and other times it will generate ghost images and other
|
||||
artifacts. In addition, the code works best on images that were
|
||||
generated by dream.py, because it will be able to recover the original
|
||||
prompt that generated the file and "understand" what you are trying to
|
||||
achieve.
|
||||
|
||||
### Basic Usage
|
||||
|
||||
To illustrate, consider this image generated with the prompt "fantasy
|
||||
portrait of eleven princess." It's nice, but rather annoying that the
|
||||
top of the head has been cropped off.
|
||||
|
||||
![elven_princess](../assets/outpainting/elven_princess.png)
|
||||
|
||||
We can fix that using the `!fix` command!
|
||||
|
||||
~~~~
|
||||
dream> !fix my_images/elven_princess.png -D top 50
|
||||
~~~~
|
||||
|
||||
This is telling dream.py to open up a rectangle 50 pixels high at the
|
||||
top of the image and outpaint into it. The result is:
|
||||
|
||||
![elven_princess.fixed](../assets/outpainting/elven_princess.outpainted.png)
|
||||
|
||||
Viola! You can similarly specify `bottom`, `left` or `right` to
|
||||
outpaint into these margins.
|
||||
|
||||
There are some limitations to be aware of:
|
||||
|
||||
1. You cannot change the size of the image rectangle. In the example,
|
||||
notice that the whole image is shifted downwards by 50 pixels, rather
|
||||
than the top being extended upwards.
|
||||
|
||||
2. Attempting to outpaint larger areas will frequently give rise to ugly
|
||||
ghosting effects.
|
||||
|
||||
3. For best results, try increasing the step number.
|
||||
|
||||
4. If you don't specify a pixel value in -D, it will default to half
|
||||
of the whole image, which is likely not what you want.
|
||||
|
||||
You can do more with `!fix` including upscaling and facial
|
||||
reconstruction of previously-generated images. See
|
||||
[./UPSCALE.md#fixing-previously-generated-images] for the details.
|
||||
|
||||
### Advanced Usage
|
||||
|
||||
For more control over the outpaintihg process, you can provide the
|
||||
`-D` option at image generation time. This allows you to apply all the
|
||||
controls, including the ability to resize the image and apply face-fixing
|
||||
and upscaling. For example:
|
||||
|
||||
~~~~
|
||||
dream> man with cat on shoulder -I./images/man.png -D bottom 100 -W960 -H960 -fit
|
||||
~~~~
|
||||
|
||||
Or even shorter, since the prompt is read from the metadata of the old image:
|
||||
|
||||
~~~~
|
||||
dream> -I./images/man.png -D bottom 100 -W960 -H960 -fit -U2 -G1
|
||||
~~~~
|
||||
|
90
docs/features/PROMPTS.md
Normal file
@ -0,0 +1,90 @@
|
||||
---
|
||||
title: Prompting Features
|
||||
---
|
||||
|
||||
# :octicons-command-palette-24: Prompting Features
|
||||
|
||||
## **Reading Prompts from a File**
|
||||
|
||||
You can automate `dream.py` by providing a text file with the prompts you want to run, one line per
|
||||
prompt. The text file must be composed with a text editor (e.g. Notepad) and not a word processor.
|
||||
Each line should look like what you would type at the dream> prompt:
|
||||
|
||||
```bash
|
||||
a beautiful sunny day in the park, children playing -n4 -C10
|
||||
stormy weather on a mountain top, goats grazing -s100
|
||||
innovative packaging for a squid's dinner -S137038382
|
||||
```
|
||||
|
||||
Then pass this file's name to `dream.py` when you invoke it:
|
||||
|
||||
```bash
|
||||
(ldm) ~/stable-diffusion$ python3 scripts/dream.py --from_file "path/to/prompts.txt"
|
||||
```
|
||||
|
||||
You may read a series of prompts from standard input by providing a filename of `-`:
|
||||
|
||||
```bash
|
||||
(ldm) ~/stable-diffusion$ echo "a beautiful day" | python3 scripts/dream.py --from_file -
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## **Weighted Prompts**
|
||||
|
||||
You may weight different sections of the prompt to tell the sampler to attach different levels of
|
||||
priority to them, by adding `:(number)` to the end of the section you wish to up- or downweight. For
|
||||
example consider this prompt:
|
||||
|
||||
```bash
|
||||
tabby cat:0.25 white duck:0.75 hybrid
|
||||
```
|
||||
|
||||
This will tell the sampler to invest 25% of its effort on the tabby cat aspect of the image and 75%
|
||||
on the white duck aspect (surprisingly, this example actually works). The prompt weights can use any
|
||||
combination of integers and floating point numbers, and they do not need to add up to 1.
|
||||
|
||||
---
|
||||
|
||||
## **Negative and Unconditioned Prompts**
|
||||
|
||||
Any words between a pair of square brackets will try and be ignored by Stable Diffusion's model during generation of images.
|
||||
|
||||
```bash
|
||||
this is a test prompt [not really] to make you understand [cool] how this works.
|
||||
```
|
||||
|
||||
In the above statement, the words 'not really cool` will be ignored by Stable Diffusion.
|
||||
|
||||
Here's a prompt that depicts what it does.
|
||||
|
||||
original prompt:
|
||||
|
||||
`#!bash "A fantastical translucent poney made of water and foam, ethereal, radiant, hyperalism, scottish folklore, digital painting, artstation, concept art, smooth, 8 k frostbite 3 engine, ultra detailed, art by artgerm and greg rutkowski and magali villeneuve" -s 20 -W 512 -H 768 -C 7.5 -A k_euler_a -S 1654590180`
|
||||
|
||||
![step1](../assets/negative_prompt_walkthru/step1.png)
|
||||
|
||||
That image has a woman, so if we want the horse without a rider, we can influence the image not to have a woman by putting [woman] in the prompt, like this:
|
||||
|
||||
`#!bash "A fantastical translucent poney made of water and foam, ethereal, radiant, hyperalism, scottish folklore, digital painting, artstation, concept art, smooth, 8 k frostbite 3 engine, ultra detailed, art by artgerm and greg rutkowski and magali villeneuve [woman]" -s 20 -W 512 -H 768 -C 7.5 -A k_euler_a -S 1654590180`
|
||||
|
||||
![step2](../assets/negative_prompt_walkthru/step2.png)
|
||||
|
||||
That's nice - but say we also don't want the image to be quite so blue. We can add "blue" to the list of negative prompts, so it's now [woman blue]:
|
||||
|
||||
`#!bash "A fantastical translucent poney made of water and foam, ethereal, radiant, hyperalism, scottish folklore, digital painting, artstation, concept art, smooth, 8 k frostbite 3 engine, ultra detailed, art by artgerm and greg rutkowski and magali villeneuve [woman blue]" -s 20 -W 512 -H 768 -C 7.5 -A k_euler_a -S 1654590180`
|
||||
|
||||
![step3](../assets/negative_prompt_walkthru/step3.png)
|
||||
|
||||
Getting close - but there's no sense in having a saddle when our horse doesn't have a rider, so we'll add one more negative prompt: [woman blue saddle].
|
||||
|
||||
`#!bash "A fantastical translucent poney made of water and foam, ethereal, radiant, hyperalism, scottish folklore, digital painting, artstation, concept art, smooth, 8 k frostbite 3 engine, ultra detailed, art by artgerm and greg rutkowski and magali villeneuve [woman blue saddle]" -s 20 -W 512 -H 768 -C 7.5 -A k_euler_a -S 1654590180`
|
||||
|
||||
![step4](../assets/negative_prompt_walkthru/step4.png)
|
||||
|
||||
!!! notes "Notes about this feature:"
|
||||
|
||||
* The only requirement for words to be ignored is that they are in between a pair of square brackets.
|
||||
* You can provide multiple words within the same bracket.
|
||||
* You can provide multiple brackets with multiple words in different places of your prompt. That works just fine.
|
||||
* To improve typical anatomy problems, you can add negative prompts like `[bad anatomy, extra legs, extra arms, extra fingers, poorly drawn hands, poorly drawn feet, disfigured, out of frame, tiling, bad art, deformed, mutated]`.
|
@ -1,70 +1,91 @@
|
||||
# **Personalizing Text-to-Image Generation**
|
||||
---
|
||||
title: TEXTUAL_INVERSION
|
||||
---
|
||||
|
||||
You may personalize the generated images to provide your own styles or objects by training a new LDM checkpoint and introducing a new vocabulary to the fixed model as a (.pt) embeddings file. Alternatively, you may use or train HuggingFace Concepts embeddings files (.bin) from https://huggingface.co/sd-concepts-library and its associated notebooks.
|
||||
# :material-file-document-plus-outline: TEXTUAL_INVERSION
|
||||
|
||||
**Training**
|
||||
## **Personalizing Text-to-Image Generation**
|
||||
|
||||
To train, prepare a folder that contains images sized at 512x512 and execute the following:
|
||||
You may personalize the generated images to provide your own styles or objects
|
||||
by training a new LDM checkpoint and introducing a new vocabulary to the fixed
|
||||
model as a (.pt) embeddings file. Alternatively, you may use or train
|
||||
HuggingFace Concepts embeddings files (.bin) from
|
||||
<https://huggingface.co/sd-concepts-library> and its associated notebooks.
|
||||
|
||||
**WINDOWS**: As the default backend is not available on Windows, if you're using that platform, set the environment variable `PL_TORCH_DISTRIBUTED_BACKEND=gloo`
|
||||
## **Training**
|
||||
|
||||
```
|
||||
(ldm) ~/stable-diffusion$ python3 ./main.py --base ./configs/stable-diffusion/v1-finetune.yaml \
|
||||
-t \
|
||||
To train, prepare a folder that contains images sized at 512x512 and execute the
|
||||
following:
|
||||
|
||||
### WINDOWS
|
||||
|
||||
As the default backend is not available on Windows, if you're using that
|
||||
platform, set the environment variable `PL_TORCH_DISTRIBUTED_BACKEND` to `gloo`
|
||||
|
||||
```bash
|
||||
python3 ./main.py --base ./configs/stable-diffusion/v1-finetune.yaml \
|
||||
--actual_resume ./models/ldm/stable-diffusion-v1/model.ckpt \
|
||||
-t \
|
||||
-n my_cat \
|
||||
--gpus 0, \
|
||||
--gpus 0 \
|
||||
--data_root D:/textual-inversion/my_cat \
|
||||
--init_word 'cat'
|
||||
```
|
||||
|
||||
During the training process, files will be created in
|
||||
/logs/[project][time][project]/ where you can see the process.
|
||||
`/logs/[project][time][project]/` where you can see the process.
|
||||
|
||||
Conditioning contains the training prompts inputs, reconstruction the
|
||||
input images for the training epoch samples, samples scaled for a
|
||||
sample of the prompt and one with the init word provided.
|
||||
Conditioning contains the training prompts inputs, reconstruction the input
|
||||
images for the training epoch samples, samples scaled for a sample of the prompt
|
||||
and one with the init word provided.
|
||||
|
||||
On a RTX3090, the process for SD will take ~1h @1.6 iterations/sec.
|
||||
|
||||
_Note_: According to the associated paper, the optimal number of
|
||||
!!! note
|
||||
|
||||
According to the associated paper, the optimal number of
|
||||
images is 3-5. Your model may not converge if you use more images than
|
||||
that.
|
||||
|
||||
Training will run indefinitely, but you may wish to stop it (with
|
||||
ctrl-c) before the heat death of the universe, when you find a low
|
||||
loss epoch or around ~5000 iterations. Note that you can set a fixed
|
||||
limit on the number of training steps by decreasing the "max_steps"
|
||||
option in configs/stable_diffusion/v1-finetune.yaml (currently set to
|
||||
4000000)
|
||||
Training will run indefinitely, but you may wish to stop it (with ctrl-c) before
|
||||
the heat death of the universe, when you find a low loss epoch or around ~5000
|
||||
iterations. Note that you can set a fixed limit on the number of training steps
|
||||
by decreasing the "max_steps" option in
|
||||
configs/stable_diffusion/v1-finetune.yaml (currently set to 4000000)
|
||||
|
||||
**Running**
|
||||
## **Run the Model**
|
||||
|
||||
Once the model is trained, specify the trained .pt or .bin file when
|
||||
starting dream using
|
||||
Once the model is trained, specify the trained .pt or .bin file when starting
|
||||
dream using
|
||||
|
||||
```
|
||||
(ldm) ~/stable-diffusion$ python3 ./scripts/dream.py --embedding_path /path/to/embedding.pt --full_precision
|
||||
```bash
|
||||
python3 ./scripts/dream.py --embedding_path /path/to/embedding.pt
|
||||
```
|
||||
|
||||
Then, to utilize your subject at the dream prompt
|
||||
|
||||
```
|
||||
```bash
|
||||
dream> "a photo of *"
|
||||
```
|
||||
|
||||
This also works with image2image
|
||||
|
||||
```
|
||||
```bash
|
||||
dream> "waterfall and rainbow in the style of *" --init_img=./init-images/crude_drawing.png --strength=0.5 -s100 -n4
|
||||
```
|
||||
|
||||
For .pt files it's also possible to train multiple tokens (modify the placeholder string in `configs/stable-diffusion/v1-finetune.yaml`) and combine LDM checkpoints using:
|
||||
For .pt files it's also possible to train multiple tokens (modify the
|
||||
placeholder string in `configs/stable-diffusion/v1-finetune.yaml`) and combine
|
||||
LDM checkpoints using:
|
||||
|
||||
```
|
||||
(ldm) ~/stable-diffusion$ python3 ./scripts/merge_embeddings.py \
|
||||
--manager_ckpts /path/to/first/embedding.pt /path/to/second/embedding.pt [...] \
|
||||
```bash
|
||||
python3 ./scripts/merge_embeddings.py \
|
||||
--manager_ckpts /path/to/first/embedding.pt \
|
||||
[</path/to/second/embedding.pt>,[...]] \
|
||||
--output_path /path/to/output/embedding.pt
|
||||
```
|
||||
|
||||
Credit goes to rinongal and the repository located at https://github.com/rinongal/textual_inversion Please see the repository and associated paper for details and limitations.
|
||||
Credit goes to rinongal and the repository
|
||||
|
||||
Please see [the repository](https://github.com/rinongal/textual_inversion) and
|
||||
associated paper for details and limitations.
|
||||
|
@ -1,105 +1,177 @@
|
||||
# **GFPGAN and Real-ESRGAN Support**
|
||||
---
|
||||
title: Upscale
|
||||
---
|
||||
|
||||
The script also provides the ability to do face restoration and
|
||||
upscaling with the help of GFPGAN and Real-ESRGAN respectively.
|
||||
## Intro
|
||||
|
||||
As of version 1.14, environment.yaml will install the Real-ESRGAN package into the
|
||||
standard install location for python packages, and will put GFPGAN into a subdirectory of "src"
|
||||
in the stable-diffusion directory.
|
||||
(The reason for this is that the standard GFPGAN distribution has a minor bug that adversely affects image
|
||||
color.) Upscaling with Real-ESRGAN should "just work" without further intervention. Simply pass the --upscale (-U)
|
||||
option on the dream> command line, or indicate the desired scale on the popup in the Web GUI.
|
||||
The script provides the ability to restore faces and upscale. You can apply
|
||||
these operations at the time you generate the images, or at any time to a
|
||||
previously-generated PNG file, using the
|
||||
[!fix](#fixing-previously-generated-images) command.
|
||||
|
||||
For **GFPGAN** to work, there is one additional step needed. You will need to download and
|
||||
copy the GFPGAN [models file](https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth)
|
||||
into **src/gfpgan/experiments/pretrained_models**. On Mac and Linux systems, here's how you'd do it using
|
||||
**wget**:
|
||||
~~~~
|
||||
> wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -P src/gfpgan/experiments/pretrained_models/
|
||||
~~~~
|
||||
## Face Fixing
|
||||
|
||||
The default face restoration module is GFPGAN. The default upscale is
|
||||
Real-ESRGAN. For an alternative face restoration module, see [CodeFormer
|
||||
Support] below.
|
||||
|
||||
As of version 1.14, environment.yaml will install the Real-ESRGAN package into
|
||||
the standard install location for python packages, and will put GFPGAN into a
|
||||
subdirectory of "src" in the stable-diffusion directory. (The reason for this is
|
||||
that the standard GFPGAN distribution has a minor bug that adversely affects
|
||||
image color.) Upscaling with Real-ESRGAN should "just work" without further
|
||||
intervention. Simply pass the --upscale (-U) option on the dream> command line,
|
||||
or indicate the desired scale on the popup in the Web GUI.
|
||||
|
||||
For **GFPGAN** to work, there is one additional step needed. You will need to
|
||||
download and copy the GFPGAN
|
||||
[models file](https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth)
|
||||
into **src/gfpgan/experiments/pretrained_models**. On Mac and Linux systems,
|
||||
here's how you'd do it using **wget**:
|
||||
|
||||
```bash
|
||||
> wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth src/gfpgan/experiments/pretrained_models/
|
||||
```
|
||||
|
||||
Make sure that you're in the stable-diffusion directory when you do this.
|
||||
|
||||
Alternatively, if you have GFPGAN installed elsewhere, or if you are using
|
||||
an earlier version of this package which asked you to install GFPGAN in a
|
||||
sibling directory, you may use the `--gfpgan_dir` argument with `dream.py` to set a
|
||||
custom path to your GFPGAN directory. _There are other GFPGAN related
|
||||
boot arguments if you wish to customize further._
|
||||
Alternatively, if you have GFPGAN installed elsewhere, or if you are using an
|
||||
earlier version of this package which asked you to install GFPGAN in a sibling
|
||||
directory, you may use the `--gfpgan_dir` argument with `dream.py` to set a
|
||||
custom path to your GFPGAN directory. _There are other GFPGAN related boot
|
||||
arguments if you wish to customize further._
|
||||
|
||||
**Note: Internet connection needed:**
|
||||
Users whose GPU machines are isolated from the Internet (e.g. on a
|
||||
University cluster) should be aware that the first time you run
|
||||
dream.py with GFPGAN and Real-ESRGAN turned on, it will try to
|
||||
download model files from the Internet. To rectify this, you may run
|
||||
`python3 scripts/preload_models.py` after you have installed GFPGAN
|
||||
and all its dependencies.
|
||||
!!! warning "Internet connection needed"
|
||||
|
||||
**Usage**
|
||||
Users whose GPU machines are isolated from the Internet (e.g.
|
||||
on a University cluster) should be aware that the first time you run dream.py with GFPGAN and
|
||||
Real-ESRGAN turned on, it will try to download model files from the Internet. To rectify this, you
|
||||
may run `python3 scripts/preload_models.py` after you have installed GFPGAN and all its
|
||||
dependencies.
|
||||
|
||||
## Usage
|
||||
|
||||
You will now have access to two new prompt arguments.
|
||||
|
||||
**Upscaling**
|
||||
### Upscaling
|
||||
|
||||
`-U : <upscaling_factor> <upscaling_strength>`
|
||||
|
||||
The upscaling prompt argument takes two values. The first value is a
|
||||
scaling factor and should be set to either `2` or `4` only. This will
|
||||
either scale the image 2x or 4x respectively using different models.
|
||||
The upscaling prompt argument takes two values. The first value is a scaling
|
||||
factor and should be set to either `2` or `4` only. This will either scale the
|
||||
image 2x or 4x respectively using different models.
|
||||
|
||||
You can set the scaling stength between `0` and `1.0` to control
|
||||
intensity of the of the scaling. This is handy because AI upscalers
|
||||
generally tend to smooth out texture details. If you wish to retain
|
||||
some of those for natural looking results, we recommend using values
|
||||
between `0.5 to 0.8`.
|
||||
You can set the scaling stength between `0` and `1.0` to control intensity of
|
||||
the of the scaling. This is handy because AI upscalers generally tend to smooth
|
||||
out texture details. If you wish to retain some of those for natural looking
|
||||
results, we recommend using values between `0.5 to 0.8`.
|
||||
|
||||
If you do not explicitly specify an upscaling_strength, it will
|
||||
default to 0.75.
|
||||
If you do not explicitly specify an upscaling_strength, it will default to 0.75.
|
||||
|
||||
**Face Restoration**
|
||||
### Face Restoration
|
||||
|
||||
`-G : <gfpgan_strength>`
|
||||
|
||||
This prompt argument controls the strength of the face restoration
|
||||
that is being applied. Similar to upscaling, values between `0.5 to 0.8` are recommended.
|
||||
This prompt argument controls the strength of the face restoration that is being
|
||||
applied. Similar to upscaling, values between `0.5 to 0.8` are recommended.
|
||||
|
||||
You can use either one or both without any conflicts. In cases where
|
||||
you use both, the image will be first upscaled and then the face
|
||||
restoration process will be executed to ensure you get the highest
|
||||
quality facial features.
|
||||
You can use either one or both without any conflicts. In cases where you use
|
||||
both, the image will be first upscaled and then the face restoration process
|
||||
will be executed to ensure you get the highest quality facial features.
|
||||
|
||||
`--save_orig`
|
||||
|
||||
When you use either `-U` or `-G`, the final result you get is upscaled
|
||||
or face modified. If you want to save the original Stable Diffusion
|
||||
generation, you can use the `-save_orig` prompt argument to save the
|
||||
original unaffected version too.
|
||||
When you use either `-U` or `-G`, the final result you get is upscaled or face
|
||||
modified. If you want to save the original Stable Diffusion generation, you can
|
||||
use the `-save_orig` prompt argument to save the original unaffected version
|
||||
too.
|
||||
|
||||
**Example Usage**
|
||||
### Example Usage
|
||||
|
||||
```
|
||||
```bash
|
||||
dream> superman dancing with a panda bear -U 2 0.6 -G 0.4
|
||||
```
|
||||
|
||||
This also works with img2img:
|
||||
|
||||
```
|
||||
```bash
|
||||
dream> a man wearing a pineapple hat -I path/to/your/file.png -U 2 0.5 -G 0.6
|
||||
```
|
||||
|
||||
**Note**
|
||||
!!! note
|
||||
|
||||
GFPGAN and Real-ESRGAN are both memory intensive. In order to avoid
|
||||
crashes and memory overloads during the Stable Diffusion process,
|
||||
these effects are applied after Stable Diffusion has completed its
|
||||
work.
|
||||
GFPGAN and Real-ESRGAN are both memory intensive. In order to avoid crashes and memory overloads
|
||||
during the Stable Diffusion process, these effects are applied after Stable Diffusion has completed
|
||||
its work.
|
||||
|
||||
In single image generations, you will see the output right away but
|
||||
when you are using multiple iterations, the images will first be
|
||||
generated and then upscaled and face restored after that process is
|
||||
complete. While the image generation is taking place, you will still
|
||||
be able to preview the base images.
|
||||
In single image generations, you will see the output right away but when you are using multiple
|
||||
iterations, the images will first be generated and then upscaled and face restored after that
|
||||
process is complete. While the image generation is taking place, you will still be able to preview
|
||||
the base images.
|
||||
|
||||
If you wish to stop during the image generation but want to upscale or
|
||||
face restore a particular generated image, pass it again with the same
|
||||
prompt and generated seed along with the `-U` and `-G` prompt
|
||||
arguments to perform those actions.
|
||||
If you wish to stop during the image generation but want to upscale or face
|
||||
restore a particular generated image, pass it again with the same prompt and
|
||||
generated seed along with the `-U` and `-G` prompt arguments to perform those
|
||||
actions.
|
||||
|
||||
## CodeFormer Support
|
||||
|
||||
This repo also allows you to perform face restoration using
|
||||
[CodeFormer](https://github.com/sczhou/CodeFormer).
|
||||
|
||||
In order to setup CodeFormer to work, you need to download the models like with
|
||||
GFPGAN. You can do this either by running `preload_models.py` or by manually
|
||||
downloading the
|
||||
[model file](https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth)
|
||||
and saving it to `ldm/restoration/codeformer/weights` folder.
|
||||
|
||||
You can use `-ft` prompt argument to swap between CodeFormer and the default
|
||||
GFPGAN. The above mentioned `-G` prompt argument will allow you to control the
|
||||
strength of the restoration effect.
|
||||
|
||||
### Usage:
|
||||
|
||||
The following command will perform face restoration with CodeFormer instead of
|
||||
the default gfpgan.
|
||||
|
||||
`<prompt> -G 0.8 -ft codeformer`
|
||||
|
||||
### Other Options:
|
||||
|
||||
- `-cf` - cf or CodeFormer Fidelity takes values between `0` and `1`. 0 produces
|
||||
high quality results but low accuracy and 1 produces lower quality results but
|
||||
higher accuacy to your original face.
|
||||
|
||||
The following command will perform face restoration with CodeFormer. CodeFormer
|
||||
will output a result that is closely matching to the input face.
|
||||
|
||||
`<prompt> -G 1.0 -ft codeformer -cf 0.9`
|
||||
|
||||
The following command will perform face restoration with CodeFormer. CodeFormer
|
||||
will output a result that is the best restoration possible. This may deviate
|
||||
slightly from the original face. This is an excellent option to use in
|
||||
situations when there is very little facial data to work with.
|
||||
|
||||
`<prompt> -G 1.0 -ft codeformer -cf 0.1`
|
||||
|
||||
## Fixing Previously-Generated Images
|
||||
|
||||
It is easy to apply face restoration and/or upscaling to any
|
||||
previously-generated file. Just use the syntax
|
||||
`!fix path/to/file.png <options>`. For example, to apply GFPGAN at strength 0.8
|
||||
and upscale 2X for a file named `./outputs/img-samples/000044.2945021133.png`,
|
||||
just run:
|
||||
|
||||
```
|
||||
dream> !fix ./outputs/img-samples/000044.2945021133.png -G 0.8 -U 2
|
||||
```
|
||||
|
||||
A new file named `000044.2945021133.fixed.png` will be created in the output
|
||||
directory. Note that the `!fix` command does not replace the original file,
|
||||
unlike the behavior at generate time.
|
||||
|
||||
### Disabling:
|
||||
|
||||
If, for some reason, you do not wish to load the GFPGAN and/or ESRGAN libraries,
|
||||
you can disable them on the dream.py command line with the `--no_restore` and
|
||||
`--no_upscale` options, respectively.
|
||||
|
@ -1,28 +1,39 @@
|
||||
# **Variations**
|
||||
---
|
||||
title: Variations
|
||||
---
|
||||
|
||||
# :material-tune-variant: Variations
|
||||
|
||||
## Intro
|
||||
|
||||
Release 1.13 of SD-Dream adds support for image variations.
|
||||
|
||||
You are able to do the following:
|
||||
|
||||
1. Generate a series of systematic variations of an image, given a prompt. The amount of variation from one image to the next can be controlled.
|
||||
1. Generate a series of systematic variations of an image, given a prompt. The
|
||||
amount of variation from one image to the next can be controlled.
|
||||
|
||||
2. Given two or more variations that you like, you can combine them in a weighted fashion.
|
||||
2. Given two or more variations that you like, you can combine them in a
|
||||
weighted fashion.
|
||||
|
||||
---
|
||||
|
||||
This cheat sheet provides a quick guide for how this works in practice, using variations to create the desired image of Xena, Warrior Princess.
|
||||
This cheat sheet provides a quick guide for how this works in practice, using
|
||||
variations to create the desired image of Xena, Warrior Princess.
|
||||
|
||||
---
|
||||
|
||||
## Step 1 -- Find a base image that you like
|
||||
|
||||
The prompt we will use throughout is `lucy lawless as xena, warrior princess, character portrait, high resolution.`
|
||||
The prompt we will use throughout is
|
||||
`lucy lawless as xena, warrior princess, character portrait, high resolution.`
|
||||
|
||||
This will be indicated as `prompt` in the examples below.
|
||||
|
||||
First we let SD create a series of images in the usual way, in this case requesting six iterations:
|
||||
First we let SD create a series of images in the usual way, in this case
|
||||
requesting six iterations:
|
||||
|
||||
```
|
||||
```bash
|
||||
dream> lucy lawless as xena, warrior princess, character portrait, high resolution -n6
|
||||
...
|
||||
Outputs:
|
||||
@ -34,19 +45,18 @@ Outputs:
|
||||
./outputs/Xena/000001.3357757885.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -S3357757885
|
||||
```
|
||||
|
||||
The one with seed 3357757885 looks nice:
|
||||
|
||||
<img src="../assets/variation_walkthru/000001.3357757885.png"/>
|
||||
![var1](../assets/variation_walkthru/000001.3357757885.png)
|
||||
|
||||
---
|
||||
|
||||
## Step 2 - Generating Variations
|
||||
|
||||
Let's try to generate some variations. Using the same seed, we pass the argument `-v0.1` (or --variant_amount), which generates a series of
|
||||
variations each differing by a variation amount of 0.2. This number ranges from `0` to `1.0`, with higher numbers being larger amounts of
|
||||
variation.
|
||||
Let's try to generate some variations. Using the same seed, we pass the argument
|
||||
`-v0.1` (or --variant_amount), which generates a series of variations each
|
||||
differing by a variation amount of 0.2. This number ranges from `0` to `1.0`,
|
||||
with higher numbers being larger amounts of variation.
|
||||
|
||||
```
|
||||
```bash
|
||||
dream> "prompt" -n6 -S3357757885 -v0.2
|
||||
...
|
||||
Outputs:
|
||||
@ -60,33 +70,42 @@ Outputs:
|
||||
|
||||
### **Variation Sub Seeding**
|
||||
|
||||
Note that the output for each image has a `-V` option giving the "variant subseed" for that image, consisting of a seed followed by the
|
||||
variation amount used to generate it.
|
||||
Note that the output for each image has a `-V` option giving the "variant
|
||||
subseed" for that image, consisting of a seed followed by the variation amount
|
||||
used to generate it.
|
||||
|
||||
This gives us a series of closely-related variations, including the two shown here.
|
||||
This gives us a series of closely-related variations, including the two shown
|
||||
here.
|
||||
|
||||
<img src="../assets/variation_walkthru/000002.3647897225.png">
|
||||
<img src="../assets/variation_walkthru/000002.1614299449.png">
|
||||
![var2](../assets/variation_walkthru/000002.3647897225.png)
|
||||
|
||||
I like the expression on Xena's face in the first one (subseed 3647897225), and the armor on her shoulder in the second one (subseed 1614299449). Can we combine them to get the best of both worlds?
|
||||
![var3](../assets/variation_walkthru/000002.1614299449.png)
|
||||
|
||||
We combine the two variations using `-V` (--with_variations). Again, we must provide the seed for the originally-chosen image in order for
|
||||
this to work.
|
||||
I like the expression on Xena's face in the first one (subseed 3647897225), and
|
||||
the armor on her shoulder in the second one (subseed 1614299449). Can we combine
|
||||
them to get the best of both worlds?
|
||||
|
||||
```
|
||||
dream> "prompt" -S3357757885 -V3647897225,0.1;1614299449,0.1
|
||||
We combine the two variations using `-V` (`--with_variations`). Again, we must
|
||||
provide the seed for the originally-chosen image in order for this to work.
|
||||
|
||||
```bash
|
||||
dream> "prompt" -S3357757885 -V3647897225,0.1,1614299449,0.1
|
||||
Outputs:
|
||||
./outputs/Xena/000003.1614299449.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 3647897225:0.1,1614299449:0.1 -S3357757885
|
||||
```
|
||||
|
||||
Here we are providing equal weights (0.1 and 0.1) for both the subseeds. The resulting image is close, but not exactly what I wanted:
|
||||
Here we are providing equal weights (0.1 and 0.1) for both the subseeds. The
|
||||
resulting image is close, but not exactly what I wanted:
|
||||
|
||||
<img src="../assets/variation_walkthru/000003.1614299449.png">
|
||||
![var4](../assets/variation_walkthru/000003.1614299449.png)
|
||||
|
||||
We could either try combining the images with different weights, or we can generate more variations around the almost-but-not-quite image. We do the latter, using both the `-V` (combining) and `-v` (variation strength) options. Note that we use `-n6` to generate 6 variations:
|
||||
We could either try combining the images with different weights, or we can
|
||||
generate more variations around the almost-but-not-quite image. We do the
|
||||
latter, using both the `-V` (combining) and `-v` (variation strength) options.
|
||||
Note that we use `-n6` to generate 6 variations:
|
||||
|
||||
```
|
||||
dream> "prompt" -S3357757885 -V3647897225,0.1;1614299449,0.1 -v0.05 -n6
|
||||
```bash
|
||||
dream> "prompt" -S3357757885 -V3647897225,0.1,1614299449,0.1 -v0.05 -n6
|
||||
Outputs:
|
||||
./outputs/Xena/000004.3279757577.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 3647897225:0.1,1614299449:0.1,3279757577:0.05 -S3357757885
|
||||
./outputs/Xena/000004.2853129515.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 3647897225:0.1,1614299449:0.1,2853129515:0.05 -S3357757885
|
||||
@ -96,9 +115,11 @@ Outputs:
|
||||
./outputs/Xena/000004.2183375608.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 3647897225:0.1,1614299449:0.1,2183375608:0.05 -S3357757885
|
||||
```
|
||||
|
||||
This produces six images, all slight variations on the combination of the chosen two images. Here's the one I like best:
|
||||
This produces six images, all slight variations on the combination of the chosen
|
||||
two images. Here's the one I like best:
|
||||
|
||||
<img src="../assets/variation_walkthru/000004.3747154981.png">
|
||||
![var5](../assets/variation_walkthru/000004.3747154981.png)
|
||||
|
||||
As you can see, this is a very powerful tool, which when combined with subprompt weighting, gives you great control over the content and
|
||||
quality of your generated images.
|
||||
As you can see, this is a very powerful tool, which when combined with subprompt
|
||||
weighting, gives you great control over the content and quality of your
|
||||
generated images.
|
||||
|
@ -1,13 +1,21 @@
|
||||
# Barebones Web Server
|
||||
---
|
||||
title: Barebones Web Server
|
||||
---
|
||||
|
||||
As of version 1.10, this distribution comes with a bare bones web server (see screenshot). To use it, run the `dream.py` script by adding the `**--web**` option.
|
||||
# :material-web: Barebones Web Server
|
||||
|
||||
```
|
||||
As of version 1.10, this distribution comes with a bare bones web server (see
|
||||
screenshot). To use it, run the `dream.py` script by adding the `--web`
|
||||
option.
|
||||
|
||||
```bash
|
||||
(ldm) ~/stable-diffusion$ python3 scripts/dream.py --web
|
||||
```
|
||||
|
||||
You can then connect to the server by pointing your web browser at http://localhost:9090, or to the network name or IP address of the server.
|
||||
You can then connect to the server by pointing your web browser at
|
||||
http://localhost:9090, or to the network name or IP address of the server.
|
||||
|
||||
Kudos to [Tesseract Cat](https://github.com/TesseractCat) for contributing this code, and to [dagf2101](https://github.com/dagf2101) for refining it.
|
||||
Kudos to [Tesseract Cat](https://github.com/TesseractCat) for contributing this
|
||||
code, and to [dagf2101](https://github.com/dagf2101) for refining it.
|
||||
|
||||
![Dream Web Server](../assets/dream_web_server.png)
|
||||
|
141
docs/help/SAMPLER_CONVERGENCE.md
Normal file
@ -0,0 +1,141 @@
|
||||
---
|
||||
title: SAMPLER CONVERGENCE
|
||||
---
|
||||
|
||||
## *Sampler Convergence*
|
||||
|
||||
As features keep increasing, making the right choices for your needs can become increasingly difficult. What sampler to use? And for how many steps? Do you change the CFG value? Do you use prompt weighting? Do you allow variations?
|
||||
|
||||
Even once you have a result, do you blend it with other images? Pass it through `img2img`? With what strength? Do you use inpainting to correct small details? Outpainting to extend cropped sections?
|
||||
|
||||
The purpose of this series of documents is to help you better understand these tools, so you can make the best out of them. Feel free to contribute with your own findings!
|
||||
|
||||
In this document, we will talk about sampler convergence.
|
||||
|
||||
Looking for a short version? Here's a TL;DR in 3 tables.
|
||||
|
||||
| Remember |
|
||||
|:---|
|
||||
| Results converge as steps (`-s`) are increased (except for `K_DPM_2_A` and `K_EULER_A`). Often at ≥ `-s100`, but may require ≥ `-s700`). |
|
||||
| Producing a batch of candidate images at low (`-s8` to `-s30`) step counts can save you hours of computation. |
|
||||
| `K_HEUN` and `K_DPM_2` converge in less steps (but are slower). |
|
||||
| `K_DPM_2_A` and `K_EULER_A` incorporate a lot of creativity/variability. |
|
||||
|
||||
| Sampler | (3 sample avg) it/s (M1 Max 64GB, 512x512) |
|
||||
|---|---|
|
||||
| `DDIM` | 1.89 |
|
||||
| `PLMS` | 1.86 |
|
||||
| `K_EULER` | 1.86 |
|
||||
| `K_LMS` | 1.91 |
|
||||
| `K_HEUN` | 0.95 (slower) |
|
||||
| `K_DPM_2` | 0.95 (slower) |
|
||||
| `K_DPM_2_A` | 0.95 (slower) |
|
||||
| `K_EULER_A` | 1.86 |
|
||||
|
||||
| Suggestions |
|
||||
|:---|
|
||||
| For most use cases, `K_LMS`, `K_HEUN` and `K_DPM_2` are the best choices (the latter 2 run 0.5x as quick, but tend to converge 2x as quick as `K_LMS`). At very low steps (≤ `-s8`), `K_HEUN` and `K_DPM_2` are not recommended. Use `K_LMS` instead.|
|
||||
| For variability, use `K_EULER_A` (runs 2x as quick as `K_DPM_2_A`). |
|
||||
|
||||
---
|
||||
|
||||
### *Sampler results*
|
||||
|
||||
Let's start by choosing a prompt and using it with each of our 8 samplers, running it for 10, 20, 30, 40, 50 and 100 steps.
|
||||
|
||||
Anime. `"an anime girl" -W512 -H512 -C7.5 -S3031912972`
|
||||
|
||||
![191636411-083c8282-6ed1-4f78-9273-ee87c0a0f1b6-min (1)](https://user-images.githubusercontent.com/50542132/191868725-7f7af991-e254-4c1f-83e7-bed8c9b2d34f.png)
|
||||
|
||||
### *Sampler convergence*
|
||||
|
||||
Immediately, you can notice results tend to converge -that is, as `-s` (step) values increase, images look more and more similar until there comes a point where the image no longer changes.
|
||||
|
||||
You can also notice how `DDIM` and `PLMS` eventually tend to converge to K-sampler results as steps are increased.
|
||||
Among K-samplers, `K_HEUN` and `K_DPM_2` seem to require the fewest steps to converge, and even at low step counts they are good indicators of the final result. And finally, `K_DPM_2_A` and `K_EULER_A` seem to do a bit of their own thing and don't keep much similarity with the rest of the samplers.
|
||||
|
||||
### *Batch generation speedup*
|
||||
|
||||
This realization is very useful because it means you don't need to create a batch of 100 images (`-n100`) at `-s100` to choose your favorite 2 or 3 images.
|
||||
You can produce the same 100 images at `-s10` to `-s30` using a K-sampler (since they converge faster), get a rough idea of the final result, choose your 2 or 3 favorite ones, and then run `-s100` on those images to polish some details.
|
||||
The latter technique is 3-8x as quick.
|
||||
|
||||
Example:
|
||||
|
||||
At 60s per 100 steps.
|
||||
|
||||
(Option A) 60s * 100 images = 6000s (100 images at `-s100`, manually picking 3 favorites)
|
||||
|
||||
(Option B) 6s * 100 images + 60s * 3 images = 780s (100 images at `-s10`, manually picking 3 favorites, and running those 3 at `-s100` to polish details)
|
||||
|
||||
The result is 1 hour and 40 minutes (Option A) vs 13 minutes (Option B).
|
||||
|
||||
### *Topic convergance*
|
||||
|
||||
Now, these results seem interesting, but do they hold for other topics? How about nature? Food? People? Animals? Let's try!
|
||||
|
||||
Nature. `"valley landscape wallpaper, d&d art, fantasy, painted, 4k, high detail, sharp focus, washed colors, elaborate excellent painted illustration" -W512 -H512 -C7.5 -S1458228930`
|
||||
|
||||
![191736091-dda76929-00d1-4590-bef4-7314ea4ea419-min (1)](https://user-images.githubusercontent.com/50542132/191868763-b151c69e-0a72-4cf1-a151-5a64edd0c93e.png)
|
||||
|
||||
With nature, you can see how initial results are even more indicative of final result -more so than with characters/people. `K_HEUN` and `K_DPM_2` are again the quickest indicators, almost right from the start. Results also converge faster (e.g. `K_HEUN` converged at `-s21`).
|
||||
|
||||
Food. `"a hamburger with a bowl of french fries" -W512 -H512 -C7.5 -S4053222918`
|
||||
|
||||
![191639011-f81d9d38-0a15-45f0-9442-a5e8d5c25f1f-min (1)](https://user-images.githubusercontent.com/50542132/191868898-98801a62-885f-4ea1-aee8-563503522aa9.png)
|
||||
|
||||
Again, `K_HEUN` and `K_DPM_2` take the fewest number of steps to be good indicators of the final result. `K_DPM_2_A` and `K_EULER_A` seem to incorporate a lot of creativity/variability, capable of producing rotten hamburgers, but also of adding lettuce to the mix. And they're the only samplers that produced an actual 'bowl of fries'!
|
||||
|
||||
Animals. `"grown tiger, full body" -W512 -H512 -C7.5 -S3721629802`
|
||||
|
||||
![191771922-6029a4f5-f707-4684-9011-c6f96e25fe56-min (1)](https://user-images.githubusercontent.com/50542132/191868870-9e3b7d82-b909-429f-893a-13f6ec343454.png)
|
||||
|
||||
`K_HEUN` and `K_DPM_2` once again require the least number of steps to be indicative of the final result (around `-s30`), while other samplers are still struggling with several tails or malformed back legs.
|
||||
|
||||
It also takes longer to converge (for comparison, `K_HEUN` required around 150 steps to converge). This is normal, as producing human/animal faces/bodies is one of the things the model struggles the most with. For these topics, running for more steps will often increase coherence within the composition.
|
||||
|
||||
People. `"Ultra realistic photo, (Miranda Bloom-Kerr), young, stunning model, blue eyes, blond hair, beautiful face, intricate, highly detailed, smooth, art by artgerm and greg rutkowski and alphonse mucha, stained glass" -W512 -H512 -C7.5 -S2131956332`. This time, we will go up to 300 steps.
|
||||
|
||||
![Screenshot 2022-09-23 at 02 05 48-min (1)](https://user-images.githubusercontent.com/50542132/191871743-6802f199-0ffd-4986-98c5-df2d8db30d18.png)
|
||||
|
||||
Observing the results, it again takes longer for all samplers to converge (`K_HEUN` took around 150 steps), but we can observe good indicative results much earlier (see: `K_HEUN`). Conversely, `DDIM` and `PLMS` are still undergoing moderate changes (see: lace around her neck), even at `-s300`.
|
||||
|
||||
In fact, as we can see in this other experiment, some samplers can take 700+ steps to converge when generating people.
|
||||
|
||||
![191988191-c586b75a-2d7f-4351-b705-83cc1149881a-min (1)](https://user-images.githubusercontent.com/50542132/191992123-7e0759d6-6220-42c4-a961-88c7071c5ee6.png)
|
||||
|
||||
Note also the point of convergence may not be the most desirable state (e.g. I prefer an earlier version of the face, more rounded), but it will probably be the most coherent arms/hands/face attributes-wise. You can always merge different images with a photo editing tool and pass it through `img2img` to smoothen the composition.
|
||||
|
||||
### *Sampler generation times*
|
||||
|
||||
Once we understand the concept of sampler convergence, we must look into the performance of each sampler in terms of steps (iterations) per second, as not all samplers run at the same speed.
|
||||
|
||||
On my M1 Max with 64GB of RAM, for a 512x512 image:
|
||||
| Sampler | (3 sample average) it/s |
|
||||
|---|---|
|
||||
| `DDIM` | 1.89 |
|
||||
| `PLMS` | 1.86 |
|
||||
| `K_EULER` | 1.86 |
|
||||
| `K_LMS` | 1.91 |
|
||||
| `K_HEUN` | 0.95 (slower) |
|
||||
| `K_DPM_2` | 0.95 (slower) |
|
||||
| `K_DPM_2_A` | 0.95 (slower) |
|
||||
| `K_EULER_A` | 1.86 |
|
||||
|
||||
Combining our results with the steps per second of each sampler, three choices come out on top: `K_LMS`, `K_HEUN` and `K_DPM_2` (where the latter two run 0.5x as quick but tend to converge 2x as quick as `K_LMS`). For creativity and a lot of variation between iterations, `K_EULER_A` can be a good choice (which runs 2x as quick as `K_DPM_2_A`).
|
||||
|
||||
Additionally, image generation at very low steps (≤ `-s8`) is not recommended for `K_HEUN` and `K_DPM_2`. Use `K_LMS` instead.
|
||||
|
||||
<img width="397" alt="192044949-67d5d441-a0d5-4d5a-be30-5dda4fc28a00-min" src="https://user-images.githubusercontent.com/50542132/192046823-2714cb29-bbf3-4eb1-9213-e27a0963905c.png">
|
||||
|
||||
### *Three key points*
|
||||
|
||||
Finally, it is relevant to mention that, in general, there are 3 important moments in the process of image formation as steps increase:
|
||||
|
||||
* The (earliest) point at which an image becomes a good indicator of the final result (useful for batch generation at low step values, to then improve the quality/coherence of the chosen images via running the same prompt and seed for more steps).
|
||||
|
||||
* The (earliest) point at which an image becomes coherent, even if different from the result if steps are increased (useful for batch generation at low step values, where quality/coherence is improved via techniques other than increasing the steps -e.g. via inpainting).
|
||||
|
||||
* The point at which an image fully converges.
|
||||
|
||||
Hence, remember that your workflow/strategy should define your optimal number of steps, even for the same prompt and seed (for example, if you seek full convergence, you may run `K_LMS` for `-s200` in the case of the red-haired girl, but `K_LMS` and `-s20`-taking one tenth the time- may do as well if your workflow includes adding small details, such as the missing shoulder strap, via `img2img`).
|
@ -1,68 +1,91 @@
|
||||
# **Frequently Asked Questions**
|
||||
---
|
||||
title: F.A.Q.
|
||||
---
|
||||
|
||||
Here are a few common installation problems and their solutions. Often these are caused by incomplete installations or crashes during the
|
||||
install process.
|
||||
# :material-frequently-asked-questions: F.A.Q.
|
||||
|
||||
## **Frequently-Asked-Questions**
|
||||
|
||||
Here are a few common installation problems and their solutions. Often these are caused by
|
||||
incomplete installations or crashes during the install process.
|
||||
|
||||
---
|
||||
|
||||
**QUESTION**
|
||||
### **QUESTION**
|
||||
|
||||
During `conda env create -f environment.yaml`, conda hangs indefinitely.
|
||||
|
||||
**SOLUTION**
|
||||
### **SOLUTION**
|
||||
|
||||
Enter the stable-diffusion directory and completely remove the `src` directory and all its contents. The safest way to do this is to enter the stable-diffusion directory and give the command `git clean -f`. If this still doesn't fix the problem, try "conda clean -all" and then restart at the `conda env create` step.
|
||||
Enter the stable-diffusion directory and completely remove the `src` directory and all its contents.
|
||||
The safest way to do this is to enter the stable-diffusion directory and give the command
|
||||
`git clean -f`. If this still doesn't fix the problem, try "conda clean -all" and then restart at
|
||||
the `conda env create` step.
|
||||
|
||||
---
|
||||
|
||||
**QUESTION**
|
||||
### **QUESTION**
|
||||
|
||||
`dream.py` crashes with the complaint that it can't find `ldm.simplet2i.py`. Or it complains that function is being passed incorrect parameters.
|
||||
`dream.py` crashes with the complaint that it can't find `ldm.simplet2i.py`. Or it complains that
|
||||
function is being passed incorrect parameters.
|
||||
|
||||
**SOLUTION**
|
||||
### **SOLUTION**
|
||||
|
||||
Reinstall the stable diffusion modules. Enter the `stable-diffusion` directory and give the command `pip install -e .`
|
||||
Reinstall the stable diffusion modules. Enter the `stable-diffusion` directory and give the command
|
||||
`pip install -e .`
|
||||
|
||||
---
|
||||
|
||||
**QUESTION**
|
||||
### **QUESTION**
|
||||
|
||||
`dream.py` dies, complaining of various missing modules, none of which starts with `ldm``.
|
||||
|
||||
**SOLUTION**
|
||||
### **SOLUTION**
|
||||
|
||||
From within the `stable-diffusion` directory, run `conda env update -f environment.yaml` This is also frequently the solution to
|
||||
complaints about an unknown function in a module.
|
||||
From within the `stable-diffusion` directory, run `conda env update -f environment.yaml` This is
|
||||
also frequently the solution to complaints about an unknown function in a module.
|
||||
|
||||
---
|
||||
|
||||
**QUESTION**
|
||||
### **QUESTION**
|
||||
|
||||
There's a feature or bugfix in the Stable Diffusion GitHub that you want to try out.
|
||||
|
||||
**SOLUTION**
|
||||
### **SOLUTION**
|
||||
|
||||
**Main Branch**
|
||||
#### **Main Branch**
|
||||
|
||||
If the fix/feature is on the `main` branch, enter the stable-diffusion directory and do a `git pull`.
|
||||
If the fix/feature is on the `main` branch, enter the stable-diffusion directory and do a
|
||||
`git pull`.
|
||||
|
||||
Usually this will be sufficient, but if you start to see errors about missing or incorrect modules, use the command `pip install -e .` and/or `conda env update -f environment.yaml` (These commands won't break anything.)
|
||||
Usually this will be sufficient, but if you start to see errors about missing or incorrect modules,
|
||||
use the command
|
||||
|
||||
**Sub Branch**
|
||||
`pip install -e .` and/or
|
||||
|
||||
If the feature/fix is on a branch (e.g. "_foo-bugfix_"), the recipe is similar, but do a `git pull <name of branch>`.
|
||||
`conda env update -f environment.yaml`
|
||||
|
||||
**Not Committed**
|
||||
(These commands won't break anything.)
|
||||
|
||||
If the feature/fix is in a pull request that has not yet been made part of the main branch or a feature/bugfix branch, then from the page for the desired pull request, look for the line at the top that reads "_xxxx wants to merge xx commits into lstein:main from YYYYYY_". Copy the URL in YYYY. It should have the format `https://github.com/<name of contributor>/stable-diffusion/tree/<name of branch>`
|
||||
#### **Sub Branch**
|
||||
|
||||
Then **go to the directory above stable-diffusion** and rename the directory to "_stable-diffusion.lstein_", "_stable-diffusion.old_", or anything else. You can then git clone the branch that contains the pull request:
|
||||
If the feature/fix is on a branch (e.g. "_foo-bugfix_"), the recipe is similar, but do a
|
||||
`git pull <name of branch>`.
|
||||
|
||||
```
|
||||
git clone https://github.com/<name of contributor>/stable-diffusion/tree/<name
|
||||
of branch>
|
||||
```
|
||||
#### **Not Committed**
|
||||
|
||||
You will need to go through the install procedure again, but it should be fast because all the dependencies are already loaded.
|
||||
If the feature/fix is in a pull request that has not yet been made part of the main branch or a
|
||||
feature/bugfix branch, then from the page for the desired pull request, look for the line at the top
|
||||
that reads "_xxxx wants to merge xx commits into lstein:main from YYYYYY_". Copy the URL in YYYY. It
|
||||
should have the format
|
||||
|
||||
---
|
||||
`https://github.com/<name of contributor>/stable-diffusion/tree/<name of branch>`
|
||||
|
||||
Then **go to the directory above stable-diffusion** and rename the directory to
|
||||
"_stable-diffusion.lstein_", "_stable-diffusion.old_", or anything else. You can then git clone the
|
||||
branch that contains the pull request:
|
||||
|
||||
`git clone https://github.com/<name of contributor>/stable-diffusion/tree/<name of branch>`
|
||||
|
||||
You will need to go through the install procedure again, but it should be fast because all the
|
||||
dependencies are already loaded.
|
||||
|
19
docs/index.html
Normal file
@ -0,0 +1,19 @@
|
||||
<!-- HTML for static distribution bundle build -->
|
||||
<!DOCTYPE html>
|
||||
<html lang="en">
|
||||
<head>
|
||||
<meta charset="UTF-8">
|
||||
<title>Swagger UI</title>
|
||||
<link rel="stylesheet" type="text/css" href="swagger-ui/swagger-ui.css" />
|
||||
<link rel="stylesheet" type="text/css" href="swagger-ui/index.css" />
|
||||
<link rel="icon" type="image/png" href="swagger-ui/favicon-32x32.png" sizes="32x32" />
|
||||
<link rel="icon" type="image/png" href="swagger-ui/favicon-16x16.png" sizes="16x16" />
|
||||
</head>
|
||||
|
||||
<body>
|
||||
<div id="swagger-ui"></div>
|
||||
<script src="swagger-ui/swagger-ui-bundle.js" charset="UTF-8"> </script>
|
||||
<script src="swagger-ui/swagger-ui-standalone-preset.js" charset="UTF-8"> </script>
|
||||
<script src="swagger-ui/swagger-initializer.js" charset="UTF-8"> </script>
|
||||
</body>
|
||||
</html>
|
168
docs/index.md
Normal file
@ -0,0 +1,168 @@
|
||||
---
|
||||
title: Home
|
||||
template: main.html
|
||||
---
|
||||
|
||||
<!--
|
||||
The Docs you find here (/docs/*) are built and deployed via mkdocs. If you want to run a local version to verify your changes, it's as simple as::
|
||||
|
||||
```bash
|
||||
pip install -r requirements-mkdocs.txt
|
||||
mkdocs serve
|
||||
```
|
||||
-->
|
||||
<div align="center" markdown>
|
||||
|
||||
# :material-script-text-outline: Stable Diffusion Dream Script
|
||||
|
||||
![project logo](assets/logo.png)
|
||||
|
||||
[![discord badge]][discord link]
|
||||
|
||||
[![latest release badge]][latest release link] [![github stars badge]][github stars link] [![github forks badge]][github forks link]
|
||||
|
||||
[![CI checks on main badge]][CI checks on main link] [![CI checks on dev badge]][CI checks on dev link] [![latest commit to dev badge]][latest commit to dev link]
|
||||
|
||||
[![github open issues badge]][github open issues link] [![github open prs badge]][github open prs link]
|
||||
|
||||
[CI checks on dev badge]: https://flat.badgen.net/github/checks/lstein/stable-diffusion/development?label=CI%20status%20on%20dev&cache=900&icon=github
|
||||
[CI checks on dev link]: https://github.com/lstein/stable-diffusion/actions?query=branch%3Adevelopment
|
||||
[CI checks on main badge]: https://flat.badgen.net/github/checks/lstein/stable-diffusion/main?label=CI%20status%20on%20main&cache=900&icon=github
|
||||
[CI checks on main link]: https://github.com/lstein/stable-diffusion/actions/workflows/test-dream-conda.yml
|
||||
[discord badge]: https://flat.badgen.net/discord/members/htRgbc7e?icon=discord
|
||||
[discord link]: https://discord.com/invite/htRgbc7e
|
||||
[github forks badge]: https://flat.badgen.net/github/forks/lstein/stable-diffusion?icon=github
|
||||
[github forks link]: https://useful-forks.github.io/?repo=lstein%2Fstable-diffusion
|
||||
[github open issues badge]: https://flat.badgen.net/github/open-issues/lstein/stable-diffusion?icon=github
|
||||
[github open issues link]: https://github.com/lstein/stable-diffusion/issues?q=is%3Aissue+is%3Aopen
|
||||
[github open prs badge]: https://flat.badgen.net/github/open-prs/lstein/stable-diffusion?icon=github
|
||||
[github open prs link]: https://github.com/lstein/stable-diffusion/pulls?q=is%3Apr+is%3Aopen
|
||||
[github stars badge]: https://flat.badgen.net/github/stars/lstein/stable-diffusion?icon=github
|
||||
[github stars link]: https://github.com/lstein/stable-diffusion/stargazers
|
||||
[latest commit to dev badge]: https://flat.badgen.net/github/last-commit/lstein/stable-diffusion/development?icon=github&color=yellow&label=last%20dev%20commit&cache=900
|
||||
[latest commit to dev link]: https://github.com/lstein/stable-diffusion/commits/development
|
||||
[latest release badge]: https://flat.badgen.net/github/release/lstein/stable-diffusion/development?icon=github
|
||||
[latest release link]: https://github.com/lstein/stable-diffusion/releases
|
||||
|
||||
</div>
|
||||
|
||||
This is a fork of [CompVis/stable-diffusion](https://github.com/CompVis/stable-diffusion), the open
|
||||
source text-to-image generator. It provides a streamlined process with various new features and
|
||||
options to aid the image generation process. It runs on Windows, Mac and Linux machines, and runs on
|
||||
GPU cards with as little as 4 GB or RAM.
|
||||
|
||||
!!! note
|
||||
|
||||
This fork is rapidly evolving. Please use the
|
||||
[Issues](https://github.com/lstein/stable-diffusion/issues) tab to report bugs and make feature
|
||||
requests. Be sure to use the provided templates. They will help aid diagnose issues faster.
|
||||
|
||||
## :octicons-package-dependencies-24: Installation
|
||||
|
||||
This fork is supported across multiple platforms. You can find individual installation instructions
|
||||
below.
|
||||
|
||||
- :fontawesome-brands-linux: [Linux](installation/INSTALL_LINUX.md)
|
||||
- :fontawesome-brands-windows: [Windows](installation/INSTALL_WINDOWS.md)
|
||||
- :fontawesome-brands-apple: [Macintosh](installation/INSTALL_MAC.md)
|
||||
|
||||
## :fontawesome-solid-computer: Hardware Requirements
|
||||
|
||||
### :octicons-cpu-24: System
|
||||
|
||||
You wil need one of the following:
|
||||
|
||||
- :simple-nvidia: An NVIDIA-based graphics card with 4 GB or more VRAM memory.
|
||||
- :fontawesome-brands-apple: An Apple computer with an M1 chip.
|
||||
|
||||
### :fontawesome-solid-memory: Memory
|
||||
|
||||
- At least 12 GB Main Memory RAM.
|
||||
|
||||
### :fontawesome-regular-hard-drive: Disk
|
||||
|
||||
- At least 6 GB of free disk space for the machine learning model, Python, and all its dependencies.
|
||||
|
||||
!!! note
|
||||
|
||||
If you are have a Nvidia 10xx series card (e.g. the 1080ti), please run the dream script in
|
||||
full-precision mode as shown below.
|
||||
|
||||
Similarly, specify full-precision mode on Apple M1 hardware.
|
||||
|
||||
To run in full-precision mode, start `dream.py` with the `--full_precision` flag:
|
||||
|
||||
```bash
|
||||
(ldm) ~/stable-diffusion$ python scripts/dream.py --full_precision
|
||||
```
|
||||
## :octicons-log-16: Latest Changes
|
||||
|
||||
### vNEXT <small>(TODO 2022)</small>
|
||||
|
||||
- Deprecated `--full_precision` / `-F`. Simply omit it and `dream.py` will auto
|
||||
configure. To switch away from auto use the new flag like `--precision=float32`.
|
||||
|
||||
### v1.14 <small>(11 September 2022)</small>
|
||||
|
||||
- Memory optimizations for small-RAM cards. 512x512 now possible on 4 GB GPUs.
|
||||
- Full support for Apple hardware with M1 or M2 chips.
|
||||
- Add "seamless mode" for circular tiling of image. Generates beautiful effects.
|
||||
([prixt](https://github.com/prixt)).
|
||||
- Inpainting support.
|
||||
- Improved web server GUI.
|
||||
- Lots of code and documentation cleanups.
|
||||
|
||||
### v1.13 <small>(3 September 2022</small>
|
||||
|
||||
- Support image variations (see [VARIATIONS](features/VARIATIONS.md)
|
||||
([Kevin Gibbons](https://github.com/bakkot) and many contributors and reviewers)
|
||||
- Supports a Google Colab notebook for a standalone server running on Google hardware
|
||||
[Arturo Mendivil](https://github.com/artmen1516)
|
||||
- WebUI supports GFPGAN/ESRGAN facial reconstruction and upscaling
|
||||
[Kevin Gibbons](https://github.com/bakkot)
|
||||
- WebUI supports incremental display of in-progress images during generation
|
||||
[Kevin Gibbons](https://github.com/bakkot)
|
||||
- A new configuration file scheme that allows new models (including upcoming stable-diffusion-v1.5)
|
||||
to be added without altering the code. ([David Wager](https://github.com/maddavid12))
|
||||
- Can specify --grid on dream.py command line as the default.
|
||||
- Miscellaneous internal bug and stability fixes.
|
||||
- Works on M1 Apple hardware.
|
||||
- Multiple bug fixes.
|
||||
|
||||
For older changelogs, please visit the **[CHANGELOG](features/CHANGELOG.md)**.
|
||||
|
||||
## :material-target: Troubleshooting
|
||||
|
||||
Please check out our **[:material-frequently-asked-questions: Q&A](help/TROUBLESHOOT.md)** to get solutions for common installation
|
||||
problems and other issues.
|
||||
|
||||
## :octicons-repo-push-24: Contributing
|
||||
|
||||
Anyone who wishes to contribute to this project, whether documentation, features, bug fixes, code
|
||||
cleanup, testing, or code reviews, is very much encouraged to do so. If you are unfamiliar with how
|
||||
to contribute to GitHub projects, here is a
|
||||
[Getting Started Guide](https://opensource.com/article/19/7/create-pull-request-github).
|
||||
|
||||
A full set of contribution guidelines, along with templates, are in progress, but for now the most
|
||||
important thing is to **make your pull request against the "development" branch**, and not against
|
||||
"main". This will help keep public breakage to a minimum and will allow you to propose more radical
|
||||
changes.
|
||||
|
||||
## :octicons-person-24: Contributors
|
||||
|
||||
This fork is a combined effort of various people from across the world.
|
||||
[Check out the list of all these amazing people](other/CONTRIBUTORS.md). We thank them for their
|
||||
time, hard work and effort.
|
||||
|
||||
## :octicons-question-24: Support
|
||||
|
||||
For support, please use this repository's GitHub Issues tracking service. Feel free to send me an
|
||||
email if you use and like the script.
|
||||
|
||||
Original portions of the software are Copyright (c) 2020
|
||||
[Lincoln D. Stein](https://github.com/lstein)
|
||||
|
||||
## :octicons-book-24: Further Reading
|
||||
|
||||
Please see the original README for more information on this software and underlying algorithm,
|
||||
located in the file [README-CompViz.md](other/README-CompViz.md).
|
255
docs/installation/INSTALL_DOCKER.md
Normal file
@ -0,0 +1,255 @@
|
||||
# Before you begin
|
||||
|
||||
- For end users: Install Stable Diffusion locally using the instructions for
|
||||
your OS.
|
||||
- For developers: For container-related development tasks or for enabling easy
|
||||
deployment to other environments (on-premises or cloud), follow these
|
||||
instructions. For general use, install locally to leverage your machine's GPU.
|
||||
|
||||
# Why containers?
|
||||
|
||||
They provide a flexible, reliable way to build and deploy Stable Diffusion.
|
||||
You'll also use a Docker volume to store the largest model files and image
|
||||
outputs as a first step in decoupling storage and compute. Future enhancements
|
||||
can do this for other assets. See [Processes](https://12factor.net/processes)
|
||||
under the Twelve-Factor App methodology for details on why running applications
|
||||
in such a stateless fashion is important.
|
||||
|
||||
You can specify the target platform when building the image and running the
|
||||
container. You'll also need to specify the Stable Diffusion requirements file
|
||||
that matches the container's OS and the architecture it will run on.
|
||||
|
||||
Developers on Apple silicon (M1/M2): You
|
||||
[can't access your GPU cores from Docker containers](https://github.com/pytorch/pytorch/issues/81224)
|
||||
and performance is reduced compared with running it directly on macOS but for
|
||||
development purposes it's fine. Once you're done with development tasks on your
|
||||
laptop you can build for the target platform and architecture and deploy to
|
||||
another environment with NVIDIA GPUs on-premises or in the cloud.
|
||||
|
||||
# Installation on a Linux container
|
||||
|
||||
## Prerequisites
|
||||
|
||||
### Get the data files
|
||||
|
||||
Go to
|
||||
[Hugging Face](https://huggingface.co/CompVis/stable-diffusion-v-1-4-original),
|
||||
and click "Access repository" to Download the model file `sd-v1-4.ckpt` (~4 GB)
|
||||
to `~/Downloads`. You'll need to create an account but it's quick and free.
|
||||
|
||||
Also download the face restoration model.
|
||||
|
||||
```Shell
|
||||
cd ~/Downloads
|
||||
wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth
|
||||
```
|
||||
|
||||
### Install [Docker](https://github.com/santisbon/guides#docker)
|
||||
|
||||
On the Docker Desktop app, go to Preferences, Resources, Advanced. Increase the
|
||||
CPUs and Memory to avoid this
|
||||
[Issue](https://github.com/invoke-ai/InvokeAI/issues/342). You may need to
|
||||
increase Swap and Disk image size too.
|
||||
|
||||
## Setup
|
||||
|
||||
Set the fork you want to use and other variables.
|
||||
|
||||
```Shell
|
||||
TAG_STABLE_DIFFUSION="santisbon/stable-diffusion"
|
||||
PLATFORM="linux/arm64"
|
||||
GITHUB_STABLE_DIFFUSION="-b orig-gfpgan https://github.com/santisbon/stable-diffusion.git"
|
||||
REQS_STABLE_DIFFUSION="requirements-linux-arm64.txt"
|
||||
CONDA_SUBDIR="osx-arm64"
|
||||
|
||||
echo $TAG_STABLE_DIFFUSION
|
||||
echo $PLATFORM
|
||||
echo $GITHUB_STABLE_DIFFUSION
|
||||
echo $REQS_STABLE_DIFFUSION
|
||||
echo $CONDA_SUBDIR
|
||||
```
|
||||
|
||||
Create a Docker volume for the downloaded model files.
|
||||
|
||||
```Shell
|
||||
docker volume create my-vol
|
||||
```
|
||||
|
||||
Copy the data files to the Docker volume using a lightweight Linux container.
|
||||
We'll need the models at run time. You just need to create the container with
|
||||
the mountpoint; no need to run this dummy container.
|
||||
|
||||
```Shell
|
||||
cd ~/Downloads # or wherever you saved the files
|
||||
|
||||
docker create --platform $PLATFORM --name dummy --mount source=my-vol,target=/data alpine
|
||||
|
||||
docker cp sd-v1-4.ckpt dummy:/data
|
||||
docker cp GFPGANv1.4.pth dummy:/data
|
||||
```
|
||||
|
||||
Get the repo and download the Miniconda installer (we'll need it at build time).
|
||||
Replace the URL with the version matching your container OS and the architecture
|
||||
it will run on.
|
||||
|
||||
```Shell
|
||||
cd ~
|
||||
git clone $GITHUB_STABLE_DIFFUSION
|
||||
|
||||
cd stable-diffusion/docker-build
|
||||
chmod +x entrypoint.sh
|
||||
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-aarch64.sh -O anaconda.sh && chmod +x anaconda.sh
|
||||
```
|
||||
|
||||
Build the Docker image. Give it any tag `-t` that you want.
|
||||
Choose the Linux container's host platform: x86-64/Intel is `amd64`. Apple
|
||||
silicon is `arm64`. If deploying the container to the cloud to leverage powerful
|
||||
GPU instances you'll be on amd64 hardware but if you're just trying this out
|
||||
locally on Apple silicon choose arm64.
|
||||
The application uses libraries that need to match the host environment so use
|
||||
the appropriate requirements file.
|
||||
Tip: Check that your shell session has the env variables set above.
|
||||
|
||||
```Shell
|
||||
docker build -t $TAG_STABLE_DIFFUSION \
|
||||
--platform $PLATFORM \
|
||||
--build-arg gsd=$GITHUB_STABLE_DIFFUSION \
|
||||
--build-arg rsd=$REQS_STABLE_DIFFUSION \
|
||||
--build-arg cs=$CONDA_SUBDIR \
|
||||
.
|
||||
```
|
||||
|
||||
Run a container using your built image.
|
||||
Tip: Make sure you've created and populated the Docker volume (above).
|
||||
|
||||
```Shell
|
||||
docker run -it \
|
||||
--rm \
|
||||
--platform $PLATFORM \
|
||||
--name stable-diffusion \
|
||||
--hostname stable-diffusion \
|
||||
--mount source=my-vol,target=/data \
|
||||
$TAG_STABLE_DIFFUSION
|
||||
```
|
||||
|
||||
# Usage (time to have fun)
|
||||
|
||||
## Startup
|
||||
|
||||
If you're on a **Linux container** the `dream` script is **automatically
|
||||
started** and the output dir set to the Docker volume you created earlier.
|
||||
|
||||
If you're **directly on macOS follow these startup instructions**.
|
||||
With the Conda environment activated (`conda activate ldm`), run the interactive
|
||||
interface that combines the functionality of the original scripts `txt2img` and
|
||||
`img2img`:
|
||||
Use the more accurate but VRAM-intensive full precision math because
|
||||
half-precision requires autocast and won't work.
|
||||
By default the images are saved in `outputs/img-samples/`.
|
||||
|
||||
```Shell
|
||||
python3 scripts/dream.py --full_precision
|
||||
```
|
||||
|
||||
You'll get the script's prompt. You can see available options or quit.
|
||||
|
||||
```Shell
|
||||
dream> -h
|
||||
dream> q
|
||||
```
|
||||
|
||||
## Text to Image
|
||||
|
||||
For quick (but bad) image results test with 5 steps (default 50) and 1 sample
|
||||
image. This will let you know that everything is set up correctly.
|
||||
Then increase steps to 100 or more for good (but slower) results.
|
||||
The prompt can be in quotes or not.
|
||||
|
||||
```Shell
|
||||
dream> The hulk fighting with sheldon cooper -s5 -n1
|
||||
dream> "woman closeup highly detailed" -s 150
|
||||
# Reuse previous seed and apply face restoration
|
||||
dream> "woman closeup highly detailed" --steps 150 --seed -1 -G 0.75
|
||||
```
|
||||
|
||||
You'll need to experiment to see if face restoration is making it better or
|
||||
worse for your specific prompt.
|
||||
|
||||
If you're on a container the output is set to the Docker volume. You can copy it
|
||||
wherever you want.
|
||||
You can download it from the Docker Desktop app, Volumes, my-vol, data.
|
||||
Or you can copy it from your Mac terminal. Keep in mind `docker cp` can't expand
|
||||
`*.png` so you'll need to specify the image file name.
|
||||
|
||||
On your host Mac (you can use the name of any container that mounted the
|
||||
volume):
|
||||
|
||||
```Shell
|
||||
docker cp dummy:/data/000001.928403745.png /Users/<your-user>/Pictures
|
||||
```
|
||||
|
||||
## Image to Image
|
||||
|
||||
You can also do text-guided image-to-image translation. For example, turning a
|
||||
sketch into a detailed drawing.
|
||||
|
||||
`strength` is a value between 0.0 and 1.0 that controls the amount of noise that
|
||||
is added to the input image. Values that approach 1.0 allow for lots of
|
||||
variations but will also produce images that are not semantically consistent
|
||||
with the input. 0.0 preserves image exactly, 1.0 replaces it completely.
|
||||
|
||||
Make sure your input image size dimensions are multiples of 64 e.g. 512x512.
|
||||
Otherwise you'll get `Error: product of dimension sizes > 2**31'`. If you still
|
||||
get the error
|
||||
[try a different size](https://support.apple.com/guide/preview/resize-rotate-or-flip-an-image-prvw2015/mac#:~:text=image's%20file%20size-,In%20the%20Preview%20app%20on%20your%20Mac%2C%20open%20the%20file,is%20shown%20at%20the%20bottom.)
|
||||
like 512x256.
|
||||
|
||||
If you're on a Docker container, copy your input image into the Docker volume
|
||||
|
||||
```Shell
|
||||
docker cp /Users/<your-user>/Pictures/sketch-mountains-input.jpg dummy:/data/
|
||||
```
|
||||
|
||||
Try it out generating an image (or more). The `dream` script needs absolute
|
||||
paths to find the image so don't use `~`.
|
||||
|
||||
If you're on your Mac
|
||||
|
||||
```Shell
|
||||
dream> "A fantasy landscape, trending on artstation" -I /Users/<your-user>/Pictures/sketch-mountains-input.jpg --strength 0.75 --steps 100 -n4
|
||||
```
|
||||
|
||||
If you're on a Linux container on your Mac
|
||||
|
||||
```Shell
|
||||
dream> "A fantasy landscape, trending on artstation" -I /data/sketch-mountains-input.jpg --strength 0.75 --steps 50 -n1
|
||||
```
|
||||
|
||||
## Web Interface
|
||||
|
||||
You can use the `dream` script with a graphical web interface. Start the web
|
||||
server with:
|
||||
|
||||
```Shell
|
||||
python3 scripts/dream.py --full_precision --web
|
||||
```
|
||||
|
||||
If it's running on your Mac point your Mac web browser to http://127.0.0.1:9090
|
||||
|
||||
Press Control-C at the command line to stop the web server.
|
||||
|
||||
## Notes
|
||||
|
||||
Some text you can add at the end of the prompt to make it very pretty:
|
||||
|
||||
```Shell
|
||||
cinematic photo, highly detailed, cinematic lighting, ultra-detailed, ultrarealistic, photorealism, Octane Rendering, cyberpunk lights, Hyper Detail, 8K, HD, Unreal Engine, V-Ray, full hd, cyberpunk, abstract, 3d octane render + 4k UHD + immense detail + dramatic lighting + well lit + black, purple, blue, pink, cerulean, teal, metallic colours, + fine details, ultra photoreal, photographic, concept art, cinematic composition, rule of thirds, mysterious, eerie, photorealism, breathtaking detailed, painting art deco pattern, by hsiao, ron cheng, john james audubon, bizarre compositions, exquisite detail, extremely moody lighting, painted by greg rutkowski makoto shinkai takashi takeuchi studio ghibli, akihiko yoshida
|
||||
```
|
||||
|
||||
The original scripts should work as well.
|
||||
|
||||
```Shell
|
||||
python3 scripts/orig_scripts/txt2img.py --help
|
||||
python3 scripts/orig_scripts/txt2img.py --ddim_steps 100 --n_iter 1 --n_samples 1 --plms --prompt "new born baby kitten. Hyper Detail, Octane Rendering, Unreal Engine, V-Ray"
|
||||
python3 scripts/orig_scripts/txt2img.py --ddim_steps 5 --n_iter 1 --n_samples 1 --plms --prompt "ocean" # or --klms
|
||||
```
|
@ -1,20 +1,28 @@
|
||||
# **Linux Installation**
|
||||
---
|
||||
title: Linux
|
||||
---
|
||||
|
||||
1. You will need to install the following prerequisites if they are not already available. Use your operating system's preferred installer
|
||||
# :fontawesome-brands-linux: Linux
|
||||
|
||||
## Installation
|
||||
|
||||
1. You will need to install the following prerequisites if they are not already
|
||||
available. Use your operating system's preferred installer.
|
||||
|
||||
- Python (version 3.8.5 recommended; higher may work)
|
||||
- git
|
||||
|
||||
2. Install the Python Anaconda environment manager.
|
||||
|
||||
```
|
||||
```bash
|
||||
~$ wget https://repo.anaconda.com/archive/Anaconda3-2022.05-Linux-x86_64.sh
|
||||
~$ chmod +x Anaconda3-2022.05-Linux-x86_64.sh
|
||||
~$ ./Anaconda3-2022.05-Linux-x86_64.sh
|
||||
```
|
||||
|
||||
After installing anaconda, you should log out of your system and log back in. If the installation
|
||||
worked, your command prompt will be prefixed by the name of the current anaconda environment - `(base)`.
|
||||
After installing anaconda, you should log out of your system and log back in. If
|
||||
the installation worked, your command prompt will be prefixed by the name of the
|
||||
current anaconda environment - `(base)`.
|
||||
|
||||
3. Copy the InvokeAI source code from GitHub:
|
||||
|
||||
@ -31,7 +39,9 @@ This will create InvokeAI folder where you will follow the rest of the steps.
|
||||
(base) ~/InvokeAI$
|
||||
```
|
||||
|
||||
5. Use anaconda to copy necessary python packages, create a new python environment named `ldm` and activate the environment.
|
||||
5. Use anaconda to copy necessary python packages, create a new python
|
||||
environment named `ldm` and activate the environment.
|
||||
|
||||
|
||||
```
|
||||
(base) ~/InvokeAI$ conda env create -f environment.yaml
|
||||
@ -39,24 +49,36 @@ This will create InvokeAI folder where you will follow the rest of the steps.
|
||||
(ldm) ~/InvokeAI$
|
||||
```
|
||||
|
||||
After these steps, your command prompt will be prefixed by `(ldm)` as shown above.
|
||||
After these steps, your command prompt will be prefixed by `(ldm)` as shown
|
||||
above.
|
||||
|
||||
6. Load a couple of small machine-learning models required by stable diffusion:
|
||||
|
||||
|
||||
```
|
||||
(ldm) ~/InvokeAI$ python3 scripts/preload_models.py
|
||||
```
|
||||
|
||||
Note that this step is necessary because I modified the original just-in-time model loading scheme to allow the script to work on GPU machines that are not internet connected. See [Preload Models](../features/OTHER.md#preload-models)
|
||||
!!! note
|
||||
|
||||
This step is necessary because I modified the original just-in-time
|
||||
model loading scheme to allow the script to work on GPU machines that are not
|
||||
internet connected. See [Preload Models](../features/OTHER.md#preload-models)
|
||||
|
||||
7. Now you need to install the weights for the stable diffusion model.
|
||||
|
||||
- For running with the released weights, you will first need to set up an acount with Hugging Face (https://huggingface.co).
|
||||
- Use your credentials to log in, and then point your browser at https://huggingface.co/CompVis/stable-diffusion-v-1-4-original.
|
||||
- For running with the released weights, you will first need to set up an acount
|
||||
with [Hugging Face](https://huggingface.co).
|
||||
- Use your credentials to log in, and then point your browser [here](https://huggingface.co/CompVis/stable-diffusion-v-1-4-original.)
|
||||
- You may be asked to sign a license agreement at this point.
|
||||
- Click on "Files and versions" near the top of the page, and then click on the file named "sd-v1-4.ckpt". You'll be taken to a page that prompts you to click the "download" link. Save the file somewhere safe on your local machine.
|
||||
- Click on "Files and versions" near the top of the page, and then click on the
|
||||
file named "sd-v1-4.ckpt". You'll be taken to a page that prompts you to click
|
||||
the "download" link. Save the file somewhere safe on your local machine.
|
||||
|
||||
Now run the following commands from within the stable-diffusion directory.
|
||||
This will create a symbolic link from the stable-diffusion model.ckpt file, to
|
||||
the true location of the `sd-v1-4.ckpt` file.
|
||||
|
||||
Now run the following commands from within the stable-diffusion directory. This will create a symbolic link from the stable-diffusion model.ckpt file, to the true location of the sd-v1-4.ckpt file.
|
||||
|
||||
```
|
||||
(ldm) ~/InvokeAI$ mkdir -p models/ldm/stable-diffusion-v1
|
||||
@ -78,7 +100,8 @@ Now run the following commands from within the stable-diffusion directory. This
|
||||
|
||||
9. Subsequently, to relaunch the script, be sure to run "conda activate ldm" (step 5, second command), enter the `InvokeAI` directory, and then launch the dream script (step 8). If you forget to activate the ldm environment, the script will fail with multiple `ModuleNotFound` errors.
|
||||
|
||||
### Updating to newer versions of the script
|
||||
## Updating to newer versions of the script
|
||||
|
||||
|
||||
This distribution is changing rapidly. If you used the `git clone` method (step 5) to download the InvokeAI directory, then to update to the latest and greatest version, launch the Anaconda window, enter `InvokeAI` and type:
|
||||
|
||||
|
@ -1,206 +1,338 @@
|
||||
# **macOS Instructions**
|
||||
---
|
||||
title: macOS
|
||||
---
|
||||
|
||||
Requirements
|
||||
# :fontawesome-brands-apple: macOS
|
||||
|
||||
## Requirements
|
||||
|
||||
- macOS 12.3 Monterey or later
|
||||
- Python
|
||||
- Patience
|
||||
- Apple Silicon\*
|
||||
- Apple Silicon or Intel Mac
|
||||
|
||||
\*I haven't tested any of this on Intel Macs but I have read that one person got it to work, so Apple Silicon might not be requried.
|
||||
Things have moved really fast and so these instructions change often which makes
|
||||
them outdated pretty fast. One of the problems is that there are so many
|
||||
different ways to run this.
|
||||
|
||||
Things have moved really fast and so these instructions change often
|
||||
and are often out-of-date. One of the problems is that there are so
|
||||
many different ways to run this.
|
||||
We are trying to build a testing setup so that when we make changes it doesn't
|
||||
always break.
|
||||
|
||||
We are trying to build a testing setup so that when we make changes it
|
||||
doesn't always break.
|
||||
## How to
|
||||
|
||||
How to (this hasn't been 100% tested yet):
|
||||
(this hasn't been 100% tested yet)
|
||||
|
||||
First get the weights checkpoint download started - it's big:
|
||||
First get the weights checkpoint download started since it's big and will take
|
||||
some time:
|
||||
|
||||
1. Sign up at https://huggingface.co
|
||||
2. Go to the [Stable diffusion diffusion model page](https://huggingface.co/CompVis/stable-diffusion-v-1-4-original)
|
||||
1. Sign up at [huggingface.co](https://huggingface.co)
|
||||
2. Go to the
|
||||
[Stable diffusion diffusion model page](https://huggingface.co/CompVis/stable-diffusion-v-1-4-original)
|
||||
3. Accept the terms and click Access Repository:
|
||||
4. Download [sd-v1-4.ckpt (4.27 GB)](https://huggingface.co/CompVis/stable-diffusion-v-1-4-original/blob/main/sd-v1-4.ckpt) and note where you have saved it (probably the Downloads folder)
|
||||
4. Download
|
||||
[sd-v1-4.ckpt (4.27 GB)](https://huggingface.co/CompVis/stable-diffusion-v-1-4-original/blob/main/sd-v1-4.ckpt)
|
||||
and note where you have saved it (probably the Downloads folder)
|
||||
|
||||
While that is downloading, open Terminal and run the following commands one at a time.
|
||||
While that is downloading, open a Terminal and run the following commands:
|
||||
|
||||
!!! todo "Homebrew"
|
||||
|
||||
=== "no brew installation yet"
|
||||
|
||||
```bash title="install brew (and Xcode command line tools)"
|
||||
/bin/bash -c \
|
||||
"$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"
|
||||
```
|
||||
|
||||
=== "brew is already installed"
|
||||
|
||||
Only if you installed protobuf in a previous version of this tutorial, otherwise skip
|
||||
|
||||
`#!bash brew uninstall protobuf`
|
||||
|
||||
!!! todo "Conda Installation"
|
||||
|
||||
Now there are two different ways to set up the Python (miniconda) environment:
|
||||
1. Standalone
|
||||
2. with pyenv
|
||||
If you don't know what we are talking about, choose Standalone
|
||||
|
||||
=== "Standalone"
|
||||
|
||||
```bash
|
||||
# install brew (and Xcode command line tools):
|
||||
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"
|
||||
# install cmake and rust:
|
||||
brew install cmake rust
|
||||
```
|
||||
|
||||
#
|
||||
# Now there are two different routes to get the Python (miniconda) environment up and running:
|
||||
# 1. Alongside pyenv
|
||||
# 2. No pyenv
|
||||
#
|
||||
# If you don't know what we are talking about, choose 2.
|
||||
#
|
||||
# NOW EITHER DO
|
||||
# 1. Installing alongside pyenv
|
||||
=== "M1 arm64"
|
||||
|
||||
brew install pyenv-virtualenv # you might have this from before, no problem
|
||||
```bash title="Install miniconda for M1 arm64"
|
||||
curl https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-arm64.sh \
|
||||
-o Miniconda3-latest-MacOSX-arm64.sh
|
||||
/bin/bash Miniconda3-latest-MacOSX-arm64.sh
|
||||
```
|
||||
|
||||
=== "Intel x86_64"
|
||||
|
||||
```bash title="Install miniconda for Intel"
|
||||
curl https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh \
|
||||
-o Miniconda3-latest-MacOSX-x86_64.sh
|
||||
/bin/bash Miniconda3-latest-MacOSX-x86_64.sh
|
||||
```
|
||||
|
||||
=== "with pyenv"
|
||||
|
||||
```{.bash .annotate}
|
||||
brew install rust pyenv-virtualenv # (1)!
|
||||
pyenv install anaconda3-2022.05
|
||||
pyenv virtualenv anaconda3-2022.05
|
||||
eval "$(pyenv init -)"
|
||||
pyenv activate anaconda3-2022.05
|
||||
```
|
||||
|
||||
# OR,
|
||||
# 2. Installing standalone
|
||||
# install python 3, git, cmake, protobuf:
|
||||
brew install cmake protobuf rust
|
||||
|
||||
# install miniconda (M1 arm64 version):
|
||||
curl https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-arm64.sh -o Miniconda3-latest-MacOSX-arm64.sh
|
||||
/bin/bash Miniconda3-latest-MacOSX-arm64.sh
|
||||
|
||||
|
||||
# EITHER WAY,
|
||||
# continue from here
|
||||
1. You might already have this installed, if that is the case just continue.
|
||||
|
||||
```{.bash .annotate title="local repo setup"}
|
||||
# clone the repo
|
||||
git clone https://github.com/lstein/stable-diffusion.git
|
||||
git clone https://github.com/invoke-ai/InvokeAI.git
|
||||
cd stable-diffusion
|
||||
|
||||
#
|
||||
# wait until the checkpoint file has downloaded, then proceed
|
||||
#
|
||||
|
||||
# create symlink to checkpoint
|
||||
mkdir -p models/ldm/stable-diffusion-v1/
|
||||
|
||||
PATH_TO_CKPT="$HOME/Downloads" # or wherever you saved sd-v1-4.ckpt
|
||||
PATH_TO_CKPT="$HOME/Downloads" # (1)!
|
||||
|
||||
ln -s "$PATH_TO_CKPT/sd-v1-4.ckpt" models/ldm/stable-diffusion-v1/model.ckpt
|
||||
ln -s "$PATH_TO_CKPT/sd-v1-4.ckpt" \
|
||||
models/ldm/stable-diffusion-v1/model.ckpt
|
||||
```
|
||||
|
||||
# install packages
|
||||
PIP_EXISTS_ACTION=w CONDA_SUBDIR=osx-arm64 conda env create -f environment-mac.yaml
|
||||
conda activate ldm
|
||||
1. or wherever you saved sd-v1-4.ckpt
|
||||
|
||||
!!! todo "create Conda Environment"
|
||||
|
||||
=== "M1 arm64"
|
||||
|
||||
```bash
|
||||
PIP_EXISTS_ACTION=w CONDA_SUBDIR=osx-arm64 \
|
||||
conda env create \
|
||||
-f environment-mac.yaml \
|
||||
&& conda activate ldm
|
||||
```
|
||||
|
||||
=== "Intel x86_64"
|
||||
|
||||
```bash
|
||||
PIP_EXISTS_ACTION=w CONDA_SUBDIR=osx-x86_64 \
|
||||
conda env create \
|
||||
-f environment-mac.yaml \
|
||||
&& conda activate ldm
|
||||
```
|
||||
|
||||
```{.bash .annotate title="preload models and run script"}
|
||||
# only need to do this once
|
||||
python scripts/preload_models.py
|
||||
|
||||
# run SD!
|
||||
python scripts/dream.py --full_precision # half-precision requires autocast and won't work
|
||||
# now you can run SD in CLI mode
|
||||
python scripts/dream.py --full_precision # (1)!
|
||||
|
||||
# or run the web interface!
|
||||
python scripts/dream.py --web
|
||||
|
||||
# The original scripts should work as well.
|
||||
python scripts/orig_scripts/txt2img.py \
|
||||
--prompt "a photograph of an astronaut riding a horse" \
|
||||
--plms
|
||||
```
|
||||
|
||||
The original scripts should work as well.
|
||||
1. half-precision requires autocast which is unfortunatelly incompatible
|
||||
|
||||
```
|
||||
python scripts/orig_scripts/txt2img.py --prompt "a photograph of an astronaut riding a horse" --plms
|
||||
!!! note
|
||||
|
||||
`#!bash export PIP_EXISTS_ACTION=w` is a precaution to fix a problem where
|
||||
|
||||
```bash
|
||||
conda env create \
|
||||
-f environment-mac.yaml
|
||||
```
|
||||
|
||||
Note, `export PIP_EXISTS_ACTION=w` is a precaution to fix `conda env
|
||||
create -f environment-mac.yaml` never finishing in some situations. So
|
||||
it isn't required but wont hurt.
|
||||
did never finish in some situations. So it isn't required but wont hurt.
|
||||
|
||||
After you follow all the instructions and run dream.py you might get several errors. Here's the errors I've seen and found solutions for.
|
||||
---
|
||||
|
||||
## Common problems
|
||||
|
||||
After you followed all the instructions and try to run dream.py, you might
|
||||
get several errors. Here's the errors I've seen and found solutions for.
|
||||
|
||||
### Is it slow?
|
||||
|
||||
Be sure to specify 1 sample and 1 iteration.
|
||||
```bash title="Be sure to specify 1 sample and 1 iteration."
|
||||
python ./scripts/orig_scripts/txt2img.py \
|
||||
--prompt "ocean" \
|
||||
--ddim_steps 5 \
|
||||
--n_samples 1 \
|
||||
--n_iter 1
|
||||
```
|
||||
|
||||
python ./scripts/orig_scripts/txt2img.py --prompt "ocean" --ddim_steps 5 --n_samples 1 --n_iter 1
|
||||
---
|
||||
|
||||
### Doesn't work anymore?
|
||||
|
||||
PyTorch nightly includes support for MPS. Because of this, this setup is inherently unstable. One morning I woke up and it no longer worked no matter what I did until I switched to miniforge. However, I have another Mac that works just fine with Anaconda. If you can't get it to work, please search a little first because many of the errors will get posted and solved. If you can't find a solution please [create an issue](https://github.com/lstein/stable-diffusion/issues).
|
||||
PyTorch nightly includes support for MPS. Because of this, this setup is
|
||||
inherently unstable. One morning I woke up and it no longer worked no matter
|
||||
what I did until I switched to miniforge. However, I have another Mac that works
|
||||
just fine with Anaconda. If you can't get it to work, please search a little
|
||||
first because many of the errors will get posted and solved. If you can't find a
|
||||
solution please
|
||||
[create an issue](https://github.com/invoke-ai/InvokeAI/issues).
|
||||
|
||||
One debugging step is to update to the latest version of PyTorch nightly.
|
||||
|
||||
conda install pytorch torchvision torchaudio -c pytorch-nightly
|
||||
```bash
|
||||
conda install \
|
||||
pytorch \
|
||||
torchvision \
|
||||
-c pytorch-nightly \
|
||||
-n ldm
|
||||
```
|
||||
|
||||
If `conda env create -f environment-mac.yaml` takes forever run this.
|
||||
If it takes forever to run
|
||||
|
||||
```bash
|
||||
conda env create \
|
||||
-f environment-mac.yaml
|
||||
```
|
||||
|
||||
you could try to run:
|
||||
|
||||
```bash
|
||||
git clean -f
|
||||
conda clean \
|
||||
--yes \
|
||||
--all
|
||||
```
|
||||
|
||||
And run this.
|
||||
Or you could try to completley reset Anaconda:
|
||||
|
||||
conda clean --yes --all
|
||||
```bash
|
||||
conda update \
|
||||
--force-reinstall \
|
||||
-y \
|
||||
-n base \
|
||||
-c defaults conda
|
||||
```
|
||||
|
||||
Or you could reset Anaconda.
|
||||
---
|
||||
|
||||
conda update --force-reinstall -y -n base -c defaults conda
|
||||
### "No module named cv2", torch, 'ldm', 'transformers', 'taming', etc
|
||||
|
||||
### "No module named cv2", torch, 'ldm', 'transformers', 'taming', etc.
|
||||
There are several causes of these errors:
|
||||
|
||||
There are several causes of these errors.
|
||||
1. Did you remember to `conda activate ldm`? If your terminal prompt begins with
|
||||
"(ldm)" then you activated it. If it begins with "(base)" or something else
|
||||
you haven't.
|
||||
|
||||
First, did you remember to `conda activate ldm`? If your terminal prompt
|
||||
begins with "(ldm)" then you activated it. If it begins with "(base)"
|
||||
or something else you haven't.
|
||||
2. You might've run `./scripts/preload_models.py` or `./scripts/dream.py`
|
||||
instead of `python ./scripts/preload_models.py` or
|
||||
`python ./scripts/dream.py`. The cause of this error is long so it's below.
|
||||
|
||||
Second, you might've run `./scripts/preload_models.py` or `./scripts/dream.py`
|
||||
instead of `python ./scripts/preload_models.py` or `python ./scripts/dream.py`.
|
||||
The cause of this error is long so it's below.
|
||||
<!-- I could not find out where the error is, otherwise would have marked it as a footnote -->
|
||||
|
||||
Third, if it says you're missing taming you need to rebuild your virtual
|
||||
3. if it says you're missing taming you need to rebuild your virtual
|
||||
environment.
|
||||
|
||||
```bash
|
||||
conda deactivate
|
||||
conda env remove -n ldm
|
||||
conda env create -f environment-mac.yaml
|
||||
PIP_EXISTS_ACTION=w CONDA_SUBDIR=osx-arm64 \
|
||||
conda env create \
|
||||
-f environment-mac.yaml
|
||||
```
|
||||
|
||||
Fourth, If you have activated the ldm virtual environment and tried rebuilding it, maybe the problem could be that I have something installed that you don't and you'll just need to manually install it. Make sure you activate the virtual environment so it installs there instead of
|
||||
globally.
|
||||
4. If you have activated the ldm virtual environment and tried rebuilding it,
|
||||
maybe the problem could be that I have something installed that you don't and
|
||||
you'll just need to manually install it. Make sure you activate the virtual
|
||||
environment so it installs there instead of globally.
|
||||
|
||||
```bash
|
||||
conda activate ldm
|
||||
pip install *name*
|
||||
pip install <package name>
|
||||
```
|
||||
|
||||
You might also need to install Rust (I mention this again below).
|
||||
|
||||
---
|
||||
|
||||
### How many snakes are living in your computer?
|
||||
|
||||
You might have multiple Python installations on your system, in which case it's
|
||||
important to be explicit and consistent about which one to use for a given project.
|
||||
This is because virtual environments are coupled to the Python that created it (and all
|
||||
the associated 'system-level' modules).
|
||||
important to be explicit and consistent about which one to use for a given
|
||||
project. This is because virtual environments are coupled to the Python that
|
||||
created it (and all the associated 'system-level' modules).
|
||||
|
||||
When you run `python` or `python3`, your shell searches the colon-delimited locations
|
||||
in the `PATH` environment variable (`echo $PATH` to see that list) in that order - first match wins.
|
||||
You can ask for the location of the first `python3` found in your `PATH` with the `which` command like this:
|
||||
When you run `python` or `python3`, your shell searches the colon-delimited
|
||||
locations in the `PATH` environment variable (`echo $PATH` to see that list) in
|
||||
that order - first match wins. You can ask for the location of the first
|
||||
`python3` found in your `PATH` with the `which` command like this:
|
||||
|
||||
```bash
|
||||
% which python3
|
||||
/usr/bin/python3
|
||||
```
|
||||
|
||||
Anything in `/usr/bin` is [part of the OS](https://developer.apple.com/library/archive/documentation/FileManagement/Conceptual/FileSystemProgrammingGuide/FileSystemOverview/FileSystemOverview.html#//apple_ref/doc/uid/TP40010672-CH2-SW6). However, `/usr/bin/python3` is not actually python3, but
|
||||
rather a stub that offers to install Xcode (which includes python 3). If you have Xcode installed already,
|
||||
`/usr/bin/python3` will execute `/Library/Developer/CommandLineTools/usr/bin/python3` or
|
||||
Anything in `/usr/bin` is
|
||||
[part of the OS](https://developer.apple.com/library/archive/documentation/FileManagement/Conceptual/FileSystemProgrammingGuide/FileSystemOverview/FileSystemOverview.html#//apple_ref/doc/uid/TP40010672-CH2-SW6).
|
||||
However, `/usr/bin/python3` is not actually python3, but rather a stub that
|
||||
offers to install Xcode (which includes python 3). If you have Xcode installed
|
||||
already, `/usr/bin/python3` will execute
|
||||
`/Library/Developer/CommandLineTools/usr/bin/python3` or
|
||||
`/Applications/Xcode.app/Contents/Developer/usr/bin/python3` (depending on which
|
||||
Xcode you've selected with `xcode-select`).
|
||||
|
||||
Note that `/usr/bin/python` is an entirely different python - specifically, python 2. Note: starting in
|
||||
macOS 12.3, `/usr/bin/python` no longer exists.
|
||||
Note that `/usr/bin/python` is an entirely different python - specifically,
|
||||
python 2. Note: starting in macOS 12.3, `/usr/bin/python` no longer exists.
|
||||
|
||||
```bash
|
||||
% which python3
|
||||
/opt/homebrew/bin/python3
|
||||
```
|
||||
|
||||
If you installed python3 with Homebrew and you've modified your path to search
|
||||
for Homebrew binaries before system ones, you'll see the above path.
|
||||
|
||||
```bash
|
||||
% which python
|
||||
/opt/anaconda3/bin/python
|
||||
```
|
||||
|
||||
If you have Anaconda installed, you will see the above path. There is a
|
||||
`/opt/anaconda3/bin/python3` also. We expect that `/opt/anaconda3/bin/python`
|
||||
and `/opt/anaconda3/bin/python3` should actually be the *same python*, which you can
|
||||
verify by comparing the output of `python3 -V` and `python -V`.
|
||||
`/opt/anaconda3/bin/python3` also.
|
||||
|
||||
We expect that `/opt/anaconda3/bin/python` and `/opt/anaconda3/bin/python3`
|
||||
should actually be the _same python_, which you can verify by comparing the
|
||||
output of `python3 -V` and `python -V`.
|
||||
|
||||
```bash
|
||||
(ldm) % which python
|
||||
/Users/name/miniforge3/envs/ldm/bin/python
|
||||
```
|
||||
|
||||
The above is what you'll see if you have miniforge and you've correctly activated
|
||||
the ldm environment, and you used option 2 in the setup instructions above ("no pyenv").
|
||||
The above is what you'll see if you have miniforge and correctly activated the
|
||||
ldm environment, while usingd the standalone setup instructions above.
|
||||
|
||||
If you otherwise installed via pyenv, you will get this result:
|
||||
|
||||
```bash
|
||||
(anaconda3-2022.05) % which python
|
||||
/Users/name/.pyenv/shims/python
|
||||
```
|
||||
|
||||
... and the above is what you'll see if you used option 1 ("Alongside pyenv").
|
||||
|
||||
It's all a mess and you should know [how to modify the path environment variable](https://support.apple.com/guide/terminal/use-environment-variables-apd382cc5fa-4f58-4449-b20a-41c53c006f8f/mac)
|
||||
if you want to fix it. Here's a brief hint of all the ways you can modify it
|
||||
(don't really have the time to explain it all here).
|
||||
It's all a mess and you should know
|
||||
[how to modify the path environment variable](https://support.apple.com/guide/terminal/use-environment-variables-apd382cc5fa-4f58-4449-b20a-41c53c006f8f/mac)
|
||||
if you want to fix it. Here's a brief hint of the most common ways you can
|
||||
modify it (don't really have the time to explain it all here).
|
||||
|
||||
- ~/.zshrc
|
||||
- ~/.bash_profile
|
||||
@ -208,53 +340,86 @@ if you want to fix it. Here's a brief hint of all the ways you can modify it
|
||||
- /etc/paths.d
|
||||
- /etc/path
|
||||
|
||||
Which one you use will depend on what you have installed except putting a file
|
||||
in /etc/paths.d is what I prefer to do.
|
||||
Which one you use will depend on what you have installed, except putting a file
|
||||
in /etc/paths.d - which also is the way I prefer to do.
|
||||
|
||||
Finally, to answer the question posed by this section's title, it may help to list
|
||||
all of the `python` / `python3` things found in `$PATH` instead of just the one that
|
||||
will be executed by default. To do that, add the `-a` switch to `which`:
|
||||
Finally, to answer the question posed by this section's title, it may help to
|
||||
list all of the `python` / `python3` things found in `$PATH` instead of just the
|
||||
first hit. To do so, add the `-a` switch to `which`:
|
||||
|
||||
```bash
|
||||
% which -a python3
|
||||
...
|
||||
```
|
||||
|
||||
This will show a list of all binaries which are actually available in your PATH.
|
||||
|
||||
---
|
||||
|
||||
### Debugging?
|
||||
|
||||
Tired of waiting for your renders to finish before you can see if it
|
||||
works? Reduce the steps! The image quality will be horrible but at least you'll
|
||||
get quick feedback.
|
||||
Tired of waiting for your renders to finish before you can see if it works?
|
||||
Reduce the steps! The image quality will be horrible but at least you'll get
|
||||
quick feedback.
|
||||
|
||||
python ./scripts/txt2img.py --prompt "ocean" --ddim_steps 5 --n_samples 1 --n_iter 1
|
||||
```bash
|
||||
python ./scripts/txt2img.py \
|
||||
--prompt "ocean" \
|
||||
--ddim_steps 5 \
|
||||
--n_samples 1 \
|
||||
--n_iter 1
|
||||
```
|
||||
|
||||
### OSError: Can't load tokenizer for 'openai/clip-vit-large-patch14'...
|
||||
---
|
||||
|
||||
### OSError: Can't load tokenizer for 'openai/clip-vit-large-patch14'
|
||||
|
||||
```bash
|
||||
python scripts/preload_models.py
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
### "The operator [name] is not current implemented for the MPS device." (sic)
|
||||
|
||||
Example error.
|
||||
!!! example "example error"
|
||||
|
||||
```
|
||||
...
|
||||
NotImplementedError: The operator 'aten::_index_put_impl_' is not current implemented for the MPS device. If you want this op to be added in priority during the prototype phase of this feature, please comment on [https://github.com/pytorch/pytorch/issues/77764](https://github.com/pytorch/pytorch/issues/77764). As a temporary fix, you can set the environment variable `PYTORCH_ENABLE_MPS_FALLBACK=1` to use the CPU as a fallback for this op. WARNING: this will be slower than running natively on MPS.
|
||||
```bash
|
||||
... NotImplementedError: The operator 'aten::_index_put_impl_' is not current
|
||||
implemented for the MPS device. If you want this op to be added in priority
|
||||
during the prototype phase of this feature, please comment on
|
||||
https://github.com/pytorch/pytorch/issues/77764.
|
||||
As a temporary fix, you can set the environment variable
|
||||
`PYTORCH_ENABLE_MPS_FALLBACK=1` to use the CPU as a fallback for this op.
|
||||
WARNING: this will be slower than running natively on MPS.
|
||||
```
|
||||
|
||||
The lstein branch includes this fix in [environment-mac.yaml](https://github.com/lstein/stable-diffusion/blob/main/environment-mac.yaml).
|
||||
This fork already includes a fix for this in
|
||||
[environment-mac.yaml](https://github.com/invoke-ai/InvokeAI/blob/main/environment-mac.yaml).
|
||||
|
||||
---
|
||||
|
||||
### "Could not build wheels for tokenizers"
|
||||
|
||||
I have not seen this error because I had Rust installed on my computer before I started playing with Stable Diffusion. The fix is to install Rust.
|
||||
I have not seen this error because I had Rust installed on my computer before I
|
||||
started playing with Stable Diffusion. The fix is to install Rust.
|
||||
|
||||
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh
|
||||
```bash
|
||||
curl \
|
||||
--proto '=https' \
|
||||
--tlsv1.2 \
|
||||
-sSf https://sh.rustup.rs | sh
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
### How come `--seed` doesn't work?
|
||||
|
||||
First this:
|
||||
|
||||
> Completely reproducible results are not guaranteed across PyTorch
|
||||
> releases, individual commits, or different platforms. Furthermore,
|
||||
> results may not be reproducible between CPU and GPU executions, even
|
||||
> when using identical seeds.
|
||||
> Completely reproducible results are not guaranteed across PyTorch releases,
|
||||
> individual commits, or different platforms. Furthermore, results may not be
|
||||
> reproducible between CPU and GPU executions, even when using identical seeds.
|
||||
|
||||
[PyTorch docs](https://pytorch.org/docs/stable/notes/randomness.html)
|
||||
|
||||
@ -263,55 +428,68 @@ still working on it.
|
||||
|
||||
### libiomp5.dylib error?
|
||||
|
||||
```bash
|
||||
OMP: Error #15: Initializing libiomp5.dylib, but found libomp.dylib already initialized.
|
||||
```
|
||||
|
||||
You are likely using an Intel package by mistake. Be sure to run conda with
|
||||
the environment variable `CONDA_SUBDIR=osx-arm64`, like so:
|
||||
You are likely using an Intel package by mistake. Be sure to run conda with the
|
||||
environment variable `CONDA_SUBDIR=osx-arm64`, like so:
|
||||
|
||||
`CONDA_SUBDIR=osx-arm64 conda install ...`
|
||||
|
||||
This error happens with Anaconda on Macs when the Intel-only `mkl` is pulled in by
|
||||
a dependency. [nomkl](https://stackoverflow.com/questions/66224879/what-is-the-nomkl-python-package-used-for)
|
||||
This error happens with Anaconda on Macs when the Intel-only `mkl` is pulled in
|
||||
by a dependency.
|
||||
[nomkl](https://stackoverflow.com/questions/66224879/what-is-the-nomkl-python-package-used-for)
|
||||
is a metapackage designed to prevent this, by making it impossible to install
|
||||
`mkl`, but if your environment is already broken it may not work.
|
||||
|
||||
Do _not_ use `os.environ['KMP_DUPLICATE_LIB_OK']='True'` or equivalents as this
|
||||
masks the underlying issue of using Intel packages.
|
||||
|
||||
### Not enough memory.
|
||||
---
|
||||
|
||||
This seems to be a common problem and is probably the underlying
|
||||
problem for a lot of symptoms (listed below). The fix is to lower your
|
||||
image size or to add `model.half()` right after the model is loaded. I
|
||||
should probably test it out. I've read that the reason this fixes
|
||||
problems is because it converts the model from 32-bit to 16-bit and
|
||||
that leaves more RAM for other things. I have no idea how that would
|
||||
affect the quality of the images though.
|
||||
### Not enough memory
|
||||
|
||||
This seems to be a common problem and is probably the underlying problem for a
|
||||
lot of symptoms (listed below). The fix is to lower your image size or to add
|
||||
`model.half()` right after the model is loaded. I should probably test it out.
|
||||
I've read that the reason this fixes problems is because it converts the model
|
||||
from 32-bit to 16-bit and that leaves more RAM for other things. I have no idea
|
||||
how that would affect the quality of the images though.
|
||||
|
||||
See [this issue](https://github.com/CompVis/stable-diffusion/issues/71).
|
||||
|
||||
---
|
||||
|
||||
### "Error: product of dimension sizes > 2\*\*31'"
|
||||
|
||||
This error happens with img2img, which I haven't played with too much
|
||||
yet. But I know it's because your image is too big or the resolution
|
||||
isn't a multiple of 32x32. Because the stable-diffusion model was
|
||||
trained on images that were 512 x 512, it's always best to use that
|
||||
output size (which is the default). However, if you're using that size
|
||||
and you get the above error, try 256 x 256 or 512 x 256 or something
|
||||
as the source image.
|
||||
This error happens with img2img, which I haven't played with too much yet. But I
|
||||
know it's because your image is too big or the resolution isn't a multiple of
|
||||
32x32. Because the stable-diffusion model was trained on images that were 512 x
|
||||
512, it's always best to use that output size (which is the default). However,
|
||||
if you're using that size and you get the above error, try 256 x 256 or 512 x
|
||||
256 or something as the source image.
|
||||
|
||||
BTW, 2\*\*31-1 = [2,147,483,647](https://en.wikipedia.org/wiki/2,147,483,647#In_computing), which is also 32-bit signed [LONG_MAX](https://en.wikipedia.org/wiki/C_data_types) in C.
|
||||
BTW, 2\*\*31-1 =
|
||||
[2,147,483,647](https://en.wikipedia.org/wiki/2,147,483,647#In_computing), which
|
||||
is also 32-bit signed [LONG_MAX](https://en.wikipedia.org/wiki/C_data_types) in
|
||||
C.
|
||||
|
||||
---
|
||||
|
||||
### I just got Rickrolled! Do I have a virus?
|
||||
|
||||
You don't have a virus. It's part of the project. Here's
|
||||
[Rick](https://github.com/lstein/stable-diffusion/blob/main/assets/rick.jpeg)
|
||||
and here's [the
|
||||
code](https://github.com/lstein/stable-diffusion/blob/69ae4b35e0a0f6ee1af8bb9a5d0016ccb27e36dc/scripts/txt2img.py#L79)
|
||||
that swaps him in. It's a NSFW filter, which IMO, doesn't work very
|
||||
good (and we call this "computer vision", sheesh).
|
||||
[Rick](https://github.com/invoke-ai/InvokeAI/blob/main/assets/rick.jpeg)
|
||||
and here's
|
||||
[the code](https://github.com/invoke-ai/InvokeAI/blob/69ae4b35e0a0f6ee1af8bb9a5d0016ccb27e36dc/scripts/txt2img.py#L79)
|
||||
that swaps him in. It's a NSFW filter, which IMO, doesn't work very good (and we
|
||||
call this "computer vision", sheesh).
|
||||
|
||||
Actually, this could be happening because there's not enough RAM. You could try the `model.half()` suggestion or specify smaller output images.
|
||||
Actually, this could be happening because there's not enough RAM. You could try
|
||||
the `model.half()` suggestion or specify smaller output images.
|
||||
|
||||
---
|
||||
|
||||
### My images come out black
|
||||
|
||||
@ -319,31 +497,32 @@ We might have this fixed, we are still testing.
|
||||
|
||||
There's a [similar issue](https://github.com/CompVis/stable-diffusion/issues/69)
|
||||
on CUDA GPU's where the images come out green. Maybe it's the same issue?
|
||||
Someone in that issue says to use "--precision full", but this fork
|
||||
actually disables that flag. I don't know why, someone else provided
|
||||
that code and I don't know what it does. Maybe the `model.half()`
|
||||
suggestion above would fix this issue too. I should probably test it.
|
||||
Someone in that issue says to use "--precision full", but this fork actually
|
||||
disables that flag. I don't know why, someone else provided that code and I
|
||||
don't know what it does. Maybe the `model.half()` suggestion above would fix
|
||||
this issue too. I should probably test it.
|
||||
|
||||
### "view size is not compatible with input tensor's size and stride"
|
||||
|
||||
```
|
||||
```bash
|
||||
File "/opt/anaconda3/envs/ldm/lib/python3.10/site-packages/torch/nn/functional.py", line 2511, in layer_norm
|
||||
return torch.layer_norm(input, normalized_shape, weight, bias, eps, torch.backends.cudnn.enabled)
|
||||
RuntimeError: view size is not compatible with input tensor's size and stride (at least one dimension spans across two contiguous subspaces). Use .reshape(...) instead.
|
||||
```
|
||||
|
||||
Update to the latest version of lstein/stable-diffusion. We were
|
||||
patching pytorch but we found a file in stable-diffusion that we could
|
||||
change instead. This is a 32-bit vs 16-bit problem.
|
||||
Update to the latest version of invoke-ai/InvokeAI. We were patching
|
||||
pytorch but we found a file in stable-diffusion that we could change instead.
|
||||
This is a 32-bit vs 16-bit problem.
|
||||
|
||||
---
|
||||
|
||||
### The processor must support the Intel bla bla bla
|
||||
|
||||
What? Intel? On an Apple Silicon?
|
||||
|
||||
Intel MKL FATAL ERROR: This system does not meet the minimum requirements for use of the Intel(R) Math Kernel Library.
|
||||
The processor must support the Intel(R) Supplemental Streaming SIMD Extensions 3 (Intel(R) SSSE3) instructions.
|
||||
The processor must support the Intel(R) Streaming SIMD Extensions 4.2 (Intel(R) SSE4.2) instructions.
|
||||
The processor must support the Intel(R) Advanced Vector Extensions (Intel(R) AVX) instructions.
|
||||
```bash
|
||||
Intel MKL FATAL ERROR: This system does not meet the minimum requirements for use of the Intel(R) Math Kernel Library. The processor must support the Intel(R) Supplemental Streaming SIMD Extensions 3 (Intel(R) SSSE3) instructions. The processor must support the Intel(R) Streaming SIMD Extensions 4.2 (Intel(R) SSE4.2) instructions. The processor must support the Intel(R) Advanced Vector Extensions (Intel(R) AVX) instructions.
|
||||
```
|
||||
|
||||
This is due to the Intel `mkl` package getting picked up when you try to install
|
||||
something that depends on it-- Rosetta can translate some Intel instructions but
|
||||
@ -351,11 +530,13 @@ not the specialized ones here. To avoid this, make sure to use the environment
|
||||
variable `CONDA_SUBDIR=osx-arm64`, which restricts the Conda environment to only
|
||||
use ARM packages, and use `nomkl` as described above.
|
||||
|
||||
---
|
||||
|
||||
### input types 'tensor<2x1280xf32>' and 'tensor<\*xf16>' are not broadcast compatible
|
||||
|
||||
May appear when just starting to generate, e.g.:
|
||||
|
||||
```
|
||||
```bash
|
||||
dream> clouds
|
||||
Generating: 0%| | 0/1 [00:00<?, ?it/s]/Users/[...]/dev/stable-diffusion/ldm/modules/embedding_manager.py:152: UserWarning: The operator 'aten::nonzero' is not currently supported on the MPS backend and will fall back to run on the CPU. This may have performance implications. (Triggered internally at /Users/runner/work/_temp/anaconda/conda-bld/pytorch_1662016319283/work/aten/src/ATen/mps/MPSFallback.mm:11.)
|
||||
placeholder_idx = torch.where(
|
||||
@ -366,4 +547,3 @@ Abort trap: 6
|
||||
warnings.warn('resource_tracker: There appear to be %d '
|
||||
```
|
||||
|
||||
Macs do not support autocast/mixed-precision. Supply `--full_precision` to use float32 everywhere.
|
||||
|
@ -1,92 +1,109 @@
|
||||
# **Windows Installation**
|
||||
---
|
||||
title: Windows
|
||||
---
|
||||
|
||||
# :fontawesome-brands-windows: Windows
|
||||
|
||||
## **Notebook install (semi-automated)**
|
||||
|
||||
We have a [Jupyter
|
||||
notebook](https://github.com/lstein/stable-diffusion/blob/main/notebooks/Stable-Diffusion-local-Windows.ipynb)
|
||||
with cell-by-cell installation steps. It will download the code in
|
||||
this repo as one of the steps, so instead of cloning this repo, simply
|
||||
download the notebook from the link above and load it up in VSCode
|
||||
(with the appropriate extensions installed)/Jupyter/JupyterLab and
|
||||
start running the cells one-by-one.
|
||||
We have a
|
||||
[Jupyter notebook](https://github.com/invoke-ai/InvokeAI/blob/main/notebooks/Stable-Diffusion-local-Windows.ipynb)
|
||||
with cell-by-cell installation steps. It will download the code in this repo as
|
||||
one of the steps, so instead of cloning this repo, simply download the notebook
|
||||
from the link above and load it up in VSCode (with the appropriate extensions
|
||||
installed)/Jupyter/JupyterLab and start running the cells one-by-one.
|
||||
|
||||
Note that you will need NVIDIA drivers, Python 3.10, and Git installed
|
||||
beforehand - simplified [step-by-step
|
||||
instructions](https://github.com/lstein/stable-diffusion/wiki/Easy-peasy-Windows-install)
|
||||
beforehand - simplified
|
||||
[step-by-step instructions](https://github.com/invoke-ai/InvokeAI/wiki/Easy-peasy-Windows-install)
|
||||
are available in the wiki (you'll only need steps 1, 2, & 3 ).
|
||||
|
||||
## **Manual Install**
|
||||
|
||||
### **pip**
|
||||
|
||||
See [Easy-peasy Windows install](https://github.com/lstein/stable-diffusion/wiki/Easy-peasy-Windows-install)
|
||||
See
|
||||
[Easy-peasy Windows install](https://github.com/invoke-ai/InvokeAI/wiki/Easy-peasy-Windows-install)
|
||||
in the wiki
|
||||
|
||||
---
|
||||
|
||||
### **Conda**
|
||||
|
||||
1. Install Anaconda3 (miniconda3 version) from here: https://docs.anaconda.com/anaconda/install/windows/
|
||||
1. Install Anaconda3 (miniconda3 version) from [here](https://docs.anaconda.com/anaconda/install/windows/)
|
||||
|
||||
2. Install Git from here: https://git-scm.com/download/win
|
||||
2. Install Git from [here](https://git-scm.com/download/win)
|
||||
|
||||
3. Launch Anaconda from the Windows Start menu. This will bring up a command window. Type all the remaining commands in this window.
|
||||
3. Launch Anaconda from the Windows Start menu. This will bring up a command
|
||||
window. Type all the remaining commands in this window.
|
||||
|
||||
4. Run the command:
|
||||
|
||||
```
|
||||
git clone https://github.com/lstein/stable-diffusion.git
|
||||
```batch
|
||||
git clone https://github.com/invoke-ai/InvokeAI.git
|
||||
```
|
||||
|
||||
This will create stable-diffusion folder where you will follow the rest of the steps.
|
||||
This will create stable-diffusion folder where you will follow the rest of
|
||||
the steps.
|
||||
|
||||
5. Enter the newly-created stable-diffusion folder. From this step forward make sure that you are working in the stable-diffusion directory!
|
||||
5. Enter the newly-created stable-diffusion folder. From this step forward make
|
||||
sure that you are working in the stable-diffusion directory!
|
||||
|
||||
```
|
||||
```batch
|
||||
cd stable-diffusion
|
||||
```
|
||||
|
||||
6. Run the following two commands:
|
||||
|
||||
```
|
||||
conda env create -f environment.yaml (step 6a)
|
||||
conda activate ldm (step 6b)
|
||||
```batch
|
||||
conda env create -f environment.yaml
|
||||
conda activate ldm
|
||||
```
|
||||
|
||||
This will install all python requirements and activate the "ldm"
|
||||
environment which sets PATH and other environment variables properly.
|
||||
This will install all python requirements and activate the "ldm" environment
|
||||
which sets PATH and other environment variables properly.
|
||||
|
||||
7. Run the command:
|
||||
|
||||
```
|
||||
```batch
|
||||
python scripts\preload_models.py
|
||||
```
|
||||
|
||||
This installs several machine learning models that stable diffusion requires.
|
||||
|
||||
Note: This step is required. This was done because some users may might be blocked by firewalls or have limited internet connectivity for the models to be downloaded just-in-time.
|
||||
Note: This step is required. This was done because some users may might be
|
||||
blocked by firewalls or have limited internet connectivity for the models to
|
||||
be downloaded just-in-time.
|
||||
|
||||
8. Now you need to install the weights for the big stable diffusion model.
|
||||
|
||||
- For running with the released weights, you will first need to set up an acount with Hugging Face (https://huggingface.co).
|
||||
- Use your credentials to log in, and then point your browser at https://huggingface.co/CompVis/stable-diffusion-v-1-4-original.
|
||||
- For running with the released weights, you will first need to set up an
|
||||
acount with [Hugging Face](https://huggingface.co).
|
||||
- Use your credentials to log in, and then point your browser at
|
||||
[https://huggingface.co/CompVis/stable-diffusion-v-1-4-original](https://huggingface.co/CompVis/stable-diffusion-v-1-4-original).
|
||||
- You may be asked to sign a license agreement at this point.
|
||||
- Click on "Files and versions" near the top of the page, and then click on the file named `sd-v1-4.ckpt`. You'll be taken to a page that
|
||||
prompts you to click the "download" link. Now save the file somewhere safe on your local machine.
|
||||
- The weight file is >4 GB in size, so
|
||||
downloading may take a while.
|
||||
- Click on "Files and versions" near the top of the page, and then click on
|
||||
the file named `sd-v1-4.ckpt`. You'll be taken to a page that prompts you
|
||||
to click the "download" link. Now save the file somewhere safe on your
|
||||
local machine.
|
||||
- The weight file is >4 GB in size, so downloading may take a while.
|
||||
|
||||
Now run the following commands from **within the stable-diffusion directory** to copy the weights file to the right place:
|
||||
Now run the following commands from **within the stable-diffusion directory**
|
||||
to copy the weights file to the right place:
|
||||
|
||||
```
|
||||
```batch
|
||||
mkdir -p models\ldm\stable-diffusion-v1
|
||||
copy C:\path\to\sd-v1-4.ckpt models\ldm\stable-diffusion-v1\model.ckpt
|
||||
```
|
||||
|
||||
Please replace `C:\path\to\sd-v1.4.ckpt` with the correct path to wherever you stashed this file. If you prefer not to copy or move the .ckpt file,
|
||||
you may instead create a shortcut to it from within `models\ldm\stable-diffusion-v1\`.
|
||||
Please replace `C:\path\to\sd-v1.4.ckpt` with the correct path to wherever
|
||||
you stashed this file. If you prefer not to copy or move the .ckpt file, you
|
||||
may instead create a shortcut to it from within
|
||||
`models\ldm\stable-diffusion-v1\`.
|
||||
|
||||
9. Start generating images!
|
||||
|
||||
```
|
||||
```batch
|
||||
# for the pre-release weights
|
||||
python scripts\dream.py -l
|
||||
|
||||
@ -94,17 +111,26 @@ python scripts\dream.py -l
|
||||
python scripts\dream.py
|
||||
```
|
||||
|
||||
10. Subsequently, to relaunch the script, first activate the Anaconda command window (step 3),enter the stable-diffusion directory (step 5, `cd \path\to\stable-diffusion`), run `conda activate ldm` (step 6b), and then launch the dream script (step 9).
|
||||
10. Subsequently, to relaunch the script, first activate the Anaconda command
|
||||
window (step 3),enter the stable-diffusion directory (step 5,
|
||||
`cd \path\to\stable-diffusion`), run `conda activate ldm` (step 6b), and
|
||||
then launch the dream script (step 9).
|
||||
|
||||
**Note:** Tildebyte has written an alternative ["Easy peasy Windows
|
||||
install"](https://github.com/lstein/stable-diffusion/wiki/Easy-peasy-Windows-install)
|
||||
which uses the Windows Powershell and pew. If you are having trouble with Anaconda on Windows, give this a try (or try it first!)
|
||||
**Note:** Tildebyte has written an alternative
|
||||
["Easy peasy Windows install"](https://github.com/invoke-ai/InvokeAI/wiki/Easy-peasy-Windows-install)
|
||||
which uses the Windows Powershell and pew. If you are having trouble with
|
||||
Anaconda on Windows, give this a try (or try it first!)
|
||||
|
||||
### Updating to newer versions of the script
|
||||
---
|
||||
|
||||
This distribution is changing rapidly. If you used the `git clone` method (step 5) to download the stable-diffusion directory, then to update to the latest and greatest version, launch the Anaconda window, enter `stable-diffusion`, and type:
|
||||
## Updating to newer versions of the script
|
||||
|
||||
```
|
||||
This distribution is changing rapidly. If you used the `git clone` method
|
||||
(step 5) to download the stable-diffusion directory, then to update to the
|
||||
latest and greatest version, launch the Anaconda window, enter
|
||||
`stable-diffusion`, and type:
|
||||
|
||||
```batch
|
||||
git pull
|
||||
conda env update -f environment.yaml
|
||||
```
|
||||
|
73
docs/openapi3_0.yaml
Normal file
@ -0,0 +1,73 @@
|
||||
openapi: 3.0.3
|
||||
info:
|
||||
title: Stable Diffusion
|
||||
description: |-
|
||||
TODO: Description Here
|
||||
|
||||
Some useful links:
|
||||
- [Stable Diffusion Dream Server](https://github.com/lstein/stable-diffusion)
|
||||
|
||||
license:
|
||||
name: MIT License
|
||||
url: https://github.com/lstein/stable-diffusion/blob/main/LICENSE
|
||||
version: 1.0.0
|
||||
servers:
|
||||
- url: http://localhost:9090/api
|
||||
tags:
|
||||
- name: images
|
||||
description: Retrieve and manage generated images
|
||||
paths:
|
||||
/images/{imageId}:
|
||||
get:
|
||||
tags:
|
||||
- images
|
||||
summary: Get image by ID
|
||||
description: Returns a single image
|
||||
operationId: getImageById
|
||||
parameters:
|
||||
- name: imageId
|
||||
in: path
|
||||
description: ID of image to return
|
||||
required: true
|
||||
schema:
|
||||
type: string
|
||||
responses:
|
||||
'200':
|
||||
description: successful operation
|
||||
content:
|
||||
image/png:
|
||||
schema:
|
||||
type: string
|
||||
format: binary
|
||||
'404':
|
||||
description: Image not found
|
||||
/intermediates/{intermediateId}/{step}:
|
||||
get:
|
||||
tags:
|
||||
- images
|
||||
summary: Get intermediate image by ID
|
||||
description: Returns a single intermediate image
|
||||
operationId: getIntermediateById
|
||||
parameters:
|
||||
- name: intermediateId
|
||||
in: path
|
||||
description: ID of intermediate to return
|
||||
required: true
|
||||
schema:
|
||||
type: string
|
||||
- name: step
|
||||
in: path
|
||||
description: The generation step of the intermediate
|
||||
required: true
|
||||
schema:
|
||||
type: string
|
||||
responses:
|
||||
'200':
|
||||
description: successful operation
|
||||
content:
|
||||
image/png:
|
||||
schema:
|
||||
type: string
|
||||
format: binary
|
||||
'404':
|
||||
description: Intermediate not found
|
@ -1,14 +1,19 @@
|
||||
# Contributors
|
||||
---
|
||||
title: Contributors
|
||||
---
|
||||
|
||||
The list of all the amazing people who have contributed to the various features that you get to experience in this fork.
|
||||
# :octicons-person-24: Contributors
|
||||
|
||||
The list of all the amazing people who have contributed to the various features that you get to
|
||||
experience in this fork.
|
||||
|
||||
We thank them for all of their time and hard work.
|
||||
|
||||
_Original Author:_
|
||||
## **Original Author:**
|
||||
|
||||
- Lincoln D. Stein <lincoln.stein@gmail.com>
|
||||
- [Lincoln D. Stein](mailto:lincoln.stein@gmail.com)
|
||||
|
||||
_Contributions by:_
|
||||
## **Contributions by:**
|
||||
|
||||
- [Sean McLellan](https://github.com/Oceanswave)
|
||||
- [Kevin Gibbons](https://github.com/bakkot)
|
||||
@ -45,8 +50,15 @@ _Contributions by:_
|
||||
- [Paul Sajna](https://github.com/sajattack)
|
||||
- [Samuel Husso](https://github.com/shusso)
|
||||
- [nicolai256](https://github.com/nicolai256)
|
||||
- [Mihai](https://github.com/mh-dm)
|
||||
- [Any Winter](https://github.com/any-winter-4079)
|
||||
- [Doggettx](https://github.com/doggettx)
|
||||
- [Matthias Wild](https://github.com/mauwii)
|
||||
- [Kyle Schouviller](https://github.com/kyle0654)
|
||||
- [rabidcopy](https://github.com/rabidcopy)
|
||||
- [Dominic Letz](https://github.com/dominicletz)
|
||||
|
||||
_Original CompVis Authors:_
|
||||
## **Original CompVis Authors:**
|
||||
|
||||
- [Robin Rombach](https://github.com/rromb)
|
||||
- [Patrick von Platen](https://github.com/patrickvonplaten)
|
||||
@ -58,4 +70,5 @@ _Original CompVis Authors:_
|
||||
|
||||
---
|
||||
|
||||
_If you have contributed and don't see your name on the list of contributors, please let one of the collaborators know about the omission, or feel free to make a pull request._
|
||||
_If you have contributed and don't see your name on the list of contributors, please let one of the
|
||||
collaborators know about the omission, or feel free to make a pull request._
|
@ -1,6 +1,12 @@
|
||||
# Original README from CompViz/stable-diffusion
|
||||
---
|
||||
title: CompViz-Readme
|
||||
---
|
||||
|
||||
_Stable Diffusion was made possible thanks to a collaboration with [Stability AI](https://stability.ai/) and [Runway](https://runwayml.com/) and builds upon our previous work:_
|
||||
# _README from [CompViz/stable-diffusion](https://github.com/CompVis/stable-diffusion)_
|
||||
|
||||
_Stable Diffusion was made possible thanks to a collaboration with
|
||||
[Stability AI](https://stability.ai/) and [Runway](https://runwayml.com/) and
|
||||
builds upon our previous work:_
|
||||
|
||||
[**High-Resolution Image Synthesis with Latent Diffusion Models**](https://ommer-lab.com/research/latent-diffusion-models/)<br/>
|
||||
[Robin Rombach](https://github.com/rromb)\*,
|
||||
@ -9,32 +15,40 @@ _Stable Diffusion was made possible thanks to a collaboration with [Stability AI
|
||||
[Patrick Esser](https://github.com/pesser),
|
||||
[Björn Ommer](https://hci.iwr.uni-heidelberg.de/Staff/bommer)<br/>
|
||||
|
||||
**CVPR '22 Oral**
|
||||
## **CVPR '22 Oral**
|
||||
|
||||
which is available on [GitHub](https://github.com/CompVis/latent-diffusion). PDF at [arXiv](https://arxiv.org/abs/2112.10752). Please also visit our [Project page](https://ommer-lab.com/research/latent-diffusion-models/).
|
||||
which is available on [GitHub](https://github.com/CompVis/latent-diffusion). PDF
|
||||
at [arXiv](https://arxiv.org/abs/2112.10752). Please also visit our
|
||||
[Project page](https://ommer-lab.com/research/latent-diffusion-models/).
|
||||
|
||||
![txt2img-stable2](../assets/stable-samples/txt2img/merged-0006.png)
|
||||
[Stable Diffusion](#stable-diffusion-v1) is a latent text-to-image diffusion
|
||||
model.
|
||||
Thanks to a generous compute donation from [Stability AI](https://stability.ai/) and support from [LAION](https://laion.ai/), we were able to train a Latent Diffusion Model on 512x512 images from a subset of the [LAION-5B](https://laion.ai/blog/laion-5b/) database.
|
||||
Similar to Google's [Imagen](https://arxiv.org/abs/2205.11487),
|
||||
this model uses a frozen CLIP ViT-L/14 text encoder to condition the model on text prompts.
|
||||
With its 860M UNet and 123M text encoder, the model is relatively lightweight and runs on a GPU with at least 10GB VRAM.
|
||||
See [this section](#stable-diffusion-v1) below and the [model card](https://huggingface.co/CompVis/stable-diffusion).
|
||||
model. Thanks to a generous compute donation from
|
||||
[Stability AI](https://stability.ai/) and support from
|
||||
[LAION](https://laion.ai/), we were able to train a Latent Diffusion Model on
|
||||
512x512 images from a subset of the [LAION-5B](https://laion.ai/blog/laion-5b/)
|
||||
database. Similar to Google's [Imagen](https://arxiv.org/abs/2205.11487), this
|
||||
model uses a frozen CLIP ViT-L/14 text encoder to condition the model on text
|
||||
prompts. With its 860M UNet and 123M text encoder, the model is relatively
|
||||
lightweight and runs on a GPU with at least 10GB VRAM. See
|
||||
[this section](#stable-diffusion-v1) below and the
|
||||
[model card](https://huggingface.co/CompVis/stable-diffusion).
|
||||
|
||||
## Requirements
|
||||
|
||||
A suitable [conda](https://conda.io/) environment named `ldm` can be created
|
||||
and activated with:
|
||||
A suitable [conda](https://conda.io/) environment named `ldm` can be created and
|
||||
activated with:
|
||||
|
||||
```
|
||||
```bash
|
||||
conda env create -f environment.yaml
|
||||
conda activate ldm
|
||||
```
|
||||
|
||||
You can also update an existing [latent diffusion](https://github.com/CompVis/latent-diffusion) environment by running
|
||||
You can also update an existing
|
||||
[latent diffusion](https://github.com/CompVis/latent-diffusion) environment by
|
||||
running
|
||||
|
||||
```
|
||||
```bash
|
||||
conda install pytorch torchvision -c pytorch
|
||||
pip install transformers==4.19.2
|
||||
pip install -e .
|
||||
@ -42,42 +56,57 @@ pip install -e .
|
||||
|
||||
## Stable Diffusion v1
|
||||
|
||||
Stable Diffusion v1 refers to a specific configuration of the model
|
||||
architecture that uses a downsampling-factor 8 autoencoder with an 860M UNet
|
||||
and CLIP ViT-L/14 text encoder for the diffusion model. The model was pretrained on 256x256 images and
|
||||
then finetuned on 512x512 images.
|
||||
Stable Diffusion v1 refers to a specific configuration of the model architecture
|
||||
that uses a downsampling-factor 8 autoencoder with an 860M UNet and CLIP
|
||||
ViT-L/14 text encoder for the diffusion model. The model was pretrained on
|
||||
256x256 images and then finetuned on 512x512 images.
|
||||
|
||||
\*Note: Stable Diffusion v1 is a general text-to-image diffusion model and therefore mirrors biases and (mis-)conceptions that are present
|
||||
in its training data.
|
||||
Details on the training procedure and data, as well as the intended use of the model can be found in the corresponding [model card](https://huggingface.co/CompVis/stable-diffusion).
|
||||
Research into the safe deployment of general text-to-image models is an ongoing effort. To prevent misuse and harm, we currently provide access to the checkpoints only for [academic research purposes upon request](https://stability.ai/academia-access-form).
|
||||
**This is an experiment in safe and community-driven publication of a capable and general text-to-image model. We are working on a public release with a more permissive license that also incorporates ethical considerations.\***
|
||||
\*Note: Stable Diffusion v1 is a general text-to-image diffusion model and
|
||||
therefore mirrors biases and (mis-)conceptions that are present in its training
|
||||
data. Details on the training procedure and data, as well as the intended use of
|
||||
the model can be found in the corresponding
|
||||
[model card](https://huggingface.co/CompVis/stable-diffusion). Research into the
|
||||
safe deployment of general text-to-image models is an ongoing effort. To prevent
|
||||
misuse and harm, we currently provide access to the checkpoints only for
|
||||
[academic research purposes upon request](https://stability.ai/academia-access-form).
|
||||
**This is an experiment in safe and community-driven publication of a capable
|
||||
and general text-to-image model. We are working on a public release with a more
|
||||
permissive license that also incorporates ethical considerations.\***
|
||||
|
||||
[Request access to Stable Diffusion v1 checkpoints for academic research](https://stability.ai/academia-access-form)
|
||||
|
||||
### Weights
|
||||
|
||||
We currently provide three checkpoints, `sd-v1-1.ckpt`, `sd-v1-2.ckpt` and `sd-v1-3.ckpt`,
|
||||
which were trained as follows,
|
||||
We currently provide three checkpoints, `sd-v1-1.ckpt`, `sd-v1-2.ckpt` and
|
||||
`sd-v1-3.ckpt`, which were trained as follows,
|
||||
|
||||
- `sd-v1-1.ckpt`: 237k steps at resolution `256x256` on [laion2B-en](https://huggingface.co/datasets/laion/laion2B-en).
|
||||
194k steps at resolution `512x512` on [laion-high-resolution](https://huggingface.co/datasets/laion/laion-high-resolution) (170M examples from LAION-5B with resolution `>= 1024x1024`).
|
||||
- `sd-v1-2.ckpt`: Resumed from `sd-v1-1.ckpt`.
|
||||
515k steps at resolution `512x512` on "laion-improved-aesthetics" (a subset of laion2B-en,
|
||||
filtered to images with an original size `>= 512x512`, estimated aesthetics score `> 5.0`, and an estimated watermark probability `< 0.5`. The watermark estimate is from the LAION-5B metadata, the aesthetics score is estimated using an [improved aesthetics estimator](https://github.com/christophschuhmann/improved-aesthetic-predictor)).
|
||||
- `sd-v1-3.ckpt`: Resumed from `sd-v1-2.ckpt`. 195k steps at resolution `512x512` on "laion-improved-aesthetics" and 10\% dropping of the text-conditioning to improve [classifier-free guidance sampling](https://arxiv.org/abs/2207.12598).
|
||||
- `sd-v1-1.ckpt`: 237k steps at resolution `256x256` on
|
||||
[laion2B-en](https://huggingface.co/datasets/laion/laion2B-en). 194k steps at
|
||||
resolution `512x512` on
|
||||
[laion-high-resolution](https://huggingface.co/datasets/laion/laion-high-resolution)
|
||||
(170M examples from LAION-5B with resolution `>= 1024x1024`).
|
||||
- `sd-v1-2.ckpt`: Resumed from `sd-v1-1.ckpt`. 515k steps at resolution
|
||||
`512x512` on "laion-improved-aesthetics" (a subset of laion2B-en, filtered to
|
||||
images with an original size `>= 512x512`, estimated aesthetics score `> 5.0`,
|
||||
and an estimated watermark probability `< 0.5`. The watermark estimate is from
|
||||
the LAION-5B metadata, the aesthetics score is estimated using an
|
||||
[improved aesthetics estimator](https://github.com/christophschuhmann/improved-aesthetic-predictor)).
|
||||
- `sd-v1-3.ckpt`: Resumed from `sd-v1-2.ckpt`. 195k steps at resolution
|
||||
`512x512` on "laion-improved-aesthetics" and 10\% dropping of the
|
||||
text-conditioning to improve
|
||||
[classifier-free guidance sampling](https://arxiv.org/abs/2207.12598).
|
||||
|
||||
Evaluations with different classifier-free guidance scales (1.5, 2.0, 3.0, 4.0,
|
||||
5.0, 6.0, 7.0, 8.0) and 50 PLMS sampling
|
||||
steps show the relative improvements of the checkpoints:
|
||||
![sd evaluation results](../assets/v1-variants-scores.jpg)
|
||||
5.0, 6.0, 7.0, 8.0) and 50 PLMS sampling steps show the relative improvements of
|
||||
the checkpoints: ![sd evaluation results](../assets/v1-variants-scores.jpg)
|
||||
|
||||
### Text-to-Image with Stable Diffusion
|
||||
|
||||
![txt2img-stable2](../assets/stable-samples/txt2img/merged-0005.png)
|
||||
![txt2img-stable2](../assets/stable-samples/txt2img/merged-0007.png)
|
||||
|
||||
Stable Diffusion is a latent diffusion model conditioned on the (non-pooled) text embeddings of a CLIP ViT-L/14 text encoder.
|
||||
Stable Diffusion is a latent diffusion model conditioned on the (non-pooled)
|
||||
text embeddings of a CLIP ViT-L/14 text encoder.
|
||||
|
||||
#### Sampling Script
|
||||
|
||||
@ -94,8 +123,11 @@ and sample with
|
||||
python scripts/txt2img.py --prompt "a photograph of an astronaut riding a horse" --plms
|
||||
```
|
||||
|
||||
By default, this uses a guidance scale of `--scale 7.5`, [Katherine Crowson's implementation](https://github.com/CompVis/latent-diffusion/pull/51) of the [PLMS](https://arxiv.org/abs/2202.09778) sampler,
|
||||
and renders images of size 512x512 (which it was trained on) in 50 steps. All supported arguments are listed below (type `python scripts/txt2img.py --help`).
|
||||
By default, this uses a guidance scale of `--scale 7.5`,
|
||||
[Katherine Crowson's implementation](https://github.com/CompVis/latent-diffusion/pull/51)
|
||||
of the [PLMS](https://arxiv.org/abs/2202.09778) sampler, and renders images of
|
||||
size 512x512 (which it was trained on) in 50 steps. All supported arguments are
|
||||
listed below (type `python scripts/txt2img.py --help`).
|
||||
|
||||
```commandline
|
||||
usage: txt2img.py [-h] [--prompt [PROMPT]] [--outdir [OUTDIR]] [--skip_grid] [--skip_save] [--ddim_steps DDIM_STEPS] [--plms] [--laion400m] [--fixed_code] [--ddim_eta DDIM_ETA] [--n_iter N_ITER] [--H H] [--W W] [--C C] [--f F] [--n_samples N_SAMPLES] [--n_rows N_ROWS]
|
||||
@ -133,14 +165,17 @@ optional arguments:
|
||||
|
||||
```
|
||||
|
||||
Note: The inference config for all v1 versions is designed to be used with EMA-only checkpoints.
|
||||
For this reason `use_ema=False` is set in the configuration, otherwise the code will try to switch from
|
||||
non-EMA to EMA weights. If you want to examine the effect of EMA vs no EMA, we provide "full" checkpoints
|
||||
which contain both types of weights. For these, `use_ema=False` will load and use the non-EMA weights.
|
||||
Note: The inference config for all v1 versions is designed to be used with
|
||||
EMA-only checkpoints. For this reason `use_ema=False` is set in the
|
||||
configuration, otherwise the code will try to switch from non-EMA to EMA
|
||||
weights. If you want to examine the effect of EMA vs no EMA, we provide "full"
|
||||
checkpoints which contain both types of weights. For these, `use_ema=False` will
|
||||
load and use the non-EMA weights.
|
||||
|
||||
#### Diffusers Integration
|
||||
|
||||
Another way to download and sample Stable Diffusion is by using the [diffusers library](https://github.com/huggingface/diffusers/tree/main#new--stable-diffusion-is-now-fully-compatible-with-diffusers)
|
||||
Another way to download and sample Stable Diffusion is by using the
|
||||
[diffusers library](https://github.com/huggingface/diffusers/tree/main#new--stable-diffusion-is-now-fully-compatible-with-diffusers)
|
||||
|
||||
```py
|
||||
# make sure you're logged in with `huggingface-cli login`
|
||||
@ -161,18 +196,23 @@ image.save("astronaut_rides_horse.png")
|
||||
|
||||
### Image Modification with Stable Diffusion
|
||||
|
||||
By using a diffusion-denoising mechanism as first proposed by [SDEdit](https://arxiv.org/abs/2108.01073), the model can be used for different
|
||||
tasks such as text-guided image-to-image translation and upscaling. Similar to the txt2img sampling script,
|
||||
we provide a script to perform image modification with Stable Diffusion.
|
||||
By using a diffusion-denoising mechanism as first proposed by
|
||||
[SDEdit](https://arxiv.org/abs/2108.01073), the model can be used for different
|
||||
tasks such as text-guided image-to-image translation and upscaling. Similar to
|
||||
the txt2img sampling script, we provide a script to perform image modification
|
||||
with Stable Diffusion.
|
||||
|
||||
The following describes an example where a rough sketch made in [Pinta](https://www.pinta-project.com/) is converted into a detailed artwork.
|
||||
The following describes an example where a rough sketch made in
|
||||
[Pinta](https://www.pinta-project.com/) is converted into a detailed artwork.
|
||||
|
||||
```
|
||||
python scripts/img2img.py --prompt "A fantasy landscape, trending on artstation" --init-img <path-to-img.jpg> --strength 0.8
|
||||
```
|
||||
|
||||
Here, strength is a value between 0.0 and 1.0, that controls the amount of noise that is added to the input image.
|
||||
Values that approach 1.0 allow for lots of variations but will also produce images that are not semantically consistent with the input. See the following example.
|
||||
Here, strength is a value between 0.0 and 1.0, that controls the amount of noise
|
||||
that is added to the input image. Values that approach 1.0 allow for lots of
|
||||
variations but will also produce images that are not semantically consistent
|
||||
with the input. See the following example.
|
||||
|
||||
**Input**
|
||||
|
||||
@ -183,15 +223,19 @@ Values that approach 1.0 allow for lots of variations but will also produce imag
|
||||
![out3](../assets/stable-samples/img2img/mountains-3.png)
|
||||
![out2](../assets/stable-samples/img2img/mountains-2.png)
|
||||
|
||||
This procedure can, for example, also be used to upscale samples from the base model.
|
||||
This procedure can, for example, also be used to upscale samples from the base
|
||||
model.
|
||||
|
||||
## Comments
|
||||
|
||||
- Our codebase for the diffusion models builds heavily on [OpenAI's ADM codebase](https://github.com/openai/guided-diffusion)
|
||||
and [https://github.com/lucidrains/denoising-diffusion-pytorch](https://github.com/lucidrains/denoising-diffusion-pytorch).
|
||||
- Our codebase for the diffusion models builds heavily on
|
||||
[OpenAI's ADM codebase](https://github.com/openai/guided-diffusion) and
|
||||
[https://github.com/lucidrains/denoising-diffusion-pytorch](https://github.com/lucidrains/denoising-diffusion-pytorch).
|
||||
Thanks for open-sourcing!
|
||||
|
||||
- The implementation of the transformer encoder is from [x-transformers](https://github.com/lucidrains/x-transformers) by [lucidrains](https://github.com/lucidrains?tab=repositories).
|
||||
- The implementation of the transformer encoder is from
|
||||
[x-transformers](https://github.com/lucidrains/x-transformers) by
|
||||
[lucidrains](https://github.com/lucidrains?tab=repositories).
|
||||
|
||||
## BibTeX
|
||||
|
BIN
docs/swagger-ui/favicon-16x16.png
Normal file
After Width: | Height: | Size: 665 B |
BIN
docs/swagger-ui/favicon-32x32.png
Normal file
After Width: | Height: | Size: 628 B |
16
docs/swagger-ui/index.css
Normal file
@ -0,0 +1,16 @@
|
||||
html {
|
||||
box-sizing: border-box;
|
||||
overflow: -moz-scrollbars-vertical;
|
||||
overflow-y: scroll;
|
||||
}
|
||||
|
||||
*,
|
||||
*:before,
|
||||
*:after {
|
||||
box-sizing: inherit;
|
||||
}
|
||||
|
||||
body {
|
||||
margin: 0;
|
||||
background: #fafafa;
|
||||
}
|
79
docs/swagger-ui/oauth2-redirect.html
Normal file
@ -0,0 +1,79 @@
|
||||
<!doctype html>
|
||||
<html lang="en-US">
|
||||
<head>
|
||||
<title>Swagger UI: OAuth2 Redirect</title>
|
||||
</head>
|
||||
<body>
|
||||
<script>
|
||||
'use strict';
|
||||
function run () {
|
||||
var oauth2 = window.opener.swaggerUIRedirectOauth2;
|
||||
var sentState = oauth2.state;
|
||||
var redirectUrl = oauth2.redirectUrl;
|
||||
var isValid, qp, arr;
|
||||
|
||||
if (/code|token|error/.test(window.location.hash)) {
|
||||
qp = window.location.hash.substring(1).replace('?', '&');
|
||||
} else {
|
||||
qp = location.search.substring(1);
|
||||
}
|
||||
|
||||
arr = qp.split("&");
|
||||
arr.forEach(function (v,i,_arr) { _arr[i] = '"' + v.replace('=', '":"') + '"';});
|
||||
qp = qp ? JSON.parse('{' + arr.join() + '}',
|
||||
function (key, value) {
|
||||
return key === "" ? value : decodeURIComponent(value);
|
||||
}
|
||||
) : {};
|
||||
|
||||
isValid = qp.state === sentState;
|
||||
|
||||
if ((
|
||||
oauth2.auth.schema.get("flow") === "accessCode" ||
|
||||
oauth2.auth.schema.get("flow") === "authorizationCode" ||
|
||||
oauth2.auth.schema.get("flow") === "authorization_code"
|
||||
) && !oauth2.auth.code) {
|
||||
if (!isValid) {
|
||||
oauth2.errCb({
|
||||
authId: oauth2.auth.name,
|
||||
source: "auth",
|
||||
level: "warning",
|
||||
message: "Authorization may be unsafe, passed state was changed in server. The passed state wasn't returned from auth server."
|
||||
});
|
||||
}
|
||||
|
||||
if (qp.code) {
|
||||
delete oauth2.state;
|
||||
oauth2.auth.code = qp.code;
|
||||
oauth2.callback({auth: oauth2.auth, redirectUrl: redirectUrl});
|
||||
} else {
|
||||
let oauthErrorMsg;
|
||||
if (qp.error) {
|
||||
oauthErrorMsg = "["+qp.error+"]: " +
|
||||
(qp.error_description ? qp.error_description+ ". " : "no accessCode received from the server. ") +
|
||||
(qp.error_uri ? "More info: "+qp.error_uri : "");
|
||||
}
|
||||
|
||||
oauth2.errCb({
|
||||
authId: oauth2.auth.name,
|
||||
source: "auth",
|
||||
level: "error",
|
||||
message: oauthErrorMsg || "[Authorization failed]: no accessCode received from the server."
|
||||
});
|
||||
}
|
||||
} else {
|
||||
oauth2.callback({auth: oauth2.auth, token: qp, isValid: isValid, redirectUrl: redirectUrl});
|
||||
}
|
||||
window.close();
|
||||
}
|
||||
|
||||
if (document.readyState !== 'loading') {
|
||||
run();
|
||||
} else {
|
||||
document.addEventListener('DOMContentLoaded', function () {
|
||||
run();
|
||||
});
|
||||
}
|
||||
</script>
|
||||
</body>
|
||||
</html>
|
20
docs/swagger-ui/swagger-initializer.js
Normal file
@ -0,0 +1,20 @@
|
||||
window.onload = function() {
|
||||
//<editor-fold desc="Changeable Configuration Block">
|
||||
|
||||
// the following lines will be replaced by docker/configurator, when it runs in a docker-container
|
||||
window.ui = SwaggerUIBundle({
|
||||
url: "openapi3_0.yaml",
|
||||
dom_id: '#swagger-ui',
|
||||
deepLinking: true,
|
||||
presets: [
|
||||
SwaggerUIBundle.presets.apis,
|
||||
SwaggerUIStandalonePreset
|
||||
],
|
||||
plugins: [
|
||||
SwaggerUIBundle.plugins.DownloadUrl
|
||||
],
|
||||
layout: "StandaloneLayout"
|
||||
});
|
||||
|
||||
//</editor-fold>
|
||||
};
|
3
docs/swagger-ui/swagger-ui-bundle.js
Normal file
1
docs/swagger-ui/swagger-ui-bundle.js.map
Normal file
3
docs/swagger-ui/swagger-ui-es-bundle-core.js
Normal file
1
docs/swagger-ui/swagger-ui-es-bundle-core.js.map
Normal file
3
docs/swagger-ui/swagger-ui-es-bundle.js
Normal file
1
docs/swagger-ui/swagger-ui-es-bundle.js.map
Normal file
3
docs/swagger-ui/swagger-ui-standalone-preset.js
Normal file
1
docs/swagger-ui/swagger-ui-standalone-preset.js.map
Normal file
4
docs/swagger-ui/swagger-ui.css
Normal file
1
docs/swagger-ui/swagger-ui.css.map
Normal file
2
docs/swagger-ui/swagger-ui.js
Normal file
1
docs/swagger-ui/swagger-ui.js.map
Normal file
@ -32,6 +32,7 @@ dependencies:
|
||||
- omegaconf==2.1.1
|
||||
- onnx==1.12.0
|
||||
- onnxruntime==1.12.1
|
||||
- protobuf==3.20.1
|
||||
- pudb==2022.1
|
||||
- pytorch-lightning==1.6.5
|
||||
- scipy==1.9.1
|
||||
@ -40,8 +41,15 @@ dependencies:
|
||||
- tensorboard==2.9.0
|
||||
- torchmetrics==0.9.3
|
||||
- pip:
|
||||
- flask==2.1.3
|
||||
- flask_socketio==5.3.0
|
||||
- flask_cors==3.0.10
|
||||
- dependency_injector==4.40.0
|
||||
- eventlet
|
||||
- opencv-python==4.6.0
|
||||
- protobuf==3.20.1
|
||||
- realesrgan==0.2.5.0
|
||||
- send2trash==1.8.0
|
||||
- test-tube==0.7.5
|
||||
- transformers==4.21.2
|
||||
- torch-fidelity==0.3.0
|
||||
|
@ -3,7 +3,7 @@ channels:
|
||||
- pytorch
|
||||
- defaults
|
||||
dependencies:
|
||||
- python=3.8.5
|
||||
- python>=3.9
|
||||
- pip=20.3
|
||||
- cudatoolkit=11.3
|
||||
- pytorch=1.11.0
|
||||
@ -20,11 +20,17 @@ dependencies:
|
||||
- realesrgan==0.2.5.0
|
||||
- test-tube>=0.7.5
|
||||
- streamlit==1.12.0
|
||||
- send2trash==1.8.0
|
||||
- pillow==9.2.0
|
||||
- einops==0.3.0
|
||||
- torch-fidelity==0.3.0
|
||||
- transformers==4.19.2
|
||||
- torchmetrics==0.6.0
|
||||
- flask==2.1.3
|
||||
- flask_socketio==5.3.0
|
||||
- flask_cors==3.0.10
|
||||
- dependency_injector==4.40.0
|
||||
- eventlet
|
||||
- kornia==0.6.0
|
||||
- -e git+https://github.com/openai/CLIP.git@main#egg=clip
|
||||
- -e git+https://github.com/CompVis/taming-transformers.git@master#egg=taming-transformers
|
||||
|
6
frontend/.eslintrc.cjs
Normal file
@ -0,0 +1,6 @@
|
||||
module.exports = {
|
||||
extends: ['eslint:recommended', 'plugin:@typescript-eslint/recommended', 'plugin:react-hooks/recommended'],
|
||||
parser: '@typescript-eslint/parser',
|
||||
plugins: ['@typescript-eslint', 'eslint-plugin-react-hooks'],
|
||||
root: true,
|
||||
};
|
25
frontend/.gitignore
vendored
Normal file
@ -0,0 +1,25 @@
|
||||
# Logs
|
||||
logs
|
||||
*.log
|
||||
npm-debug.log*
|
||||
yarn-debug.log*
|
||||
yarn-error.log*
|
||||
pnpm-debug.log*
|
||||
lerna-debug.log*
|
||||
|
||||
node_modules
|
||||
# We want to distribute the repo
|
||||
# dist
|
||||
dist-ssr
|
||||
*.local
|
||||
|
||||
# Editor directories and files
|
||||
.vscode/*
|
||||
!.vscode/extensions.json
|
||||
.idea
|
||||
.DS_Store
|
||||
*.suo
|
||||
*.ntvs*
|
||||
*.njsproj
|
||||
*.sln
|
||||
*.sw?
|
37
frontend/README.md
Normal file
@ -0,0 +1,37 @@
|
||||
# Stable Diffusion Web UI
|
||||
|
||||
## Run
|
||||
|
||||
- `python backend/server.py` serves both frontend and backend at http://localhost:9090
|
||||
|
||||
## Evironment
|
||||
|
||||
Install [node](https://nodejs.org/en/download/) (includes npm) and optionally
|
||||
[yarn](https://yarnpkg.com/getting-started/install).
|
||||
|
||||
From `frontend/` run `npm install` / `yarn install` to install the frontend packages.
|
||||
|
||||
## Dev
|
||||
|
||||
1. From `frontend/`, run `npm dev` / `yarn dev` to start the dev server.
|
||||
2. Note the address it starts up on (probably `http://localhost:5173/`).
|
||||
3. Edit `backend/server.py`'s `additional_allowed_origins` to include this address, e.g.
|
||||
`additional_allowed_origins = ['http://localhost:5173']`.
|
||||
4. Leaving the dev server running, open a new terminal and go to the project root.
|
||||
5. Run `python backend/server.py`.
|
||||
6. Navigate to the dev server address e.g. `http://localhost:5173/`.
|
||||
|
||||
To build for dev: `npm build-dev` / `yarn build-dev`
|
||||
|
||||
To build for production: `npm build` / `yarn build`
|
||||
|
||||
## TODO
|
||||
|
||||
- Search repo for "TODO"
|
||||
- My one gripe with Chakra: no way to disable all animations right now and drop the dependence on
|
||||
`framer-motion`. I would prefer to save the ~30kb on bundle and have zero animations. This is on
|
||||
the Chakra roadmap. See https://github.com/chakra-ui/chakra-ui/pull/6368 for last discussion on
|
||||
this. Need to check in on this issue periodically.
|
||||
- Mobile friendly layout
|
||||
- Proper image gallery/viewer/manager
|
||||
- Help tooltips and such
|
1
frontend/dist/assets/index.447eb2a9.css
vendored
Normal file
@ -0,0 +1 @@
|
||||
.checkerboard{background-position:0px 0px,10px 10px;background-size:20px 20px;background-image:linear-gradient(45deg,#eee 25%,transparent 25%,transparent 75%,#eee 75%,#eee 100%),linear-gradient(45deg,#eee 25%,white 25%,white 75%,#eee 75%,#eee 100%)}
|
694
frontend/dist/assets/index.632c341a.js
vendored
Normal file
14
frontend/dist/index.html
vendored
Normal file
@ -0,0 +1,14 @@
|
||||
<!DOCTYPE html>
|
||||
<html lang="en">
|
||||
<head>
|
||||
<meta charset="UTF-8" />
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
|
||||
<title>InvokeAI Stable Diffusion Dream Server</title>
|
||||
<script type="module" crossorigin src="/assets/index.632c341a.js"></script>
|
||||
<link rel="stylesheet" href="/assets/index.447eb2a9.css">
|
||||
</head>
|
||||
<body>
|
||||
<div id="root"></div>
|
||||
|
||||
</body>
|
||||
</html>
|
1
frontend/index.d.ts
vendored
Normal file
@ -0,0 +1 @@
|
||||
declare module 'redux-socket.io-middleware';
|
12
frontend/index.html
Normal file
@ -0,0 +1,12 @@
|
||||
<!DOCTYPE html>
|
||||
<html lang="en">
|
||||
<head>
|
||||
<meta charset="UTF-8" />
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
|
||||
<title>InvokeAI Stable Diffusion Dream Server</title>
|
||||
</head>
|
||||
<body>
|
||||
<div id="root"></div>
|
||||
<script type="module" src="/src/main.tsx"></script>
|
||||
</body>
|
||||
</html>
|
46
frontend/package.json
Normal file
@ -0,0 +1,46 @@
|
||||
{
|
||||
"name": "invoke-ai-ui",
|
||||
"private": true,
|
||||
"version": "0.0.1",
|
||||
"type": "module",
|
||||
"scripts": {
|
||||
"dev": "vite dev",
|
||||
"build": "tsc && vite build",
|
||||
"build-dev": "tsc && vite build -m development",
|
||||
"preview": "vite preview"
|
||||
},
|
||||
"dependencies": {
|
||||
"@chakra-ui/icons": "^2.0.10",
|
||||
"@chakra-ui/react": "^2.3.1",
|
||||
"@emotion/react": "^11.10.4",
|
||||
"@emotion/styled": "^11.10.4",
|
||||
"@reduxjs/toolkit": "^1.8.5",
|
||||
"@types/uuid": "^8.3.4",
|
||||
"dateformat": "^5.0.3",
|
||||
"framer-motion": "^7.2.1",
|
||||
"lodash": "^4.17.21",
|
||||
"react": "^18.2.0",
|
||||
"react-dom": "^18.2.0",
|
||||
"react-dropzone": "^14.2.2",
|
||||
"react-icons": "^4.4.0",
|
||||
"react-redux": "^8.0.2",
|
||||
"redux-persist": "^6.0.0",
|
||||
"socket.io-client": "^4.5.2",
|
||||
"uuid": "^9.0.0"
|
||||
},
|
||||
"devDependencies": {
|
||||
"@types/dateformat": "^5.0.0",
|
||||
"@types/react": "^18.0.17",
|
||||
"@types/react-dom": "^18.0.6",
|
||||
"@typescript-eslint/eslint-plugin": "^5.36.2",
|
||||
"@typescript-eslint/parser": "^5.36.2",
|
||||
"@vitejs/plugin-react": "^2.0.1",
|
||||
"eslint": "^8.23.0",
|
||||
"eslint-plugin-prettier": "^4.2.1",
|
||||
"eslint-plugin-react-hooks": "^4.6.0",
|
||||
"tsc-watch": "^5.0.3",
|
||||
"typescript": "^4.6.4",
|
||||
"vite": "^3.0.7",
|
||||
"vite-plugin-eslint": "^1.8.1"
|
||||
}
|
||||
}
|
22
frontend/src/Loading.tsx
Normal file
@ -0,0 +1,22 @@
|
||||
import { Flex, Spinner } from '@chakra-ui/react';
|
||||
|
||||
const Loading = () => {
|
||||
return (
|
||||
<Flex
|
||||
width={'100vw'}
|
||||
height={'100vh'}
|
||||
alignItems='center'
|
||||
justifyContent='center'
|
||||
>
|
||||
<Spinner
|
||||
thickness='2px'
|
||||
speed='1s'
|
||||
emptyColor='gray.200'
|
||||
color='gray.400'
|
||||
size='xl'
|
||||
/>
|
||||
</Flex>
|
||||
);
|
||||
};
|
||||
|
||||
export default Loading;
|
69
frontend/src/app/App.tsx
Normal file
@ -0,0 +1,69 @@
|
||||
import { Grid, GridItem } from '@chakra-ui/react';
|
||||
import { useEffect, useState } from 'react';
|
||||
import CurrentImageDisplay from '../features/gallery/CurrentImageDisplay';
|
||||
import ImageGallery from '../features/gallery/ImageGallery';
|
||||
import ProgressBar from '../features/system/ProgressBar';
|
||||
import SiteHeader from '../features/system/SiteHeader';
|
||||
import OptionsAccordion from '../features/options/OptionsAccordion';
|
||||
import ProcessButtons from '../features/options/ProcessButtons';
|
||||
import PromptInput from '../features/options/PromptInput';
|
||||
import LogViewer from '../features/system/LogViewer';
|
||||
import Loading from '../Loading';
|
||||
import { useAppDispatch } from './store';
|
||||
import { requestAllImages, requestSystemConfig } from './socketio/actions';
|
||||
|
||||
const App = () => {
|
||||
const dispatch = useAppDispatch();
|
||||
const [isReady, setIsReady] = useState<boolean>(false);
|
||||
|
||||
// Load images from the gallery once
|
||||
useEffect(() => {
|
||||
dispatch(requestAllImages());
|
||||
dispatch(requestSystemConfig());
|
||||
setIsReady(true);
|
||||
}, [dispatch]);
|
||||
|
||||
return isReady ? (
|
||||
<>
|
||||
<Grid
|
||||
width="100vw"
|
||||
height="100vh"
|
||||
templateAreas={`
|
||||
"header header header header"
|
||||
"progressBar progressBar progressBar progressBar"
|
||||
"menu prompt processButtons imageRoll"
|
||||
"menu currentImage currentImage imageRoll"`}
|
||||
gridTemplateRows={'36px 10px 100px auto'}
|
||||
gridTemplateColumns={'350px auto 100px 388px'}
|
||||
gap={2}
|
||||
>
|
||||
<GridItem area={'header'} pt={1}>
|
||||
<SiteHeader />
|
||||
</GridItem>
|
||||
<GridItem area={'progressBar'}>
|
||||
<ProgressBar />
|
||||
</GridItem>
|
||||
<GridItem pl="2" area={'menu'} overflowY="scroll">
|
||||
<OptionsAccordion />
|
||||
</GridItem>
|
||||
<GridItem area={'prompt'}>
|
||||
<PromptInput />
|
||||
</GridItem>
|
||||
<GridItem area={'processButtons'}>
|
||||
<ProcessButtons />
|
||||
</GridItem>
|
||||
<GridItem area={'currentImage'}>
|
||||
<CurrentImageDisplay />
|
||||
</GridItem>
|
||||
<GridItem pr="2" area={'imageRoll'} overflowY="scroll">
|
||||
<ImageGallery />
|
||||
</GridItem>
|
||||
</Grid>
|
||||
<LogViewer />
|
||||
</>
|
||||
) : (
|
||||
<Loading />
|
||||
);
|
||||
};
|
||||
|
||||
export default App;
|
55
frontend/src/app/constants.ts
Normal file
@ -0,0 +1,55 @@
|
||||
// TODO: use Enums?
|
||||
|
||||
// Valid samplers
|
||||
export const SAMPLERS: Array<string> = [
|
||||
'ddim',
|
||||
'plms',
|
||||
'k_lms',
|
||||
'k_dpm_2',
|
||||
'k_dpm_2_a',
|
||||
'k_euler',
|
||||
'k_euler_a',
|
||||
'k_heun',
|
||||
];
|
||||
|
||||
// Valid image widths
|
||||
export const WIDTHS: Array<number> = [
|
||||
64, 128, 192, 256, 320, 384, 448, 512, 576, 640, 704, 768, 832, 896, 960,
|
||||
1024,
|
||||
];
|
||||
|
||||
// Valid image heights
|
||||
export const HEIGHTS: Array<number> = [
|
||||
64, 128, 192, 256, 320, 384, 448, 512, 576, 640, 704, 768, 832, 896, 960,
|
||||
1024,
|
||||
];
|
||||
|
||||
// Valid upscaling levels
|
||||
export const UPSCALING_LEVELS: Array<{ key: string; value: number }> = [
|
||||
{ key: '2x', value: 2 },
|
||||
{ key: '4x', value: 4 },
|
||||
];
|
||||
|
||||
// Internal to human-readable parameters
|
||||
export const PARAMETERS: { [key: string]: string } = {
|
||||
prompt: 'Prompt',
|
||||
iterations: 'Iterations',
|
||||
steps: 'Steps',
|
||||
cfgScale: 'CFG Scale',
|
||||
height: 'Height',
|
||||
width: 'Width',
|
||||
sampler: 'Sampler',
|
||||
seed: 'Seed',
|
||||
img2imgStrength: 'img2img Strength',
|
||||
gfpganStrength: 'GFPGAN Strength',
|
||||
upscalingLevel: 'Upscaling Level',
|
||||
upscalingStrength: 'Upscaling Strength',
|
||||
initialImagePath: 'Initial Image',
|
||||
maskPath: 'Initial Image Mask',
|
||||
shouldFitToWidthHeight: 'Fit Initial Image',
|
||||
seamless: 'Seamless Tiling',
|
||||
};
|
||||
|
||||
export const NUMPY_RAND_MIN = 0;
|
||||
|
||||
export const NUMPY_RAND_MAX = 4294967295;
|
59
frontend/src/app/features.ts
Normal file
@ -0,0 +1,59 @@
|
||||
type FeatureHelpInfo = {
|
||||
text: string;
|
||||
href: string;
|
||||
guideImage: string;
|
||||
};
|
||||
|
||||
export enum Feature {
|
||||
PROMPT,
|
||||
GALLERY,
|
||||
OUTPUT,
|
||||
SEED_AND_VARIATION,
|
||||
ESRGAN,
|
||||
FACE_CORRECTION,
|
||||
IMAGE_TO_IMAGE,
|
||||
SAMPLER,
|
||||
}
|
||||
|
||||
export const FEATURES: Record<Feature, FeatureHelpInfo> = {
|
||||
[Feature.PROMPT]: {
|
||||
text: 'This field will take all prompt text, including both content and stylistic terms. CLI Commands will not work in the prompt.',
|
||||
href: 'link/to/docs/feature3.html',
|
||||
guideImage: 'asset/path.gif',
|
||||
},
|
||||
[Feature.GALLERY]: {
|
||||
text: 'As new invocations are generated, files from the output directory will be displayed here. Generations have additional options to configure new generations.',
|
||||
href: 'link/to/docs/feature3.html',
|
||||
guideImage: 'asset/path.gif',
|
||||
},
|
||||
[Feature.OUTPUT]: {
|
||||
text: 'The Height and Width of generations can be controlled here. If you experience errors, you may be generating an image too large for your system. The seamless option will more often result in repeating patterns in outputs.',
|
||||
href: 'link/to/docs/feature3.html',
|
||||
guideImage: 'asset/path.gif',
|
||||
},
|
||||
[Feature.SEED_AND_VARIATION]: {
|
||||
text: 'Seed values provide an initial set of noise which guide the denoising process. Try a variation with an amount of between 0 and 1 to change the output image for that seed.',
|
||||
href: 'link/to/docs/feature3.html',
|
||||
guideImage: 'asset/path.gif',
|
||||
},
|
||||
[Feature.ESRGAN]: {
|
||||
text: 'The ESRGAN setting can be used to increase the output resolution without requiring a higher width/height in the initial generation.',
|
||||
href: 'link/to/docs/feature1.html',
|
||||
guideImage: 'asset/path.gif',
|
||||
},
|
||||
[Feature.FACE_CORRECTION]: {
|
||||
text: 'Using GFPGAN or CodeFormer, Face Correction will attempt to identify faces in outputs, and correct any defects/abnormalities. Higher values will apply a stronger corrective pressure on outputs.',
|
||||
href: 'link/to/docs/feature2.html',
|
||||
guideImage: 'asset/path.gif',
|
||||
},
|
||||
[Feature.IMAGE_TO_IMAGE]: {
|
||||
text: 'ImageToImage allows the upload of an initial image, which InvokeAI will use to guide the generation process, along with a prompt. A lower value for this setting will more closely resemble the original image. Values between 0-1 are accepted, and a range of .25-.75 is recommended ',
|
||||
href: 'link/to/docs/feature3.html',
|
||||
guideImage: 'asset/path.gif',
|
||||
},
|
||||
[Feature.SAMPLER]: {
|
||||
text: 'This setting allows for different denoising samplers to be used, as well as the number of denoising steps used, which will change the resulting output.',
|
||||
href: 'link/to/docs/feature3.html',
|
||||
guideImage: 'asset/path.gif',
|
||||
},
|
||||
};
|
170
frontend/src/app/invokeai.d.ts
vendored
Normal file
@ -0,0 +1,170 @@
|
||||
/**
|
||||
* Types for images, the things they are made of, and the things
|
||||
* they make up.
|
||||
*
|
||||
* Generated images are txt2img and img2img images. They may have
|
||||
* had additional postprocessing done on them when they were first
|
||||
* generated.
|
||||
*
|
||||
* Postprocessed images are images which were not generated here
|
||||
* but only postprocessed by the app. They only get postprocessing
|
||||
* metadata and have a different image type, e.g. 'esrgan' or
|
||||
* 'gfpgan'.
|
||||
*/
|
||||
|
||||
/**
|
||||
* TODO:
|
||||
* Once an image has been generated, if it is postprocessed again,
|
||||
* additional postprocessing steps are added to its postprocessing
|
||||
* array.
|
||||
*
|
||||
* TODO: Better documentation of types.
|
||||
*/
|
||||
|
||||
export declare type PromptItem = {
|
||||
prompt: string;
|
||||
weight: number;
|
||||
};
|
||||
|
||||
export declare type Prompt = Array<PromptItem>;
|
||||
|
||||
export declare type SeedWeightPair = {
|
||||
seed: number;
|
||||
weight: number;
|
||||
};
|
||||
|
||||
export declare type SeedWeights = Array<SeedWeightPair>;
|
||||
|
||||
// All generated images contain these metadata.
|
||||
export declare type CommonGeneratedImageMetadata = {
|
||||
postprocessing: null | Array<ESRGANMetadata | GFPGANMetadata>;
|
||||
sampler:
|
||||
| 'ddim'
|
||||
| 'k_dpm_2_a'
|
||||
| 'k_dpm_2'
|
||||
| 'k_euler_a'
|
||||
| 'k_euler'
|
||||
| 'k_heun'
|
||||
| 'k_lms'
|
||||
| 'plms';
|
||||
prompt: Prompt;
|
||||
seed: number;
|
||||
variations: SeedWeights;
|
||||
steps: number;
|
||||
cfg_scale: number;
|
||||
width: number;
|
||||
height: number;
|
||||
seamless: boolean;
|
||||
extra: null | Record<string, never>; // Pending development of RFC #266
|
||||
};
|
||||
|
||||
// txt2img and img2img images have some unique attributes.
|
||||
export declare type Txt2ImgMetadata = GeneratedImageMetadata & {
|
||||
type: 'txt2img';
|
||||
};
|
||||
|
||||
export declare type Img2ImgMetadata = GeneratedImageMetadata & {
|
||||
type: 'img2img';
|
||||
orig_hash: string;
|
||||
strength: number;
|
||||
fit: boolean;
|
||||
init_image_path: string;
|
||||
mask_image_path?: string;
|
||||
};
|
||||
|
||||
// Superset of generated image metadata types.
|
||||
export declare type GeneratedImageMetadata = Txt2ImgMetadata | Img2ImgMetadata;
|
||||
|
||||
// All post processed images contain these metadata.
|
||||
export declare type CommonPostProcessedImageMetadata = {
|
||||
orig_path: string;
|
||||
orig_hash: string;
|
||||
};
|
||||
|
||||
// esrgan and gfpgan images have some unique attributes.
|
||||
export declare type ESRGANMetadata = CommonPostProcessedImageMetadata & {
|
||||
type: 'esrgan';
|
||||
scale: 2 | 4;
|
||||
strength: number;
|
||||
};
|
||||
|
||||
export declare type GFPGANMetadata = CommonPostProcessedImageMetadata & {
|
||||
type: 'gfpgan';
|
||||
strength: number;
|
||||
};
|
||||
|
||||
// Superset of all postprocessed image metadata types..
|
||||
export declare type PostProcessedImageMetadata =
|
||||
| ESRGANMetadata
|
||||
| GFPGANMetadata;
|
||||
|
||||
// Metadata includes the system config and image metadata.
|
||||
export declare type Metadata = SystemConfig & {
|
||||
image: GeneratedImageMetadata | PostProcessedImageMetadata;
|
||||
};
|
||||
|
||||
// An Image has a UUID, url (path?) and Metadata.
|
||||
export declare type Image = {
|
||||
uuid: string;
|
||||
url: string;
|
||||
metadata: Metadata;
|
||||
};
|
||||
|
||||
// GalleryImages is an array of Image.
|
||||
export declare type GalleryImages = {
|
||||
images: Array<Image>;
|
||||
};
|
||||
|
||||
/**
|
||||
* Types related to the system status.
|
||||
*/
|
||||
|
||||
// This represents the processing status of the backend.
|
||||
export declare type SystemStatus = {
|
||||
isProcessing: boolean;
|
||||
currentStep: number;
|
||||
totalSteps: number;
|
||||
currentIteration: number;
|
||||
totalIterations: number;
|
||||
currentStatus: string;
|
||||
currentStatusHasSteps: boolean;
|
||||
};
|
||||
|
||||
export declare type SystemConfig = {
|
||||
model: string;
|
||||
model_id: string;
|
||||
model_hash: string;
|
||||
app_id: string;
|
||||
app_version: string;
|
||||
};
|
||||
|
||||
/**
|
||||
* These types type data received from the server via socketio.
|
||||
*/
|
||||
|
||||
export declare type SystemStatusResponse = SystemStatus;
|
||||
|
||||
export declare type SystemConfigResponse = SystemConfig;
|
||||
|
||||
export declare type ImageResultResponse = {
|
||||
url: string;
|
||||
metadata: Metadata;
|
||||
};
|
||||
|
||||
export declare type ErrorResponse = {
|
||||
message: string;
|
||||
additionalData?: string;
|
||||
};
|
||||
|
||||
export declare type GalleryImagesResponse = {
|
||||
images: Array<{ url: string; metadata: Metadata }>;
|
||||
};
|
||||
|
||||
export declare type ImageUrlAndUuidResponse = {
|
||||
uuid: string;
|
||||
url: string;
|
||||
};
|
||||
|
||||
export declare type ImageUrlResponse = {
|
||||
url: string;
|
||||
};
|
26
frontend/src/app/socketio/actions.ts
Normal file
@ -0,0 +1,26 @@
|
||||
import { createAction } from '@reduxjs/toolkit';
|
||||
import * as InvokeAI from '../invokeai';
|
||||
|
||||
/**
|
||||
* We can't use redux-toolkit's createSlice() to make these actions,
|
||||
* because they have no associated reducer. They only exist to dispatch
|
||||
* requests to the server via socketio. These actions will be handled
|
||||
* by the middleware.
|
||||
*/
|
||||
|
||||
export const generateImage = createAction<undefined>('socketio/generateImage');
|
||||
export const runESRGAN = createAction<InvokeAI.Image>('socketio/runESRGAN');
|
||||
export const runGFPGAN = createAction<InvokeAI.Image>('socketio/runGFPGAN');
|
||||
export const deleteImage = createAction<InvokeAI.Image>('socketio/deleteImage');
|
||||
export const requestAllImages = createAction<undefined>(
|
||||
'socketio/requestAllImages'
|
||||
);
|
||||
export const cancelProcessing = createAction<undefined>(
|
||||
'socketio/cancelProcessing'
|
||||
);
|
||||
export const uploadInitialImage = createAction<File>(
|
||||
'socketio/uploadInitialImage'
|
||||
);
|
||||
export const uploadMaskImage = createAction<File>('socketio/uploadMaskImage');
|
||||
|
||||
export const requestSystemConfig = createAction<undefined>('socketio/requestSystemConfig');
|
104
frontend/src/app/socketio/emitters.ts
Normal file
@ -0,0 +1,104 @@
|
||||
import { AnyAction, Dispatch, MiddlewareAPI } from '@reduxjs/toolkit';
|
||||
import dateFormat from 'dateformat';
|
||||
import { Socket } from 'socket.io-client';
|
||||
import { frontendToBackendParameters } from '../../common/util/parameterTranslation';
|
||||
import {
|
||||
addLogEntry,
|
||||
setIsProcessing,
|
||||
} from '../../features/system/systemSlice';
|
||||
import * as InvokeAI from '../invokeai';
|
||||
|
||||
/**
|
||||
* Returns an object containing all functions which use `socketio.emit()`.
|
||||
* i.e. those which make server requests.
|
||||
*/
|
||||
const makeSocketIOEmitters = (
|
||||
store: MiddlewareAPI<Dispatch<AnyAction>, any>,
|
||||
socketio: Socket
|
||||
) => {
|
||||
// We need to dispatch actions to redux and get pieces of state from the store.
|
||||
const { dispatch, getState } = store;
|
||||
|
||||
return {
|
||||
emitGenerateImage: () => {
|
||||
dispatch(setIsProcessing(true));
|
||||
|
||||
const { generationParameters, esrganParameters, gfpganParameters } =
|
||||
frontendToBackendParameters(getState().options, getState().system);
|
||||
|
||||
socketio.emit(
|
||||
'generateImage',
|
||||
generationParameters,
|
||||
esrganParameters,
|
||||
gfpganParameters
|
||||
);
|
||||
|
||||
dispatch(
|
||||
addLogEntry({
|
||||
timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
message: `Image generation requested: ${JSON.stringify({
|
||||
...generationParameters,
|
||||
...esrganParameters,
|
||||
...gfpganParameters,
|
||||
})}`,
|
||||
})
|
||||
);
|
||||
},
|
||||
emitRunESRGAN: (imageToProcess: InvokeAI.Image) => {
|
||||
dispatch(setIsProcessing(true));
|
||||
const { upscalingLevel, upscalingStrength } = getState().options;
|
||||
const esrganParameters = {
|
||||
upscale: [upscalingLevel, upscalingStrength],
|
||||
};
|
||||
socketio.emit('runESRGAN', imageToProcess, esrganParameters);
|
||||
dispatch(
|
||||
addLogEntry({
|
||||
timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
message: `ESRGAN upscale requested: ${JSON.stringify({
|
||||
file: imageToProcess.url,
|
||||
...esrganParameters,
|
||||
})}`,
|
||||
})
|
||||
);
|
||||
},
|
||||
emitRunGFPGAN: (imageToProcess: InvokeAI.Image) => {
|
||||
dispatch(setIsProcessing(true));
|
||||
const { gfpganStrength } = getState().options;
|
||||
|
||||
const gfpganParameters = {
|
||||
gfpgan_strength: gfpganStrength,
|
||||
};
|
||||
socketio.emit('runGFPGAN', imageToProcess, gfpganParameters);
|
||||
dispatch(
|
||||
addLogEntry({
|
||||
timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
message: `GFPGAN fix faces requested: ${JSON.stringify({
|
||||
file: imageToProcess.url,
|
||||
...gfpganParameters,
|
||||
})}`,
|
||||
})
|
||||
);
|
||||
},
|
||||
emitDeleteImage: (imageToDelete: InvokeAI.Image) => {
|
||||
const { url, uuid } = imageToDelete;
|
||||
socketio.emit('deleteImage', url, uuid);
|
||||
},
|
||||
emitRequestAllImages: () => {
|
||||
socketio.emit('requestAllImages');
|
||||
},
|
||||
emitCancelProcessing: () => {
|
||||
socketio.emit('cancel');
|
||||
},
|
||||
emitUploadInitialImage: (file: File) => {
|
||||
socketio.emit('uploadInitialImage', file, file.name);
|
||||
},
|
||||
emitUploadMaskImage: (file: File) => {
|
||||
socketio.emit('uploadMaskImage', file, file.name);
|
||||
},
|
||||
emitRequestSystemConfig: () => {
|
||||
socketio.emit('requestSystemConfig')
|
||||
}
|
||||
};
|
||||
};
|
||||
|
||||
export default makeSocketIOEmitters;
|
300
frontend/src/app/socketio/listeners.ts
Normal file
@ -0,0 +1,300 @@
|
||||
import { AnyAction, MiddlewareAPI, Dispatch } from '@reduxjs/toolkit';
|
||||
import { v4 as uuidv4 } from 'uuid';
|
||||
import dateFormat from 'dateformat';
|
||||
|
||||
import * as InvokeAI from '../invokeai';
|
||||
|
||||
import {
|
||||
addLogEntry,
|
||||
setIsConnected,
|
||||
setIsProcessing,
|
||||
setSystemStatus,
|
||||
setCurrentStatus,
|
||||
setSystemConfig,
|
||||
} from '../../features/system/systemSlice';
|
||||
|
||||
import {
|
||||
addImage,
|
||||
clearIntermediateImage,
|
||||
removeImage,
|
||||
setGalleryImages,
|
||||
setIntermediateImage,
|
||||
} from '../../features/gallery/gallerySlice';
|
||||
|
||||
import {
|
||||
setInitialImagePath,
|
||||
setMaskPath,
|
||||
} from '../../features/options/optionsSlice';
|
||||
|
||||
/**
|
||||
* Returns an object containing listener callbacks for socketio events.
|
||||
* TODO: This file is large, but simple. Should it be split up further?
|
||||
*/
|
||||
const makeSocketIOListeners = (
|
||||
store: MiddlewareAPI<Dispatch<AnyAction>, any>
|
||||
) => {
|
||||
const { dispatch, getState } = store;
|
||||
|
||||
return {
|
||||
/**
|
||||
* Callback to run when we receive a 'connect' event.
|
||||
*/
|
||||
onConnect: () => {
|
||||
try {
|
||||
dispatch(setIsConnected(true));
|
||||
dispatch(setCurrentStatus('Connected'));
|
||||
} catch (e) {
|
||||
console.error(e);
|
||||
}
|
||||
},
|
||||
/**
|
||||
* Callback to run when we receive a 'disconnect' event.
|
||||
*/
|
||||
onDisconnect: () => {
|
||||
try {
|
||||
dispatch(setIsConnected(false));
|
||||
dispatch(setIsProcessing(false));
|
||||
dispatch(setCurrentStatus('Disconnected'));
|
||||
|
||||
dispatch(
|
||||
addLogEntry({
|
||||
timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
message: `Disconnected from server`,
|
||||
level: 'warning',
|
||||
})
|
||||
);
|
||||
} catch (e) {
|
||||
console.error(e);
|
||||
}
|
||||
},
|
||||
/**
|
||||
* Callback to run when we receive a 'generationResult' event.
|
||||
*/
|
||||
onGenerationResult: (data: InvokeAI.ImageResultResponse) => {
|
||||
try {
|
||||
const { url, metadata } = data;
|
||||
const newUuid = uuidv4();
|
||||
|
||||
dispatch(
|
||||
addImage({
|
||||
uuid: newUuid,
|
||||
url,
|
||||
metadata: metadata,
|
||||
})
|
||||
);
|
||||
dispatch(
|
||||
addLogEntry({
|
||||
timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
message: `Image generated: ${url}`,
|
||||
})
|
||||
);
|
||||
dispatch(setIsProcessing(false));
|
||||
} catch (e) {
|
||||
console.error(e);
|
||||
}
|
||||
},
|
||||
/**
|
||||
* Callback to run when we receive a 'intermediateResult' event.
|
||||
*/
|
||||
onIntermediateResult: (data: InvokeAI.ImageResultResponse) => {
|
||||
try {
|
||||
const uuid = uuidv4();
|
||||
const { url, metadata } = data;
|
||||
dispatch(
|
||||
setIntermediateImage({
|
||||
uuid,
|
||||
url,
|
||||
metadata,
|
||||
})
|
||||
);
|
||||
dispatch(
|
||||
addLogEntry({
|
||||
timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
message: `Intermediate image generated: ${url}`,
|
||||
})
|
||||
);
|
||||
dispatch(setIsProcessing(false));
|
||||
} catch (e) {
|
||||
console.error(e);
|
||||
}
|
||||
},
|
||||
/**
|
||||
* Callback to run when we receive an 'esrganResult' event.
|
||||
*/
|
||||
onESRGANResult: (data: InvokeAI.ImageResultResponse) => {
|
||||
try {
|
||||
const { url, metadata } = data;
|
||||
|
||||
dispatch(
|
||||
addImage({
|
||||
uuid: uuidv4(),
|
||||
url,
|
||||
metadata,
|
||||
})
|
||||
);
|
||||
|
||||
dispatch(
|
||||
addLogEntry({
|
||||
timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
message: `Upscaled: ${url}`,
|
||||
})
|
||||
);
|
||||
dispatch(setIsProcessing(false));
|
||||
} catch (e) {
|
||||
console.error(e);
|
||||
}
|
||||
},
|
||||
/**
|
||||
* Callback to run when we receive a 'gfpganResult' event.
|
||||
*/
|
||||
onGFPGANResult: (data: InvokeAI.ImageResultResponse) => {
|
||||
try {
|
||||
const { url, metadata } = data;
|
||||
|
||||
dispatch(
|
||||
addImage({
|
||||
uuid: uuidv4(),
|
||||
url,
|
||||
metadata,
|
||||
})
|
||||
);
|
||||
|
||||
dispatch(
|
||||
addLogEntry({
|
||||
timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
message: `Fixed faces: ${url}`,
|
||||
})
|
||||
);
|
||||
} catch (e) {
|
||||
console.error(e);
|
||||
}
|
||||
},
|
||||
/**
|
||||
* Callback to run when we receive a 'progressUpdate' event.
|
||||
* TODO: Add additional progress phases
|
||||
*/
|
||||
onProgressUpdate: (data: InvokeAI.SystemStatus) => {
|
||||
try {
|
||||
dispatch(setIsProcessing(true));
|
||||
dispatch(setSystemStatus(data));
|
||||
} catch (e) {
|
||||
console.error(e);
|
||||
}
|
||||
},
|
||||
/**
|
||||
* Callback to run when we receive a 'progressUpdate' event.
|
||||
*/
|
||||
onError: (data: InvokeAI.ErrorResponse) => {
|
||||
const { message, additionalData } = data;
|
||||
|
||||
if (additionalData) {
|
||||
// TODO: handle more data than short message
|
||||
}
|
||||
|
||||
try {
|
||||
dispatch(
|
||||
addLogEntry({
|
||||
timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
message: `Server error: ${message}`,
|
||||
level: 'error',
|
||||
})
|
||||
);
|
||||
dispatch(setIsProcessing(false));
|
||||
dispatch(clearIntermediateImage());
|
||||
} catch (e) {
|
||||
console.error(e);
|
||||
}
|
||||
},
|
||||
/**
|
||||
* Callback to run when we receive a 'galleryImages' event.
|
||||
*/
|
||||
onGalleryImages: (data: InvokeAI.GalleryImagesResponse) => {
|
||||
const { images } = data;
|
||||
const preparedImages = images.map((image): InvokeAI.Image => {
|
||||
const { url, metadata } = image;
|
||||
return {
|
||||
uuid: uuidv4(),
|
||||
url,
|
||||
metadata,
|
||||
};
|
||||
});
|
||||
dispatch(setGalleryImages(preparedImages));
|
||||
dispatch(
|
||||
addLogEntry({
|
||||
timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
message: `Loaded ${images.length} images`,
|
||||
})
|
||||
);
|
||||
},
|
||||
/**
|
||||
* Callback to run when we receive a 'processingCanceled' event.
|
||||
*/
|
||||
onProcessingCanceled: () => {
|
||||
dispatch(setIsProcessing(false));
|
||||
|
||||
const { intermediateImage } = getState().gallery;
|
||||
|
||||
if (intermediateImage) {
|
||||
dispatch(addImage(intermediateImage));
|
||||
dispatch(
|
||||
addLogEntry({
|
||||
timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
message: `Intermediate image saved: ${intermediateImage.url}`,
|
||||
})
|
||||
);
|
||||
dispatch(clearIntermediateImage());
|
||||
}
|
||||
dispatch(
|
||||
addLogEntry({
|
||||
timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
message: `Processing canceled`,
|
||||
level: 'warning',
|
||||
})
|
||||
);
|
||||
},
|
||||
/**
|
||||
* Callback to run when we receive a 'imageDeleted' event.
|
||||
*/
|
||||
onImageDeleted: (data: InvokeAI.ImageUrlAndUuidResponse) => {
|
||||
const { url, uuid } = data;
|
||||
dispatch(removeImage(uuid));
|
||||
dispatch(
|
||||
addLogEntry({
|
||||
timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
message: `Image deleted: ${url}`,
|
||||
})
|
||||
);
|
||||
},
|
||||
/**
|
||||
* Callback to run when we receive a 'initialImageUploaded' event.
|
||||
*/
|
||||
onInitialImageUploaded: (data: InvokeAI.ImageUrlResponse) => {
|
||||
const { url } = data;
|
||||
dispatch(setInitialImagePath(url));
|
||||
dispatch(
|
||||
addLogEntry({
|
||||
timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
message: `Initial image uploaded: ${url}`,
|
||||
})
|
||||
);
|
||||
},
|
||||
/**
|
||||
* Callback to run when we receive a 'maskImageUploaded' event.
|
||||
*/
|
||||
onMaskImageUploaded: (data: InvokeAI.ImageUrlResponse) => {
|
||||
const { url } = data;
|
||||
dispatch(setMaskPath(url));
|
||||
dispatch(
|
||||
addLogEntry({
|
||||
timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
message: `Mask image uploaded: ${url}`,
|
||||
})
|
||||
);
|
||||
},
|
||||
onSystemConfig: (data: InvokeAI.SystemConfig) => {
|
||||
dispatch(setSystemConfig(data));
|
||||
},
|
||||
};
|
||||
};
|
||||
|
||||
export default makeSocketIOListeners;
|
173
frontend/src/app/socketio/middleware.ts
Normal file
@ -0,0 +1,173 @@
|
||||
import { Middleware } from '@reduxjs/toolkit';
|
||||
import { io } from 'socket.io-client';
|
||||
|
||||
import makeSocketIOListeners from './listeners';
|
||||
import makeSocketIOEmitters from './emitters';
|
||||
|
||||
import * as InvokeAI from '../invokeai';
|
||||
|
||||
/**
|
||||
* Creates a socketio middleware to handle communication with server.
|
||||
*
|
||||
* Special `socketio/actionName` actions are created in actions.ts and
|
||||
* exported for use by the application, which treats them like any old
|
||||
* action, using `dispatch` to dispatch them.
|
||||
*
|
||||
* These actions are intercepted here, where `socketio.emit()` calls are
|
||||
* made on their behalf - see `emitters.ts`. The emitter functions
|
||||
* are the outbound communication to the server.
|
||||
*
|
||||
* Listeners are also established here - see `listeners.ts`. The listener
|
||||
* functions receive communication from the server and usually dispatch
|
||||
* some new action to handle whatever data was sent from the server.
|
||||
*/
|
||||
export const socketioMiddleware = () => {
|
||||
const { hostname, port } = new URL(window.location.href);
|
||||
|
||||
const socketio = io(`http://${hostname}:9090`);
|
||||
|
||||
let areListenersSet = false;
|
||||
|
||||
const middleware: Middleware = (store) => (next) => (action) => {
|
||||
const {
|
||||
onConnect,
|
||||
onDisconnect,
|
||||
onError,
|
||||
onESRGANResult,
|
||||
onGFPGANResult,
|
||||
onGenerationResult,
|
||||
onIntermediateResult,
|
||||
onProgressUpdate,
|
||||
onGalleryImages,
|
||||
onProcessingCanceled,
|
||||
onImageDeleted,
|
||||
onInitialImageUploaded,
|
||||
onMaskImageUploaded,
|
||||
onSystemConfig,
|
||||
} = makeSocketIOListeners(store);
|
||||
|
||||
const {
|
||||
emitGenerateImage,
|
||||
emitRunESRGAN,
|
||||
emitRunGFPGAN,
|
||||
emitDeleteImage,
|
||||
emitRequestAllImages,
|
||||
emitCancelProcessing,
|
||||
emitUploadInitialImage,
|
||||
emitUploadMaskImage,
|
||||
emitRequestSystemConfig,
|
||||
} = makeSocketIOEmitters(store, socketio);
|
||||
|
||||
/**
|
||||
* If this is the first time the middleware has been called (e.g. during store setup),
|
||||
* initialize all our socket.io listeners.
|
||||
*/
|
||||
if (!areListenersSet) {
|
||||
socketio.on('connect', () => onConnect());
|
||||
|
||||
socketio.on('disconnect', () => onDisconnect());
|
||||
|
||||
socketio.on('error', (data: InvokeAI.ErrorResponse) => onError(data));
|
||||
|
||||
socketio.on('generationResult', (data: InvokeAI.ImageResultResponse) =>
|
||||
onGenerationResult(data)
|
||||
);
|
||||
|
||||
socketio.on('esrganResult', (data: InvokeAI.ImageResultResponse) =>
|
||||
onESRGANResult(data)
|
||||
);
|
||||
|
||||
socketio.on('gfpganResult', (data: InvokeAI.ImageResultResponse) =>
|
||||
onGFPGANResult(data)
|
||||
);
|
||||
|
||||
socketio.on('intermediateResult', (data: InvokeAI.ImageResultResponse) =>
|
||||
onIntermediateResult(data)
|
||||
);
|
||||
|
||||
socketio.on('progressUpdate', (data: InvokeAI.SystemStatus) =>
|
||||
onProgressUpdate(data)
|
||||
);
|
||||
|
||||
socketio.on('galleryImages', (data: InvokeAI.GalleryImagesResponse) =>
|
||||
onGalleryImages(data)
|
||||
);
|
||||
|
||||
socketio.on('processingCanceled', () => {
|
||||
onProcessingCanceled();
|
||||
});
|
||||
|
||||
socketio.on('imageDeleted', (data: InvokeAI.ImageUrlAndUuidResponse) => {
|
||||
onImageDeleted(data);
|
||||
});
|
||||
|
||||
socketio.on('initialImageUploaded', (data: InvokeAI.ImageUrlResponse) => {
|
||||
onInitialImageUploaded(data);
|
||||
});
|
||||
|
||||
socketio.on('maskImageUploaded', (data: InvokeAI.ImageUrlResponse) => {
|
||||
onMaskImageUploaded(data);
|
||||
});
|
||||
|
||||
socketio.on('systemConfig', (data: InvokeAI.SystemConfig) => {
|
||||
onSystemConfig(data);
|
||||
});
|
||||
|
||||
areListenersSet = true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Handle redux actions caught by middleware.
|
||||
*/
|
||||
switch (action.type) {
|
||||
case 'socketio/generateImage': {
|
||||
emitGenerateImage();
|
||||
break;
|
||||
}
|
||||
|
||||
case 'socketio/runESRGAN': {
|
||||
emitRunESRGAN(action.payload);
|
||||
break;
|
||||
}
|
||||
|
||||
case 'socketio/runGFPGAN': {
|
||||
emitRunGFPGAN(action.payload);
|
||||
break;
|
||||
}
|
||||
|
||||
case 'socketio/deleteImage': {
|
||||
emitDeleteImage(action.payload);
|
||||
break;
|
||||
}
|
||||
|
||||
case 'socketio/requestAllImages': {
|
||||
emitRequestAllImages();
|
||||
break;
|
||||
}
|
||||
|
||||
case 'socketio/cancelProcessing': {
|
||||
emitCancelProcessing();
|
||||
break;
|
||||
}
|
||||
|
||||
case 'socketio/uploadInitialImage': {
|
||||
emitUploadInitialImage(action.payload);
|
||||
break;
|
||||
}
|
||||
|
||||
case 'socketio/uploadMaskImage': {
|
||||
emitUploadMaskImage(action.payload);
|
||||
break;
|
||||
}
|
||||
|
||||
case 'socketio/requestSystemConfig': {
|
||||
emitRequestSystemConfig();
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
next(action);
|
||||
};
|
||||
|
||||
return middleware;
|
||||
};
|
78
frontend/src/app/store.ts
Normal file
@ -0,0 +1,78 @@
|
||||
import { combineReducers, configureStore } from '@reduxjs/toolkit';
|
||||
import { useDispatch, useSelector } from 'react-redux';
|
||||
import type { TypedUseSelectorHook } from 'react-redux';
|
||||
|
||||
import { persistReducer } from 'redux-persist';
|
||||
import storage from 'redux-persist/lib/storage'; // defaults to localStorage for web
|
||||
|
||||
import optionsReducer from '../features/options/optionsSlice';
|
||||
import galleryReducer from '../features/gallery/gallerySlice';
|
||||
import systemReducer from '../features/system/systemSlice';
|
||||
import { socketioMiddleware } from './socketio/middleware';
|
||||
|
||||
/**
|
||||
* redux-persist provides an easy and reliable way to persist state across reloads.
|
||||
*
|
||||
* While we definitely want generation parameters to be persisted, there are a number
|
||||
* of things we do *not* want to be persisted across reloads:
|
||||
* - Gallery/selected image (user may add/delete images from disk between page loads)
|
||||
* - Connection/processing status
|
||||
* - Availability of external libraries like ESRGAN/GFPGAN
|
||||
*
|
||||
* These can be blacklisted in redux-persist.
|
||||
*
|
||||
* The necesssary nested persistors with blacklists are configured below.
|
||||
*
|
||||
* TODO: Do we blacklist initialImagePath? If the image is deleted from disk we get an
|
||||
* ugly 404. But if we blacklist it, then this is a valuable parameter that is lost
|
||||
* on reload. Need to figure out a good way to handle this.
|
||||
*/
|
||||
|
||||
const rootPersistConfig = {
|
||||
key: 'root',
|
||||
storage,
|
||||
blacklist: ['gallery', 'system'],
|
||||
};
|
||||
|
||||
const systemPersistConfig = {
|
||||
key: 'system',
|
||||
storage,
|
||||
blacklist: [
|
||||
'isConnected',
|
||||
'isProcessing',
|
||||
'currentStep',
|
||||
'socketId',
|
||||
'isESRGANAvailable',
|
||||
'isGFPGANAvailable',
|
||||
'currentStep',
|
||||
'totalSteps',
|
||||
'currentIteration',
|
||||
'totalIterations',
|
||||
'currentStatus',
|
||||
],
|
||||
};
|
||||
|
||||
const reducers = combineReducers({
|
||||
options: optionsReducer,
|
||||
gallery: galleryReducer,
|
||||
system: persistReducer(systemPersistConfig, systemReducer),
|
||||
});
|
||||
|
||||
const persistedReducer = persistReducer(rootPersistConfig, reducers);
|
||||
|
||||
// Continue with store setup
|
||||
export const store = configureStore({
|
||||
reducer: persistedReducer,
|
||||
middleware: (getDefaultMiddleware) =>
|
||||
getDefaultMiddleware({
|
||||
// redux-persist sometimes needs to temporarily put a function in redux state, need to disable this check
|
||||
serializableCheck: false,
|
||||
}).concat(socketioMiddleware()),
|
||||
});
|
||||
|
||||
export type RootState = ReturnType<typeof store.getState>;
|
||||
export type AppDispatch = typeof store.dispatch;
|
||||
|
||||
// Use throughout your app instead of plain `useDispatch` and `useSelector`
|
||||
export const useAppDispatch: () => AppDispatch = useDispatch;
|
||||
export const useAppSelector: TypedUseSelectorHook<RootState> = useSelector;
|
52
frontend/src/app/theme.ts
Normal file
@ -0,0 +1,52 @@
|
||||
import { extendTheme } from '@chakra-ui/react';
|
||||
import type { StyleFunctionProps } from '@chakra-ui/styled-system';
|
||||
|
||||
export const theme = extendTheme({
|
||||
config: {
|
||||
initialColorMode: 'dark',
|
||||
useSystemColorMode: false,
|
||||
},
|
||||
components: {
|
||||
Tooltip: {
|
||||
baseStyle: (props: StyleFunctionProps) => ({
|
||||
textColor: props.colorMode === 'dark' ? 'gray.800' : 'gray.100',
|
||||
}),
|
||||
},
|
||||
Accordion: {
|
||||
baseStyle: (props: StyleFunctionProps) => ({
|
||||
button: {
|
||||
fontWeight: 'bold',
|
||||
_hover: {
|
||||
bgColor:
|
||||
props.colorMode === 'dark'
|
||||
? 'rgba(255,255,255,0.05)'
|
||||
: 'rgba(0,0,0,0.05)',
|
||||
},
|
||||
},
|
||||
panel: {
|
||||
paddingBottom: 2,
|
||||
},
|
||||
}),
|
||||
},
|
||||
FormLabel: {
|
||||
baseStyle: {
|
||||
fontWeight: 'light',
|
||||
},
|
||||
},
|
||||
Button: {
|
||||
variants: {
|
||||
imageHoverIconButton: (props: StyleFunctionProps) => ({
|
||||
bg: props.colorMode === 'dark' ? 'blackAlpha.700' : 'whiteAlpha.800',
|
||||
color:
|
||||
props.colorMode === 'dark' ? 'whiteAlpha.700' : 'blackAlpha.700',
|
||||
_hover: {
|
||||
bg:
|
||||
props.colorMode === 'dark' ? 'blackAlpha.800' : 'whiteAlpha.800',
|
||||
color:
|
||||
props.colorMode === 'dark' ? 'whiteAlpha.900' : 'blackAlpha.900',
|
||||
},
|
||||
}),
|
||||
},
|
||||
},
|
||||
},
|
||||
});
|
22
frontend/src/common/components/GuideIcon.tsx
Normal file
@ -0,0 +1,22 @@
|
||||
import { Box, forwardRef, Icon } from '@chakra-ui/react';
|
||||
import { IconType } from 'react-icons';
|
||||
import { MdHelp } from 'react-icons/md';
|
||||
import { Feature } from '../../app/features';
|
||||
import GuidePopover from './GuidePopover';
|
||||
|
||||
type GuideIconProps = {
|
||||
feature: Feature;
|
||||
icon?: IconType;
|
||||
};
|
||||
|
||||
const GuideIcon = forwardRef(
|
||||
({ feature, icon = MdHelp }: GuideIconProps, ref) => (
|
||||
<GuidePopover feature={feature}>
|
||||
<Box ref={ref}>
|
||||
<Icon as={icon} />
|
||||
</Box>
|
||||
</GuidePopover>
|
||||
)
|
||||
);
|
||||
|
||||
export default GuideIcon;
|
51
frontend/src/common/components/GuidePopover.tsx
Normal file
@ -0,0 +1,51 @@
|
||||
import {
|
||||
Popover,
|
||||
PopoverArrow,
|
||||
PopoverContent,
|
||||
PopoverTrigger,
|
||||
PopoverHeader,
|
||||
Flex,
|
||||
Box,
|
||||
} from '@chakra-ui/react';
|
||||
import { SystemState } from '../../features/system/systemSlice';
|
||||
import { useAppSelector } from '../../app/store';
|
||||
import { RootState } from '../../app/store';
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { ReactElement } from 'react';
|
||||
import { Feature, FEATURES } from '../../app/features';
|
||||
|
||||
type GuideProps = {
|
||||
children: ReactElement;
|
||||
feature: Feature;
|
||||
};
|
||||
|
||||
const systemSelector = createSelector(
|
||||
(state: RootState) => state.system,
|
||||
(system: SystemState) => system.shouldDisplayGuides
|
||||
);
|
||||
|
||||
const GuidePopover = ({ children, feature }: GuideProps) => {
|
||||
const shouldDisplayGuides = useAppSelector(systemSelector);
|
||||
const { text } = FEATURES[feature];
|
||||
return shouldDisplayGuides ? (
|
||||
<Popover trigger={'hover'}>
|
||||
<PopoverTrigger>
|
||||
<Box>{children}</Box>
|
||||
</PopoverTrigger>
|
||||
<PopoverContent
|
||||
maxWidth="400px"
|
||||
onClick={(e) => e.preventDefault()}
|
||||
cursor={'initial'}
|
||||
>
|
||||
<PopoverArrow />
|
||||
<Flex alignItems={'center'} gap={2} p={4}>
|
||||
{text}
|
||||
</Flex>
|
||||
</PopoverContent>
|
||||
</Popover>
|
||||
) : (
|
||||
<></>
|
||||
);
|
||||
};
|
||||
|
||||
export default GuidePopover;
|
21
frontend/src/common/components/SDButton.tsx
Normal file
@ -0,0 +1,21 @@
|
||||
import { Button, ButtonProps } from '@chakra-ui/react';
|
||||
|
||||
interface Props extends ButtonProps {
|
||||
label: string;
|
||||
}
|
||||
|
||||
/**
|
||||
* Reusable customized button component. Originally was more customized - now probably unecessary.
|
||||
*
|
||||
* TODO: Get rid of this.
|
||||
*/
|
||||
const SDButton = (props: Props) => {
|
||||
const { label, size = 'sm', ...rest } = props;
|
||||
return (
|
||||
<Button size={size} {...rest}>
|
||||
{label}
|
||||
</Button>
|
||||
);
|
||||
};
|
||||
|
||||
export default SDButton;
|
59
frontend/src/common/components/SDNumberInput.tsx
Normal file
@ -0,0 +1,59 @@
|
||||
import {
|
||||
FormControl,
|
||||
NumberInput,
|
||||
NumberInputField,
|
||||
NumberInputStepper,
|
||||
NumberIncrementStepper,
|
||||
NumberDecrementStepper,
|
||||
Text,
|
||||
FormLabel,
|
||||
NumberInputProps,
|
||||
Flex,
|
||||
} from '@chakra-ui/react';
|
||||
|
||||
interface Props extends NumberInputProps {
|
||||
label?: string;
|
||||
width?: string | number;
|
||||
}
|
||||
|
||||
/**
|
||||
* Customized Chakra FormControl + NumberInput multi-part component.
|
||||
*/
|
||||
const SDNumberInput = (props: Props) => {
|
||||
const {
|
||||
label,
|
||||
isDisabled = false,
|
||||
fontSize = 'md',
|
||||
size = 'sm',
|
||||
width,
|
||||
isInvalid,
|
||||
...rest
|
||||
} = props;
|
||||
return (
|
||||
<FormControl isDisabled={isDisabled} width={width} isInvalid={isInvalid}>
|
||||
<Flex gap={2} justifyContent={'space-between'} alignItems={'center'}>
|
||||
{label && (
|
||||
<FormLabel marginBottom={1}>
|
||||
<Text fontSize={fontSize} whiteSpace="nowrap">
|
||||
{label}
|
||||
</Text>
|
||||
</FormLabel>
|
||||
)}
|
||||
<NumberInput
|
||||
size={size}
|
||||
{...rest}
|
||||
keepWithinRange={false}
|
||||
clampValueOnBlur={true}
|
||||
>
|
||||
<NumberInputField fontSize={'md'} />
|
||||
<NumberInputStepper>
|
||||
<NumberIncrementStepper />
|
||||
<NumberDecrementStepper />
|
||||
</NumberInputStepper>
|
||||
</NumberInput>
|
||||
</Flex>
|
||||
</FormControl>
|
||||
);
|
||||
};
|
||||
|
||||
export default SDNumberInput;
|
56
frontend/src/common/components/SDSelect.tsx
Normal file
@ -0,0 +1,56 @@
|
||||
import {
|
||||
Flex,
|
||||
FormControl,
|
||||
FormLabel,
|
||||
Select,
|
||||
SelectProps,
|
||||
Text,
|
||||
} from '@chakra-ui/react';
|
||||
|
||||
interface Props extends SelectProps {
|
||||
label: string;
|
||||
validValues:
|
||||
| Array<number | string>
|
||||
| Array<{ key: string; value: string | number }>;
|
||||
}
|
||||
/**
|
||||
* Customized Chakra FormControl + Select multi-part component.
|
||||
*/
|
||||
const SDSelect = (props: Props) => {
|
||||
const {
|
||||
label,
|
||||
isDisabled,
|
||||
validValues,
|
||||
size = 'sm',
|
||||
fontSize = 'md',
|
||||
marginBottom = 1,
|
||||
whiteSpace = 'nowrap',
|
||||
...rest
|
||||
} = props;
|
||||
return (
|
||||
<FormControl isDisabled={isDisabled}>
|
||||
<Flex justifyContent={'space-between'} alignItems={'center'}>
|
||||
<FormLabel marginBottom={marginBottom}>
|
||||
<Text fontSize={fontSize} whiteSpace={whiteSpace}>
|
||||
{label}
|
||||
</Text>
|
||||
</FormLabel>
|
||||
<Select fontSize={fontSize} size={size} {...rest}>
|
||||
{validValues.map((opt) => {
|
||||
return typeof opt === 'string' || typeof opt === 'number' ? (
|
||||
<option key={opt} value={opt}>
|
||||
{opt}
|
||||
</option>
|
||||
) : (
|
||||
<option key={opt.value} value={opt.value}>
|
||||
{opt.key}
|
||||
</option>
|
||||
);
|
||||
})}
|
||||
</Select>
|
||||
</Flex>
|
||||
</FormControl>
|
||||
);
|
||||
};
|
||||
|
||||
export default SDSelect;
|
45
frontend/src/common/components/SDSwitch.tsx
Normal file
@ -0,0 +1,45 @@
|
||||
import {
|
||||
Flex,
|
||||
FormControl,
|
||||
FormLabel,
|
||||
Switch,
|
||||
SwitchProps,
|
||||
} from '@chakra-ui/react';
|
||||
|
||||
interface Props extends SwitchProps {
|
||||
label?: string;
|
||||
width?: string | number;
|
||||
}
|
||||
|
||||
/**
|
||||
* Customized Chakra FormControl + Switch multi-part component.
|
||||
*/
|
||||
const SDSwitch = (props: Props) => {
|
||||
const {
|
||||
label,
|
||||
isDisabled = false,
|
||||
fontSize = 'md',
|
||||
size = 'md',
|
||||
width,
|
||||
...rest
|
||||
} = props;
|
||||
return (
|
||||
<FormControl isDisabled={isDisabled} width={width}>
|
||||
<Flex justifyContent={'space-between'} alignItems={'center'}>
|
||||
{label && (
|
||||
<FormLabel
|
||||
fontSize={fontSize}
|
||||
marginBottom={1}
|
||||
flexGrow={2}
|
||||
whiteSpace="nowrap"
|
||||
>
|
||||
{label}
|
||||
</FormLabel>
|
||||
)}
|
||||
<Switch size={size} {...rest} />
|
||||
</Flex>
|
||||
</FormControl>
|
||||
);
|
||||
};
|
||||
|
||||
export default SDSwitch;
|
104
frontend/src/common/hooks/useCheckParameters.ts
Normal file
@ -0,0 +1,104 @@
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { isEqual } from 'lodash';
|
||||
import { useMemo } from 'react';
|
||||
import { useAppSelector } from '../../app/store';
|
||||
import { RootState } from '../../app/store';
|
||||
import { OptionsState } from '../../features/options/optionsSlice';
|
||||
import { SystemState } from '../../features/system/systemSlice';
|
||||
import { validateSeedWeights } from '../util/seedWeightPairs';
|
||||
|
||||
const optionsSelector = createSelector(
|
||||
(state: RootState) => state.options,
|
||||
(options: OptionsState) => {
|
||||
return {
|
||||
prompt: options.prompt,
|
||||
shouldGenerateVariations: options.shouldGenerateVariations,
|
||||
seedWeights: options.seedWeights,
|
||||
maskPath: options.maskPath,
|
||||
initialImagePath: options.initialImagePath,
|
||||
seed: options.seed,
|
||||
};
|
||||
},
|
||||
{
|
||||
memoizeOptions: {
|
||||
resultEqualityCheck: isEqual,
|
||||
},
|
||||
}
|
||||
);
|
||||
|
||||
const systemSelector = createSelector(
|
||||
(state: RootState) => state.system,
|
||||
(system: SystemState) => {
|
||||
return {
|
||||
isProcessing: system.isProcessing,
|
||||
isConnected: system.isConnected,
|
||||
};
|
||||
},
|
||||
{
|
||||
memoizeOptions: {
|
||||
resultEqualityCheck: isEqual,
|
||||
},
|
||||
}
|
||||
);
|
||||
|
||||
/**
|
||||
* Checks relevant pieces of state to confirm generation will not deterministically fail.
|
||||
* This is used to prevent the 'Generate' button from being clicked.
|
||||
*/
|
||||
const useCheckParameters = (): boolean => {
|
||||
const {
|
||||
prompt,
|
||||
shouldGenerateVariations,
|
||||
seedWeights,
|
||||
maskPath,
|
||||
initialImagePath,
|
||||
seed,
|
||||
} = useAppSelector(optionsSelector);
|
||||
|
||||
const { isProcessing, isConnected } = useAppSelector(systemSelector);
|
||||
|
||||
return useMemo(() => {
|
||||
// Cannot generate without a prompt
|
||||
if (!prompt) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Cannot generate with a mask without img2img
|
||||
if (maskPath && !initialImagePath) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// TODO: job queue
|
||||
// Cannot generate if already processing an image
|
||||
if (isProcessing) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Cannot generate if not connected
|
||||
if (!isConnected) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Cannot generate variations without valid seed weights
|
||||
if (
|
||||
shouldGenerateVariations &&
|
||||
(!(validateSeedWeights(seedWeights) || seedWeights === '') || seed === -1)
|
||||
) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// All good
|
||||
return true;
|
||||
}, [
|
||||
prompt,
|
||||
maskPath,
|
||||
initialImagePath,
|
||||
isProcessing,
|
||||
isConnected,
|
||||
shouldGenerateVariations,
|
||||
seedWeights,
|
||||
seed,
|
||||
]);
|
||||
};
|
||||
|
||||
export default useCheckParameters;
|
182
frontend/src/common/util/parameterTranslation.ts
Normal file
@ -0,0 +1,182 @@
|
||||
/*
|
||||
These functions translate frontend state into parameters
|
||||
suitable for consumption by the backend, and vice-versa.
|
||||
*/
|
||||
|
||||
import { NUMPY_RAND_MAX, NUMPY_RAND_MIN } from '../../app/constants';
|
||||
import { OptionsState } from '../../features/options/optionsSlice';
|
||||
import { SystemState } from '../../features/system/systemSlice';
|
||||
import {
|
||||
seedWeightsToString,
|
||||
stringToSeedWeightsArray,
|
||||
} from './seedWeightPairs';
|
||||
import randomInt from './randomInt';
|
||||
|
||||
export const frontendToBackendParameters = (
|
||||
optionsState: OptionsState,
|
||||
systemState: SystemState
|
||||
): { [key: string]: any } => {
|
||||
const {
|
||||
prompt,
|
||||
iterations,
|
||||
steps,
|
||||
cfgScale,
|
||||
height,
|
||||
width,
|
||||
sampler,
|
||||
seed,
|
||||
seamless,
|
||||
shouldUseInitImage,
|
||||
img2imgStrength,
|
||||
initialImagePath,
|
||||
maskPath,
|
||||
shouldFitToWidthHeight,
|
||||
shouldGenerateVariations,
|
||||
variationAmount,
|
||||
seedWeights,
|
||||
shouldRunESRGAN,
|
||||
upscalingLevel,
|
||||
upscalingStrength,
|
||||
shouldRunGFPGAN,
|
||||
gfpganStrength,
|
||||
shouldRandomizeSeed,
|
||||
} = optionsState;
|
||||
|
||||
const { shouldDisplayInProgress } = systemState;
|
||||
|
||||
const generationParameters: { [k: string]: any } = {
|
||||
prompt,
|
||||
iterations,
|
||||
steps,
|
||||
cfg_scale: cfgScale,
|
||||
height,
|
||||
width,
|
||||
sampler_name: sampler,
|
||||
seed,
|
||||
seamless,
|
||||
progress_images: shouldDisplayInProgress,
|
||||
};
|
||||
|
||||
generationParameters.seed = shouldRandomizeSeed
|
||||
? randomInt(NUMPY_RAND_MIN, NUMPY_RAND_MAX)
|
||||
: seed;
|
||||
|
||||
if (shouldUseInitImage) {
|
||||
generationParameters.init_img = initialImagePath;
|
||||
generationParameters.strength = img2imgStrength;
|
||||
generationParameters.fit = shouldFitToWidthHeight;
|
||||
if (maskPath) {
|
||||
generationParameters.init_mask = maskPath;
|
||||
}
|
||||
}
|
||||
|
||||
if (shouldGenerateVariations) {
|
||||
generationParameters.variation_amount = variationAmount;
|
||||
if (seedWeights) {
|
||||
generationParameters.with_variations =
|
||||
stringToSeedWeightsArray(seedWeights);
|
||||
}
|
||||
} else {
|
||||
generationParameters.variation_amount = 0;
|
||||
}
|
||||
|
||||
let esrganParameters: false | { [k: string]: any } = false;
|
||||
let gfpganParameters: false | { [k: string]: any } = false;
|
||||
|
||||
if (shouldRunESRGAN) {
|
||||
esrganParameters = {
|
||||
level: upscalingLevel,
|
||||
strength: upscalingStrength,
|
||||
};
|
||||
}
|
||||
|
||||
if (shouldRunGFPGAN) {
|
||||
gfpganParameters = {
|
||||
strength: gfpganStrength,
|
||||
};
|
||||
}
|
||||
|
||||
return {
|
||||
generationParameters,
|
||||
esrganParameters,
|
||||
gfpganParameters,
|
||||
};
|
||||
};
|
||||
|
||||
export const backendToFrontendParameters = (parameters: {
|
||||
[key: string]: any;
|
||||
}) => {
|
||||
const {
|
||||
prompt,
|
||||
iterations,
|
||||
steps,
|
||||
cfg_scale,
|
||||
height,
|
||||
width,
|
||||
sampler_name,
|
||||
seed,
|
||||
seamless,
|
||||
progress_images,
|
||||
variation_amount,
|
||||
with_variations,
|
||||
gfpgan_strength,
|
||||
upscale,
|
||||
init_img,
|
||||
init_mask,
|
||||
strength,
|
||||
} = parameters;
|
||||
|
||||
const options: { [key: string]: any } = {
|
||||
shouldDisplayInProgress: progress_images,
|
||||
// init
|
||||
shouldGenerateVariations: false,
|
||||
shouldRunESRGAN: false,
|
||||
shouldRunGFPGAN: false,
|
||||
initialImagePath: '',
|
||||
maskPath: '',
|
||||
};
|
||||
|
||||
if (variation_amount > 0) {
|
||||
options.shouldGenerateVariations = true;
|
||||
options.variationAmount = variation_amount;
|
||||
if (with_variations) {
|
||||
options.seedWeights = seedWeightsToString(with_variations);
|
||||
}
|
||||
}
|
||||
|
||||
if (gfpgan_strength > 0) {
|
||||
options.shouldRunGFPGAN = true;
|
||||
options.gfpganStrength = gfpgan_strength;
|
||||
}
|
||||
|
||||
if (upscale) {
|
||||
options.shouldRunESRGAN = true;
|
||||
options.upscalingLevel = upscale[0];
|
||||
options.upscalingStrength = upscale[1];
|
||||
}
|
||||
|
||||
if (init_img) {
|
||||
options.shouldUseInitImage = true;
|
||||
options.initialImagePath = init_img;
|
||||
options.strength = strength;
|
||||
if (init_mask) {
|
||||
options.maskPath = init_mask;
|
||||
}
|
||||
}
|
||||
|
||||
// if we had a prompt, add all the metadata, but if we don't have a prompt,
|
||||
// we must have only done ESRGAN or GFPGAN so do not add that metadata
|
||||
if (prompt) {
|
||||
options.prompt = prompt;
|
||||
options.iterations = iterations;
|
||||
options.steps = steps;
|
||||
options.cfgScale = cfg_scale;
|
||||
options.height = height;
|
||||
options.width = width;
|
||||
options.sampler = sampler_name;
|
||||
options.seed = seed;
|
||||
options.seamless = seamless;
|
||||
}
|
||||
|
||||
return options;
|
||||
};
|
16
frontend/src/common/util/promptToString.ts
Normal file
@ -0,0 +1,16 @@
|
||||
import * as InvokeAI from '../../app/invokeai';
|
||||
|
||||
const promptToString = (prompt: InvokeAI.Prompt): string => {
|
||||
if (prompt.length === 1) {
|
||||
return prompt[0].prompt;
|
||||
}
|
||||
|
||||
return prompt
|
||||
.map(
|
||||
(promptItem: InvokeAI.PromptItem): string =>
|
||||
`${promptItem.prompt}:${promptItem.weight}`
|
||||
)
|
||||
.join(' ');
|
||||
};
|
||||
|
||||
export default promptToString;
|
5
frontend/src/common/util/randomInt.ts
Normal file
@ -0,0 +1,5 @@
|
||||
const randomInt = (min: number, max: number): number => {
|
||||
return Math.floor(Math.random() * (max - min + 1) + min);
|
||||
};
|
||||
|
||||
export default randomInt;
|