mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
fix(nodes): use save
instead of set
`set` is a python builtin
This commit is contained in:
parent
33d199c007
commit
d4aa79acd7
@ -118,7 +118,7 @@ class CompelInvocation(BaseInvocation):
|
|||||||
conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
|
conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
|
||||||
|
|
||||||
# TODO: hacky but works ;D maybe rename latents somehow?
|
# TODO: hacky but works ;D maybe rename latents somehow?
|
||||||
context.services.latents.set(conditioning_name, (c, ec))
|
context.services.latents.save(conditioning_name, (c, ec))
|
||||||
|
|
||||||
return CompelOutput(
|
return CompelOutput(
|
||||||
conditioning=ConditioningField(
|
conditioning=ConditioningField(
|
||||||
|
@ -20,7 +20,7 @@ from ...backend.stable_diffusion.diffusers_pipeline import ConditioningData, Sta
|
|||||||
from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP
|
from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP
|
||||||
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig
|
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from ..services.image_storage import ImageType
|
from ..services.image_file_storage import ImageType
|
||||||
from .baseinvocation import BaseInvocation, InvocationContext
|
from .baseinvocation import BaseInvocation, InvocationContext
|
||||||
from .image import ImageField, ImageOutput, build_image_output
|
from .image import ImageField, ImageOutput, build_image_output
|
||||||
from .compel import ConditioningField
|
from .compel import ConditioningField
|
||||||
@ -144,7 +144,7 @@ class NoiseInvocation(BaseInvocation):
|
|||||||
noise = get_noise(self.width, self.height, device, self.seed)
|
noise = get_noise(self.width, self.height, device, self.seed)
|
||||||
|
|
||||||
name = f'{context.graph_execution_state_id}__{self.id}'
|
name = f'{context.graph_execution_state_id}__{self.id}'
|
||||||
context.services.latents.set(name, noise)
|
context.services.latents.save(name, noise)
|
||||||
return build_noise_output(latents_name=name, latents=noise)
|
return build_noise_output(latents_name=name, latents=noise)
|
||||||
|
|
||||||
|
|
||||||
@ -260,7 +260,7 @@ class TextToLatentsInvocation(BaseInvocation):
|
|||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
|
|
||||||
name = f'{context.graph_execution_state_id}__{self.id}'
|
name = f'{context.graph_execution_state_id}__{self.id}'
|
||||||
context.services.latents.set(name, result_latents)
|
context.services.latents.save(name, result_latents)
|
||||||
return build_latents_output(latents_name=name, latents=result_latents)
|
return build_latents_output(latents_name=name, latents=result_latents)
|
||||||
|
|
||||||
|
|
||||||
@ -319,7 +319,7 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
|
|||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
|
|
||||||
name = f'{context.graph_execution_state_id}__{self.id}'
|
name = f'{context.graph_execution_state_id}__{self.id}'
|
||||||
context.services.latents.set(name, result_latents)
|
context.services.latents.save(name, result_latents)
|
||||||
return build_latents_output(latents_name=name, latents=result_latents)
|
return build_latents_output(latents_name=name, latents=result_latents)
|
||||||
|
|
||||||
|
|
||||||
@ -404,7 +404,7 @@ class ResizeLatentsInvocation(BaseInvocation):
|
|||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
|
|
||||||
name = f"{context.graph_execution_state_id}__{self.id}"
|
name = f"{context.graph_execution_state_id}__{self.id}"
|
||||||
context.services.latents.set(name, resized_latents)
|
context.services.latents.save(name, resized_latents)
|
||||||
return build_latents_output(latents_name=name, latents=resized_latents)
|
return build_latents_output(latents_name=name, latents=resized_latents)
|
||||||
|
|
||||||
|
|
||||||
@ -434,7 +434,7 @@ class ScaleLatentsInvocation(BaseInvocation):
|
|||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
|
|
||||||
name = f"{context.graph_execution_state_id}__{self.id}"
|
name = f"{context.graph_execution_state_id}__{self.id}"
|
||||||
context.services.latents.set(name, resized_latents)
|
context.services.latents.save(name, resized_latents)
|
||||||
return build_latents_output(latents_name=name, latents=resized_latents)
|
return build_latents_output(latents_name=name, latents=resized_latents)
|
||||||
|
|
||||||
|
|
||||||
@ -478,5 +478,5 @@ class ImageToLatentsInvocation(BaseInvocation):
|
|||||||
)
|
)
|
||||||
|
|
||||||
name = f"{context.graph_execution_state_id}__{self.id}"
|
name = f"{context.graph_execution_state_id}__{self.id}"
|
||||||
context.services.latents.set(name, latents)
|
context.services.latents.save(name, latents)
|
||||||
return build_latents_output(latents_name=name, latents=latents)
|
return build_latents_output(latents_name=name, latents=latents)
|
||||||
|
@ -16,7 +16,7 @@ class LatentsStorageBase(ABC):
|
|||||||
pass
|
pass
|
||||||
|
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
def set(self, name: str, data: torch.Tensor) -> None:
|
def save(self, name: str, data: torch.Tensor) -> None:
|
||||||
pass
|
pass
|
||||||
|
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
@ -47,7 +47,7 @@ class ForwardCacheLatentsStorage(LatentsStorageBase):
|
|||||||
self.__set_cache(name, latent)
|
self.__set_cache(name, latent)
|
||||||
return latent
|
return latent
|
||||||
|
|
||||||
def set(self, name: str, data: torch.Tensor) -> None:
|
def save(self, name: str, data: torch.Tensor) -> None:
|
||||||
self.__underlying_storage.set(name, data)
|
self.__underlying_storage.set(name, data)
|
||||||
self.__set_cache(name, data)
|
self.__set_cache(name, data)
|
||||||
|
|
||||||
@ -80,7 +80,7 @@ class DiskLatentsStorage(LatentsStorageBase):
|
|||||||
latent_path = self.get_path(name)
|
latent_path = self.get_path(name)
|
||||||
return torch.load(latent_path)
|
return torch.load(latent_path)
|
||||||
|
|
||||||
def set(self, name: str, data: torch.Tensor) -> None:
|
def save(self, name: str, data: torch.Tensor) -> None:
|
||||||
latent_path = self.get_path(name)
|
latent_path = self.get_path(name)
|
||||||
torch.save(data, latent_path)
|
torch.save(data, latent_path)
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user