remove all references to CLI

This commit is contained in:
Lincoln Stein
2023-10-17 12:59:48 -04:00
committed by psychedelicious
parent 9fa8e38163
commit d27392cc2d
26 changed files with 86 additions and 1059 deletions

View File

@ -28,8 +28,9 @@ by placing them in the designated directory for the compatible model type
### An Example
Here are a few examples to illustrate how it works. All these images were
generated using the command-line client and the Stable Diffusion 1.5 model:
Here are a few examples to illustrate how it works. All these images
were generated using the legacy command-line client and the Stable
Diffusion 1.5 model:
| Japanese gardener | Japanese gardener <ghibli-face> | Japanese gardener <hoi4-leaders> | Japanese gardener <cartoona-animals> |
| :--------------------------------: | :-----------------------------------: | :------------------------------------: | :----------------------------------------: |

View File

@ -82,7 +82,7 @@ format of YAML files can be found
[here](https://circleci.com/blog/what-is-yaml-a-beginner-s-guide/).
You can fix a broken `invokeai.yaml` by deleting it and running the
configuration script again -- option [7] in the launcher, "Re-run the
configuration script again -- option [6] in the launcher, "Re-run the
configure script".
#### Reading Environment Variables

View File

@ -46,7 +46,7 @@ Diffuser-style ControlNet models are available at HuggingFace
(http://huggingface.co) and accessed via their repo IDs (identifiers
in the format "author/modelname"). The easiest way to install them is
to use the InvokeAI model installer application. Use the
`invoke.sh`/`invoke.bat` launcher to select item [5] and then navigate
`invoke.sh`/`invoke.bat` launcher to select item [4] and then navigate
to the CONTROLNETS section. Select the models you wish to install and
press "APPLY CHANGES". You may also enter additional HuggingFace
repo_ids in the "Additional models" textbox:
@ -145,8 +145,8 @@ Additionally, each ControlNet section can be expanded in order to manipulate set
#### Installation
There are several ways to install IP-Adapter models with an existing InvokeAI installation:
1. Through the command line interface launched from the invoke.sh / invoke.bat scripts, option [5] to download models.
2. Through the Model Manager UI with models from the *Tools* section of [www.models.invoke.ai](www.models.invoke.ai). To do this, copy the repo ID from the desired model page, and paste it in the Add Model field of the model manager. **Note** Both the IP-Adapter and the Image Encoder must be installed for IP-Adapter to work. For example, the [SD 1.5 IP-Adapter](https://models.invoke.ai/InvokeAI/ip_adapter_plus_sd15) and [SD1.5 Image Encoder](https://models.invoke.ai/InvokeAI/ip_adapter_sd_image_encoder) must be installed to use IP-Adapter with SD1.5 based models.
1. Through the command line interface launched from the invoke.sh / invoke.bat scripts, option [4] to download models.
2. Through the Model Manager UI with models from the *Tools* section of [www.models.invoke.ai](https://www.models.invoke.ai). To do this, copy the repo ID from the desired model page, and paste it in the Add Model field of the model manager. **Note** Both the IP-Adapter and the Image Encoder must be installed for IP-Adapter to work. For example, the [SD 1.5 IP-Adapter](https://models.invoke.ai/InvokeAI/ip_adapter_plus_sd15) and [SD1.5 Image Encoder](https://models.invoke.ai/InvokeAI/ip_adapter_sd_image_encoder) must be installed to use IP-Adapter with SD1.5 based models.
3. **Advanced -- Not recommended ** Manually downloading the IP-Adapter and Image Encoder files - Image Encoder folders shouid be placed in the `models\any\clip_vision` folders. IP Adapter Model folders should be placed in the relevant `ip-adapter` folder of relevant base model folder of Invoke root directory. For example, for the SDXL IP-Adapter, files should be added to the `model/sdxl/ip_adapter/` folder.
#### Using IP-Adapter

View File

@ -16,9 +16,10 @@ Model Merging can be be done by navigating to the Model Manager and clicking the
display all the diffusers-style models that InvokeAI knows about.
If you do not see the model you are looking for, then it is probably
a legacy checkpoint model and needs to be converted using the
`invoke` command-line client and its `!optimize` command. You
must select at least two models to merge. The third can be left at
"None" if you desire.
"Convert" option in the Web-based Model Manager tab.
You must select at least two models to merge. The third can be left
at "None" if you desire.
* Alpha: This is the ratio to use when combining models. It ranges
from 0 to 1. The higher the value, the more weight is given to the

View File

@ -8,7 +8,7 @@ title: Command-line Utilities
InvokeAI comes with several scripts that are accessible via the
command line. To access these commands, start the "developer's
console" from the launcher (`invoke.bat` menu item [8]). Users who are
console" from the launcher (`invoke.bat` menu item [7]). Users who are
familiar with Python can alternatively activate InvokeAI's virtual
environment (typically, but not necessarily `invokeai/.venv`).
@ -34,7 +34,7 @@ invokeai-web --ram 7
## **invokeai-merge**
This is the model merge script, the same as launcher option [4]. Call
This is the model merge script, the same as launcher option [3]. Call
it with the `--gui` command-line argument to start the interactive
console-based GUI. Alternatively, you can run it non-interactively
using command-line arguments as illustrated in the example below which
@ -48,7 +48,7 @@ invokeai-merge --force --base-model sd-1 --models stable-diffusion-1.5 inkdiffus
## **invokeai-ti**
This is the textual inversion training script that is run by launcher
option [3]. Call it with `--gui` to run the interactive console-based
option [2]. Call it with `--gui` to run the interactive console-based
front end. It can also be run non-interactively. It has about a
zillion arguments, but a typical training session can be launched
with:
@ -68,7 +68,7 @@ in Windows).
## **invokeai-install**
This is the console-based model install script that is run by launcher
option [5]. If called without arguments, it will launch the
option [4]. If called without arguments, it will launch the
interactive console-based interface. It can also be used
non-interactively to list, add and remove models as shown by these
examples:
@ -148,7 +148,7 @@ launch the web server against it with `invokeai-web --root InvokeAI-New`.
## **invokeai-update**
This is the interactive console-based script that is run by launcher
menu item [9] to update to a new version of InvokeAI. It takes no
menu item [8] to update to a new version of InvokeAI. It takes no
command-line arguments.
## **invokeai-metadata**

View File

@ -1,131 +0,0 @@
---
title: Variations
---
# :material-tune-variant: Variations
## Intro
InvokeAI's support for variations enables you to do the following:
1. Generate a series of systematic variations of an image, given a prompt. The
amount of variation from one image to the next can be controlled.
2. Given two or more variations that you like, you can combine them in a
weighted fashion.
!!! Information ""
This cheat sheet provides a quick guide for how this works in practice, using
variations to create the desired image of Xena, Warrior Princess.
## Step 1 -- Find a base image that you like
The prompt we will use throughout is:
`#!bash "lucy lawless as xena, warrior princess, character portrait, high resolution."`
This will be indicated as `#!bash "prompt"` in the examples below.
First we let SD create a series of images in the usual way, in this case
requesting six iterations.
<figure markdown>
![var1](../assets/variation_walkthru/000001.3357757885.png)
<figcaption> Seed 3357757885 looks nice </figcaption>
</figure>
---
## Step 2 - Generating Variations
Let's try to generate some variations on this image. We select the "*"
symbol in the line of icons above the image in order to fix the prompt
and seed. Then we open up the "Variations" section of the generation
panel and use the slider to set the variation amount to 0.2. The
higher this value, the more each generated image will differ from the
previous one.
Now we run the prompt a second time, requesting six iterations. You
will see six images that are thematically related to each other. Try
increasing and decreasing the variation amount and see what happens.
### **Variation Sub Seeding**
Note that the output for each image has a `-V` option giving the "variant
subseed" for that image, consisting of a seed followed by the variation amount
used to generate it.
This gives us a series of closely-related variations, including the two shown
here.
<figure markdown>
![var2](../assets/variation_walkthru/000002.3647897225.png)
<figcaption>subseed 3647897225</figcaption>
</figure>
<figure markdown>
![var3](../assets/variation_walkthru/000002.1614299449.png)
<figcaption>subseed 1614299449</figcaption>
</figure>
I like the expression on Xena's face in the first one (subseed 3647897225), and
the armor on her shoulder in the second one (subseed 1614299449). Can we combine
them to get the best of both worlds?
We combine the two variations using `-V` (`--with_variations`). Again, we must
provide the seed for the originally-chosen image in order for this to work.
```bash
invoke> "prompt" -S3357757885 -V3647897225,0.1,1614299449,0.1
Outputs:
./outputs/Xena/000003.1614299449.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 3647897225:0.1,1614299449:0.1 -S3357757885
```
Here we are providing equal weights (0.1 and 0.1) for both the subseeds. The
resulting image is close, but not exactly what I wanted:
<figure markdown>
![var4](../assets/variation_walkthru/000003.1614299449.png)
<figcaption> subseed 1614299449 </figcaption>
</figure>
We could either try combining the images with different weights, or we can
generate more variations around the almost-but-not-quite image. We do the
latter, using both the `-V` (combining) and `-v` (variation strength) options.
Note that we use `-n6` to generate 6 variations:
```bash
invoke> "prompt" -S3357757885 -V3647897225,0.1,1614299449,0.1 -v0.05 -n6
Outputs:
./outputs/Xena/000004.3279757577.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 3647897225:0.1,1614299449:0.1,3279757577:0.05 -S3357757885
./outputs/Xena/000004.2853129515.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 3647897225:0.1,1614299449:0.1,2853129515:0.05 -S3357757885
./outputs/Xena/000004.3747154981.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 3647897225:0.1,1614299449:0.1,3747154981:0.05 -S3357757885
./outputs/Xena/000004.2664260391.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 3647897225:0.1,1614299449:0.1,2664260391:0.05 -S3357757885
./outputs/Xena/000004.1642517170.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 3647897225:0.1,1614299449:0.1,1642517170:0.05 -S3357757885
./outputs/Xena/000004.2183375608.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 3647897225:0.1,1614299449:0.1,2183375608:0.05 -S3357757885
```
This produces six images, all slight variations on the combination of the chosen
two images. Here's the one I like best:
<figure markdown>
![var5](../assets/variation_walkthru/000004.3747154981.png)
<figcaption> subseed 3747154981 </figcaption>
</figure>
As you can see, this is a very powerful tool, which when combined with subprompt
weighting, gives you great control over the content and quality of your
generated images.
## Variations and Samplers
The sampler you choose has a strong effect on variation strength. Some
samplers, such as `k_euler_a` are very "creative" and produce significant
amounts of image-to-image variation even when the seed is fixed and the
`-v` argument is very low. Others are more deterministic. Feel free to
experiment until you find the combination that you like.
Also be aware of the [Perlin Noise](OTHER.md#thresholding-and-perlin-noise-initialization-options)
feature, which provides another way of introducing variability into your
image generation requests.

View File

@ -28,7 +28,7 @@ Learn how to install and use ControlNet models for fine control over
image output.
### * [Image-to-Image Guide](IMG2IMG.md)
Use a seed image to build new creations in the CLI.
Use a seed image to build new creations.
## Model Management