Replace --full_precision with --precision that works even if not specified

Allowed values are 'auto', 'float32', 'autocast', 'float16'. If not specified or 'auto' a working precision is automatically selected based on the torch device.
Context: #526
Deprecated --full_precision / -F

Tested on both cuda and cpu by calling scripts/dream.py without arguments and checked the auto configuration worked. With --precision=auto/float32/autocast/float16 it performs as expected, either working or failing with a reasonable error. Also checked Img2Img.
This commit is contained in:
Mihail Dumitrescu 2022-09-17 20:56:25 +03:00 committed by Lincoln Stein
parent 30de9fcfae
commit d176fb07cd
18 changed files with 108 additions and 82 deletions

View File

@ -5,8 +5,7 @@ SAMPLES_DIR=${OUT_DIR}
python scripts/dream.py \
--from_file ${PROMPT_FILE} \
--outdir ${OUT_DIR} \
--sampler plms \
--full_precision
--sampler plms
# original output by CompVis/stable-diffusion
IMAGE1=".dev_scripts/images/v1_4_astronaut_rides_horse_plms_step50_seed42.png"

View File

@ -85,9 +85,9 @@ jobs:
fi
# Utterly hacky, but I don't know how else to do this
if [[ ${{ github.ref }} == 'refs/heads/master' ]]; then
time ${{ steps.vars.outputs.PYTHON_BIN }} scripts/dream.py --from_file tests/preflight_prompts.txt --full_precision
time ${{ steps.vars.outputs.PYTHON_BIN }} scripts/dream.py --from_file tests/preflight_prompts.txt
elif [[ ${{ github.ref }} == 'refs/heads/development' ]]; then
time ${{ steps.vars.outputs.PYTHON_BIN }} scripts/dream.py --from_file tests/dev_prompts.txt --full_precision
time ${{ steps.vars.outputs.PYTHON_BIN }} scripts/dream.py --from_file tests/dev_prompts.txt
fi
mkdir -p outputs/img-samples
- name: Archive results

View File

@ -86,17 +86,14 @@ You wil need one of the following:
- At least 6 GB of free disk space for the machine learning model, Python, and all its dependencies.
> Note
>
> If you have an Nvidia 10xx series card (e.g. the 1080ti), please run the dream script in
> full-precision mode as shown below.
#### Note
Similarly, specify full-precision mode on Apple M1 hardware.
To run in full-precision mode, start `dream.py` with the `--full_precision` flag:
Precision is auto configured based on the device. If however you encounter
errors like 'expected type Float but found Half' or 'not implemented for Half'
you can try starting `dream.py` with the `--precision=float32` flag:
```bash
(ldm) ~/stable-diffusion$ python scripts/dream.py --full_precision
(ldm) ~/stable-diffusion$ python scripts/dream.py --precision=float32
```
### Features
@ -125,6 +122,11 @@ To run in full-precision mode, start `dream.py` with the `--full_precision` flag
### Latest Changes
- vNEXT (TODO 2022)
- Deprecated `--full_precision` / `-F`. Simply omit it and `dream.py` will auto
configure. To switch away from auto use the new flag like `--precision=float32`.
- v1.14 (11 September 2022)
- Memory optimizations for small-RAM cards. 512x512 now possible on 4 GB GPUs.

View File

@ -74,7 +74,7 @@ prompt arguments] (#list-of-prompt-arguments). Others
| --prompt_as_dir | -p | False | Name output directories using the prompt text. |
| --from_file <path> | | None | Read list of prompts from a file. Use "-" to read from standard input |
| --model <modelname> | | stable-diffusion-1.4 | Loads model specified in configs/models.yaml. Currently one of "stable-diffusion-1.4" or "laion400m" |
| --full_precision | -F | False | Run in slower full-precision mode. Needed for Macintosh M1/M2 hardware and some older video cards. |
| --precision <pname> | | auto | Set to a specific precision. Rare but you may need to switch to 'float32' on some video cards. |
| --web | | False | Start in web server mode |
| --host <ip addr> | | localhost | Which network interface web server should listen on. Set to 0.0.0.0 to listen on any. |
| --port <port> | | 9090 | Which port web server should listen for requests on. |

View File

@ -57,9 +57,7 @@ Once the model is trained, specify the trained .pt or .bin file when starting
dream using
```bash
python3 ./scripts/dream.py \
--embedding_path /path/to/embedding.pt \
--full_precision
python3 ./scripts/dream.py --embedding_path /path/to/embedding.pt
```
Then, to utilize your subject at the dream prompt

View File

@ -62,15 +62,12 @@ You wil need one of the following:
### Note
If you are have a Nvidia 10xx series card (e.g. the 1080ti), please run the dream script in
full-precision mode as shown below.
Similarly, specify full-precision mode on Apple M1 hardware.
To run in full-precision mode, start `dream.py` with the `--full_precision` flag:
Precision is auto configured based on the device. If however you encounter
errors like 'expected type Float but found Half' or 'not implemented for Half'
you can try starting `dream.py` with the `--precision=float32` flag:
```bash
(ldm) ~/stable-diffusion$ python scripts/dream.py --full_precision
(ldm) ~/stable-diffusion$ python scripts/dream.py --precision=float32
```
## Features
@ -98,6 +95,11 @@ To run in full-precision mode, start `dream.py` with the `--full_precision` flag
## Latest Changes
### vNEXT <small>(TODO 2022)</small>
- Deprecated `--full_precision` / `-F`. Simply omit it and `dream.py` will auto
configure. To switch away from auto use the new flag like `--precision=float32`.
### v1.14 <small>(11 September 2022)</small>
- Memory optimizations for small-RAM cards. 512x512 now possible on 4 GB GPUs.

View File

@ -97,7 +97,7 @@ conda activate ldm
python scripts/preload_models.py
# run SD!
python scripts/dream.py --full_precision # half-precision requires autocast and won't work
python scripts/dream.py
# or run the web interface!
python scripts/dream.py --web
@ -453,5 +453,3 @@ Abort trap: 6
warnings.warn('resource_tracker: There appear to be %d '
```
Macs do not support `autocast/mixed-precision`, so you need to supply
`--full_precision` to use float32 everywhere.

View File

@ -100,6 +100,13 @@ SAMPLER_CHOICES = [
'plms',
]
PRECISION_CHOICES = [
'auto',
'float32',
'autocast',
'float16',
]
# is there a way to pick this up during git commits?
APP_ID = 'lstein/stable-diffusion'
APP_VERSION = 'v1.15'
@ -322,7 +329,16 @@ class Args(object):
'--full_precision',
dest='full_precision',
action='store_true',
help='Use more memory-intensive full precision math for calculations',
help='Deprecated way to set --precision=float32',
)
model_group.add_argument(
'--precision',
dest='precision',
type=str,
choices=PRECISION_CHOICES,
metavar='PRECISION',
help=f'Set model precision. Defaults to auto selected based on device. Options: {", ".join(PRECISION_CHOICES)}',
default='auto',
)
file_group.add_argument(
'--from_file',

View File

@ -1,6 +1,6 @@
import torch
from torch import autocast
from contextlib import contextmanager, nullcontext
from contextlib import nullcontext
def choose_torch_device() -> str:
'''Convenience routine for guessing which GPU device to run model on'''
@ -10,15 +10,18 @@ def choose_torch_device() -> str:
return 'mps'
return 'cpu'
def choose_autocast_device(device):
'''Returns an autocast compatible device from a torch device'''
device_type = device.type # this returns 'mps' on M1
# autocast only for cuda, but GTX 16xx have issues with it
if device_type == 'cuda':
device_name = torch.cuda.get_device_name()
if 'GeForce GTX 1660' in device_name or 'GeForce GTX 1650' in device_name:
return device_type,nullcontext
else:
return device_type,autocast
else:
return 'cpu',nullcontext
def choose_precision(device) -> str:
'''Returns an appropriate precision for the given torch device'''
if device.type == 'cuda':
device_name = torch.cuda.get_device_name(device)
if not ('GeForce GTX 1660' in device_name or 'GeForce GTX 1650' in device_name):
return 'float16'
return 'float32'
def choose_autocast(precision):
'''Returns an autocast context or nullcontext for the given precision string'''
# float16 currently requires autocast to avoid errors like:
# 'expected scalar type Half but found Float'
if precision == 'autocast' or precision == 'float16':
return autocast
return nullcontext

View File

@ -9,13 +9,14 @@ from tqdm import tqdm, trange
from PIL import Image
from einops import rearrange, repeat
from pytorch_lightning import seed_everything
from ldm.dream.devices import choose_autocast_device
from ldm.dream.devices import choose_autocast
downsampling = 8
class Generator():
def __init__(self,model):
def __init__(self, model, precision):
self.model = model
self.precision = precision
self.seed = None
self.latent_channels = model.channels
self.downsampling_factor = downsampling # BUG: should come from model or config
@ -38,7 +39,7 @@ class Generator():
def generate(self,prompt,init_image,width,height,iterations=1,seed=None,
image_callback=None, step_callback=None,
**kwargs):
device_type,scope = choose_autocast_device(self.model.device)
scope = choose_autocast(self.precision)
make_image = self.get_make_image(
prompt,
init_image = init_image,
@ -51,7 +52,7 @@ class Generator():
results = []
seed = seed if seed else self.new_seed()
seed, initial_noise = self.generate_initial_noise(seed, width, height)
with scope(device_type), self.model.ema_scope():
with scope(self.model.device.type), self.model.ema_scope():
for n in trange(iterations, desc='Generating'):
x_T = None
if self.variation_amount > 0:

View File

@ -11,8 +11,8 @@ from ldm.models.diffusion.ddim import DDIMSampler
from ldm.dream.generator.img2img import Img2Img
class Embiggen(Generator):
def __init__(self,model):
super().__init__(model)
def __init__(self, model, precision):
super().__init__(model, precision)
self.init_latent = None
@torch.no_grad()

View File

@ -4,13 +4,13 @@ ldm.dream.generator.img2img descends from ldm.dream.generator
import torch
import numpy as np
from ldm.dream.devices import choose_autocast_device
from ldm.dream.devices import choose_autocast
from ldm.dream.generator.base import Generator
from ldm.models.diffusion.ddim import DDIMSampler
class Img2Img(Generator):
def __init__(self,model):
super().__init__(model)
def __init__(self, model, precision):
super().__init__(model, precision)
self.init_latent = None # by get_noise()
@torch.no_grad()
@ -32,8 +32,8 @@ class Img2Img(Generator):
ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=False
)
device_type,scope = choose_autocast_device(self.model.device)
with scope(device_type):
scope = choose_autocast(self.precision)
with scope(self.model.device.type):
self.init_latent = self.model.get_first_stage_encoding(
self.model.encode_first_stage(init_image)
) # move to latent space

View File

@ -5,14 +5,14 @@ ldm.dream.generator.inpaint descends from ldm.dream.generator
import torch
import numpy as np
from einops import rearrange, repeat
from ldm.dream.devices import choose_autocast_device
from ldm.dream.devices import choose_autocast
from ldm.dream.generator.img2img import Img2Img
from ldm.models.diffusion.ddim import DDIMSampler
class Inpaint(Img2Img):
def __init__(self,model):
def __init__(self, model, precision):
self.init_latent = None
super().__init__(model)
super().__init__(model, precision)
@torch.no_grad()
def get_make_image(self,prompt,sampler,steps,cfg_scale,ddim_eta,
@ -38,8 +38,8 @@ class Inpaint(Img2Img):
ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=False
)
device_type,scope = choose_autocast_device(self.model.device)
with scope(device_type):
scope = choose_autocast(self.precision)
with scope(self.model.device.type):
self.init_latent = self.model.get_first_stage_encoding(
self.model.encode_first_stage(init_image)
) # move to latent space

View File

@ -7,8 +7,8 @@ import numpy as np
from ldm.dream.generator.base import Generator
class Txt2Img(Generator):
def __init__(self,model):
super().__init__(model)
def __init__(self, model, precision):
super().__init__(model, precision)
@torch.no_grad()
def get_make_image(self,prompt,sampler,steps,cfg_scale,ddim_eta,

View File

@ -29,7 +29,7 @@ from ldm.models.diffusion.plms import PLMSSampler
from ldm.models.diffusion.ksampler import KSampler
from ldm.dream.pngwriter import PngWriter
from ldm.dream.image_util import InitImageResizer
from ldm.dream.devices import choose_torch_device
from ldm.dream.devices import choose_torch_device, choose_precision
from ldm.dream.conditioning import get_uc_and_c
def fix_func(orig):
@ -104,7 +104,7 @@ gr = Generate(
# these values are set once and shouldn't be changed
conf = path to configuration file ('configs/models.yaml')
model = symbolic name of the model in the configuration file
full_precision = False
precision = float precision to be used
# this value is sticky and maintained between generation calls
sampler_name = ['ddim', 'k_dpm_2_a', 'k_dpm_2', 'k_euler_a', 'k_euler', 'k_heun', 'k_lms', 'plms'] // k_lms
@ -130,6 +130,7 @@ class Generate:
sampler_name = 'k_lms',
ddim_eta = 0.0, # deterministic
full_precision = False,
precision = 'auto',
# these are deprecated; if present they override values in the conf file
weights = None,
config = None,
@ -145,7 +146,7 @@ class Generate:
self.cfg_scale = 7.5
self.sampler_name = sampler_name
self.ddim_eta = 0.0 # same seed always produces same image
self.full_precision = True if choose_torch_device() == 'mps' else full_precision
self.precision = precision
self.strength = 0.75
self.seamless = False
self.embedding_path = embedding_path
@ -162,6 +163,14 @@ class Generate:
# it wasn't actually doing anything. This logic could be reinstated.
device_type = choose_torch_device()
self.device = torch.device(device_type)
if full_precision:
if self.precision != 'auto':
raise ValueError('Remove --full_precision / -F if using --precision')
print('Please remove deprecated --full_precision / -F')
print('If auto config does not work you can use --precision=float32')
self.precision = 'float32'
if self.precision == 'auto':
self.precision = choose_precision(self.device)
# for VRAM usage statistics
self.session_peakmem = torch.cuda.max_memory_allocated() if self._has_cuda else None
@ -440,25 +449,25 @@ class Generate:
def _make_img2img(self):
if not self.generators.get('img2img'):
from ldm.dream.generator.img2img import Img2Img
self.generators['img2img'] = Img2Img(self.model)
self.generators['img2img'] = Img2Img(self.model, self.precision)
return self.generators['img2img']
def _make_embiggen(self):
if not self.generators.get('embiggen'):
from ldm.dream.generator.embiggen import Embiggen
self.generators['embiggen'] = Embiggen(self.model)
self.generators['embiggen'] = Embiggen(self.model, self.precision)
return self.generators['embiggen']
def _make_txt2img(self):
if not self.generators.get('txt2img'):
from ldm.dream.generator.txt2img import Txt2Img
self.generators['txt2img'] = Txt2Img(self.model)
self.generators['txt2img'] = Txt2Img(self.model, self.precision)
return self.generators['txt2img']
def _make_inpaint(self):
if not self.generators.get('inpaint'):
from ldm.dream.generator.inpaint import Inpaint
self.generators['inpaint'] = Inpaint(self.model)
self.generators['inpaint'] = Inpaint(self.model, self.precision)
return self.generators['inpaint']
def load_model(self):
@ -469,7 +478,7 @@ class Generate:
model = self._load_model_from_config(self.config, self.weights)
if self.embedding_path is not None:
model.embedding_manager.load(
self.embedding_path, self.full_precision
self.embedding_path, self.precision == 'float32' or self.precision == 'autocast'
)
self.model = model.to(self.device)
# model.to doesn't change the cond_stage_model.device used to move the tokenizer output, so set it here
@ -620,15 +629,12 @@ class Generate:
model = instantiate_from_config(c.model)
m, u = model.load_state_dict(sd, strict=False)
if self.full_precision:
print(
'>> Using slower but more accurate full-precision math (--full_precision)'
)
if self.precision == 'float16':
print('Using faster float16 precision')
model.to(torch.float16)
else:
print(
'>> Using half precision math. Call with --full_precision to use more accurate but VRAM-intensive full precision.'
)
model.half()
print('Using more accurate float32 precision')
model.to(self.device)
model.eval()

View File

@ -54,6 +54,7 @@ def main():
sampler_name = opt.sampler_name,
embedding_path = opt.embedding_path,
full_precision = opt.full_precision,
precision = opt.precision,
)
except (FileNotFoundError, IOError, KeyError) as e:
print(f'{e}. Aborting.')

View File

@ -119,7 +119,7 @@ def main():
# "height": height,
# "sampler_name": opt.sampler_name,
# "weights": weights,
# "full_precision": opt.full_precision,
# "precision": opt.precision,
# "config": config,
# "grid": opt.grid,
# "latent_diffusion_weights": opt.laion400m,

View File

@ -23,14 +23,14 @@ class Container(containers.DeclarativeContainer):
model = config.model,
sampler_name = config.sampler_name,
embedding_path = config.embedding_path,
full_precision = config.full_precision
precision = config.precision
# config = config.model.config,
# width = config.model.width,
# height = config.model.height,
# sampler_name = config.model.sampler_name,
# weights = config.model.weights,
# full_precision = config.model.full_precision,
# precision = config.model.precision,
# grid = config.model.grid,
# seamless = config.model.seamless,
# embedding_path = config.model.embedding_path,