mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Fix Inpainting Issues (#3744)
- fix: Inpaint not working with some schedulers: Resolves #3732 - fix: LoRA's not working at all while inpainting.
This commit is contained in:
commit
d4ec8873f7
@ -154,18 +154,20 @@ class InpaintInvocation(BaseInvocation):
|
|||||||
|
|
||||||
@contextmanager
|
@contextmanager
|
||||||
def load_model_old_way(self, context, scheduler):
|
def load_model_old_way(self, context, scheduler):
|
||||||
|
def _lora_loader():
|
||||||
|
for lora in self.unet.loras:
|
||||||
|
lora_info = context.services.model_manager.get_model(
|
||||||
|
**lora.dict(exclude={"weight"}))
|
||||||
|
yield (lora_info.context.model, lora.weight)
|
||||||
|
del lora_info
|
||||||
|
return
|
||||||
|
|
||||||
unet_info = context.services.model_manager.get_model(**self.unet.unet.dict())
|
unet_info = context.services.model_manager.get_model(**self.unet.unet.dict())
|
||||||
vae_info = context.services.model_manager.get_model(**self.vae.vae.dict())
|
vae_info = context.services.model_manager.get_model(**self.vae.vae.dict())
|
||||||
|
|
||||||
#unet = unet_info.context.model
|
|
||||||
#vae = vae_info.context.model
|
|
||||||
|
|
||||||
with ExitStack() as stack:
|
|
||||||
loras = [(stack.enter_context(context.services.model_manager.get_model(**lora.dict(exclude={"weight"}))), lora.weight) for lora in self.unet.loras]
|
|
||||||
|
|
||||||
with vae_info as vae,\
|
with vae_info as vae,\
|
||||||
unet_info as unet,\
|
ModelPatcher.apply_lora_unet(unet_info.context.model, _lora_loader()),\
|
||||||
ModelPatcher.apply_lora_unet(unet, loras):
|
unet_info as unet:
|
||||||
|
|
||||||
device = context.services.model_manager.mgr.cache.execution_device
|
device = context.services.model_manager.mgr.cache.execution_device
|
||||||
dtype = context.services.model_manager.mgr.cache.precision
|
dtype = context.services.model_manager.mgr.cache.precision
|
||||||
|
@ -127,7 +127,7 @@ class AddsMaskGuidance:
|
|||||||
|
|
||||||
def _t_for_field(self, field_name: str, t):
|
def _t_for_field(self, field_name: str, t):
|
||||||
if field_name == "pred_original_sample":
|
if field_name == "pred_original_sample":
|
||||||
return torch.zeros_like(t, dtype=t.dtype) # it represents t=0
|
return self.scheduler.timesteps[-1]
|
||||||
return t
|
return t
|
||||||
|
|
||||||
def apply_mask(self, latents: torch.Tensor, t) -> torch.Tensor:
|
def apply_mask(self, latents: torch.Tensor, t) -> torch.Tensor:
|
||||||
|
Loading…
Reference in New Issue
Block a user