mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
use heuristic to select RAM cache size during headless install; blackified
This commit is contained in:
parent
0c97a1e7e7
commit
d59e534cad
@ -344,12 +344,12 @@ class InvokeAiInstance:
|
|||||||
auto_install = True
|
auto_install = True
|
||||||
sys.argv = new_argv
|
sys.argv = new_argv
|
||||||
|
|
||||||
import requests # to catch download exceptions
|
|
||||||
import messages
|
import messages
|
||||||
|
import requests # to catch download exceptions
|
||||||
|
|
||||||
auto_install = auto_install or messages.user_wants_auto_configuration()
|
auto_install = auto_install or messages.user_wants_auto_configuration()
|
||||||
if auto_install:
|
if auto_install:
|
||||||
sys.argv.append('--yes')
|
sys.argv.append("--yes")
|
||||||
else:
|
else:
|
||||||
messages.introduction()
|
messages.introduction()
|
||||||
|
|
||||||
|
@ -7,7 +7,7 @@ import os
|
|||||||
import platform
|
import platform
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
from prompt_toolkit import prompt, HTML
|
from prompt_toolkit import HTML, prompt
|
||||||
from prompt_toolkit.completion import PathCompleter
|
from prompt_toolkit.completion import PathCompleter
|
||||||
from prompt_toolkit.validation import Validator
|
from prompt_toolkit.validation import Validator
|
||||||
from rich import box, print
|
from rich import box, print
|
||||||
@ -97,13 +97,17 @@ def user_wants_auto_configuration() -> bool:
|
|||||||
padding=(1, 1),
|
padding=(1, 1),
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
choice = prompt(HTML("Choose <b><a></b>utomatic or <b><m></b>anual configuration [a/m] (a): "),
|
choice = (
|
||||||
|
prompt(
|
||||||
|
HTML("Choose <b><a></b>utomatic or <b><m></b>anual configuration [a/m] (a): "),
|
||||||
validator=Validator.from_callable(
|
validator=Validator.from_callable(
|
||||||
lambda n: n=='' or n.startswith(('a', 'A', 'm', 'M')),
|
lambda n: n == "" or n.startswith(("a", "A", "m", "M")), error_message="Please select 'a' or 'm'"
|
||||||
error_message="Please select 'a' or 'm'"
|
|
||||||
),
|
),
|
||||||
) or 'a'
|
)
|
||||||
return choice.lower().startswith('a')
|
or "a"
|
||||||
|
)
|
||||||
|
return choice.lower().startswith("a")
|
||||||
|
|
||||||
|
|
||||||
def dest_path(dest=None) -> Path:
|
def dest_path(dest=None) -> Path:
|
||||||
"""
|
"""
|
||||||
|
@ -199,7 +199,7 @@ class IntegerMathInvocation(BaseInvocation):
|
|||||||
elif self.operation == "DIV":
|
elif self.operation == "DIV":
|
||||||
return IntegerOutput(value=int(self.a / self.b))
|
return IntegerOutput(value=int(self.a / self.b))
|
||||||
elif self.operation == "EXP":
|
elif self.operation == "EXP":
|
||||||
return IntegerOutput(value=self.a**self.b)
|
return IntegerOutput(value=self.a ** self.b)
|
||||||
elif self.operation == "MOD":
|
elif self.operation == "MOD":
|
||||||
return IntegerOutput(value=self.a % self.b)
|
return IntegerOutput(value=self.a % self.b)
|
||||||
elif self.operation == "ABS":
|
elif self.operation == "ABS":
|
||||||
@ -273,7 +273,7 @@ class FloatMathInvocation(BaseInvocation):
|
|||||||
elif self.operation == "DIV":
|
elif self.operation == "DIV":
|
||||||
return FloatOutput(value=self.a / self.b)
|
return FloatOutput(value=self.a / self.b)
|
||||||
elif self.operation == "EXP":
|
elif self.operation == "EXP":
|
||||||
return FloatOutput(value=self.a**self.b)
|
return FloatOutput(value=self.a ** self.b)
|
||||||
elif self.operation == "SQRT":
|
elif self.operation == "SQRT":
|
||||||
return FloatOutput(value=np.sqrt(self.a))
|
return FloatOutput(value=np.sqrt(self.a))
|
||||||
elif self.operation == "ABS":
|
elif self.operation == "ABS":
|
||||||
|
@ -70,7 +70,6 @@ def get_literal_fields(field) -> list[Any]:
|
|||||||
config = InvokeAIAppConfig.get_config()
|
config = InvokeAIAppConfig.get_config()
|
||||||
|
|
||||||
Model_dir = "models"
|
Model_dir = "models"
|
||||||
|
|
||||||
Default_config_file = config.model_conf_path
|
Default_config_file = config.model_conf_path
|
||||||
SD_Configs = config.legacy_conf_path
|
SD_Configs = config.legacy_conf_path
|
||||||
|
|
||||||
@ -458,7 +457,7 @@ Use cursor arrows to make a checkbox selection, and space to toggle.
|
|||||||
)
|
)
|
||||||
self.add_widget_intelligent(
|
self.add_widget_intelligent(
|
||||||
npyscreen.TitleFixedText,
|
npyscreen.TitleFixedText,
|
||||||
name="Model RAM cache size (GB). Make this at least large enough to hold a single full model.",
|
name="Model RAM cache size (GB). Make this at least large enough to hold a single full model (2GB for SD-1, 6GB for SDXL).",
|
||||||
begin_entry_at=0,
|
begin_entry_at=0,
|
||||||
editable=False,
|
editable=False,
|
||||||
color="CONTROL",
|
color="CONTROL",
|
||||||
@ -651,8 +650,19 @@ def edit_opts(program_opts: Namespace, invokeai_opts: Namespace) -> argparse.Nam
|
|||||||
return editApp.new_opts()
|
return editApp.new_opts()
|
||||||
|
|
||||||
|
|
||||||
|
def default_ramcache() -> float:
|
||||||
|
"""Run a heuristic for the default RAM cache based on installed RAM."""
|
||||||
|
|
||||||
|
# Note that on my 64 GB machine, psutil.virtual_memory().total gives 62 GB,
|
||||||
|
# So we adjust everthing down a bit.
|
||||||
|
return (
|
||||||
|
15.0 if MAX_RAM >= 60 else 7.5 if MAX_RAM >= 30 else 4 if MAX_RAM >= 14 else 2.1
|
||||||
|
) # 2.1 is just large enough for sd 1.5 ;-)
|
||||||
|
|
||||||
|
|
||||||
def default_startup_options(init_file: Path) -> Namespace:
|
def default_startup_options(init_file: Path) -> Namespace:
|
||||||
opts = InvokeAIAppConfig.get_config()
|
opts = InvokeAIAppConfig.get_config()
|
||||||
|
opts.ram = default_ramcache()
|
||||||
return opts
|
return opts
|
||||||
|
|
||||||
|
|
||||||
|
@ -33,7 +33,7 @@ def reshape_tensor(x, heads):
|
|||||||
class PerceiverAttention(nn.Module):
|
class PerceiverAttention(nn.Module):
|
||||||
def __init__(self, *, dim, dim_head=64, heads=8):
|
def __init__(self, *, dim, dim_head=64, heads=8):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.scale = dim_head**-0.5
|
self.scale = dim_head ** -0.5
|
||||||
self.dim_head = dim_head
|
self.dim_head = dim_head
|
||||||
self.heads = heads
|
self.heads = heads
|
||||||
inner_dim = dim_head * heads
|
inner_dim = dim_head * heads
|
||||||
@ -91,7 +91,7 @@ class Resampler(nn.Module):
|
|||||||
):
|
):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
|
||||||
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
|
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim ** 0.5)
|
||||||
|
|
||||||
self.proj_in = nn.Linear(embedding_dim, dim)
|
self.proj_in = nn.Linear(embedding_dim, dim)
|
||||||
|
|
||||||
|
@ -261,7 +261,7 @@ class InvokeAICrossAttentionMixin:
|
|||||||
if q.shape[1] <= 4096: # (512x512) max q.shape[1]: 4096
|
if q.shape[1] <= 4096: # (512x512) max q.shape[1]: 4096
|
||||||
return self.einsum_lowest_level(q, k, v, None, None, None)
|
return self.einsum_lowest_level(q, k, v, None, None, None)
|
||||||
else:
|
else:
|
||||||
slice_size = math.floor(2**30 / (q.shape[0] * q.shape[1]))
|
slice_size = math.floor(2 ** 30 / (q.shape[0] * q.shape[1]))
|
||||||
return self.einsum_op_slice_dim1(q, k, v, slice_size)
|
return self.einsum_op_slice_dim1(q, k, v, slice_size)
|
||||||
|
|
||||||
def einsum_op_mps_v2(self, q, k, v):
|
def einsum_op_mps_v2(self, q, k, v):
|
||||||
|
@ -175,10 +175,7 @@ class InvokeAIDiffuserComponent:
|
|||||||
dim=0,
|
dim=0,
|
||||||
),
|
),
|
||||||
}
|
}
|
||||||
(
|
(encoder_hidden_states, encoder_attention_mask,) = self._concat_conditionings_for_batch(
|
||||||
encoder_hidden_states,
|
|
||||||
encoder_attention_mask,
|
|
||||||
) = self._concat_conditionings_for_batch(
|
|
||||||
conditioning_data.unconditioned_embeddings.embeds,
|
conditioning_data.unconditioned_embeddings.embeds,
|
||||||
conditioning_data.text_embeddings.embeds,
|
conditioning_data.text_embeddings.embeds,
|
||||||
)
|
)
|
||||||
@ -240,10 +237,7 @@ class InvokeAIDiffuserComponent:
|
|||||||
wants_cross_attention_control = len(cross_attention_control_types_to_do) > 0
|
wants_cross_attention_control = len(cross_attention_control_types_to_do) > 0
|
||||||
|
|
||||||
if wants_cross_attention_control:
|
if wants_cross_attention_control:
|
||||||
(
|
(unconditioned_next_x, conditioned_next_x,) = self._apply_cross_attention_controlled_conditioning(
|
||||||
unconditioned_next_x,
|
|
||||||
conditioned_next_x,
|
|
||||||
) = self._apply_cross_attention_controlled_conditioning(
|
|
||||||
sample,
|
sample,
|
||||||
timestep,
|
timestep,
|
||||||
conditioning_data,
|
conditioning_data,
|
||||||
@ -251,10 +245,7 @@ class InvokeAIDiffuserComponent:
|
|||||||
**kwargs,
|
**kwargs,
|
||||||
)
|
)
|
||||||
elif self.sequential_guidance:
|
elif self.sequential_guidance:
|
||||||
(
|
(unconditioned_next_x, conditioned_next_x,) = self._apply_standard_conditioning_sequentially(
|
||||||
unconditioned_next_x,
|
|
||||||
conditioned_next_x,
|
|
||||||
) = self._apply_standard_conditioning_sequentially(
|
|
||||||
sample,
|
sample,
|
||||||
timestep,
|
timestep,
|
||||||
conditioning_data,
|
conditioning_data,
|
||||||
@ -262,10 +253,7 @@ class InvokeAIDiffuserComponent:
|
|||||||
)
|
)
|
||||||
|
|
||||||
else:
|
else:
|
||||||
(
|
(unconditioned_next_x, conditioned_next_x,) = self._apply_standard_conditioning(
|
||||||
unconditioned_next_x,
|
|
||||||
conditioned_next_x,
|
|
||||||
) = self._apply_standard_conditioning(
|
|
||||||
sample,
|
sample,
|
||||||
timestep,
|
timestep,
|
||||||
conditioning_data,
|
conditioning_data,
|
||||||
|
@ -470,10 +470,7 @@ class TextualInversionDataset(Dataset):
|
|||||||
|
|
||||||
if self.center_crop:
|
if self.center_crop:
|
||||||
crop = min(img.shape[0], img.shape[1])
|
crop = min(img.shape[0], img.shape[1])
|
||||||
(
|
(h, w,) = (
|
||||||
h,
|
|
||||||
w,
|
|
||||||
) = (
|
|
||||||
img.shape[0],
|
img.shape[0],
|
||||||
img.shape[1],
|
img.shape[1],
|
||||||
)
|
)
|
||||||
|
@ -203,7 +203,7 @@ class ChunkedSlicedAttnProcessor:
|
|||||||
if attn.upcast_attention:
|
if attn.upcast_attention:
|
||||||
out_item_size = 4
|
out_item_size = 4
|
||||||
|
|
||||||
chunk_size = 2**29
|
chunk_size = 2 ** 29
|
||||||
|
|
||||||
out_size = query.shape[1] * key.shape[1] * out_item_size
|
out_size = query.shape[1] * key.shape[1] * out_item_size
|
||||||
chunks_count = min(query.shape[1], math.ceil((out_size - 1) / chunk_size))
|
chunks_count = min(query.shape[1], math.ceil((out_size - 1) / chunk_size))
|
||||||
|
@ -207,7 +207,7 @@ def parallel_data_prefetch(
|
|||||||
return gather_res
|
return gather_res
|
||||||
|
|
||||||
|
|
||||||
def rand_perlin_2d(shape, res, device, fade=lambda t: 6 * t**5 - 15 * t**4 + 10 * t**3):
|
def rand_perlin_2d(shape, res, device, fade=lambda t: 6 * t ** 5 - 15 * t ** 4 + 10 * t ** 3):
|
||||||
delta = (res[0] / shape[0], res[1] / shape[1])
|
delta = (res[0] / shape[0], res[1] / shape[1])
|
||||||
d = (shape[0] // res[0], shape[1] // res[1])
|
d = (shape[0] // res[0], shape[1] // res[1])
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user