mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Added HSL Nodes
This commit is contained in:
parent
dc96a3e79d
commit
d93900a8de
@ -3,6 +3,7 @@
|
||||
from typing import Literal, Optional
|
||||
|
||||
import numpy
|
||||
import cv2
|
||||
from PIL import Image, ImageFilter, ImageOps, ImageChops
|
||||
from pydantic import Field
|
||||
from pathlib import Path
|
||||
@ -650,3 +651,150 @@ class ImageWatermarkInvocation(BaseInvocation, PILInvocationConfig):
|
||||
width=image_dto.width,
|
||||
height=image_dto.height,
|
||||
)
|
||||
|
||||
class HueAdjustmentInvocation(BaseInvocation):
|
||||
"""Adjusts the Hue of an image."""
|
||||
|
||||
# fmt: off
|
||||
type: Literal["hue_adjust"] = "hue_adjust"
|
||||
|
||||
# Inputs
|
||||
image: ImageField = Field(default=None, description="The image to adjust")
|
||||
hue: float = Field(default=0, description="The degrees by which to rotate the hue")
|
||||
# fmt: on
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
pil_image = context.services.images.get_pil_image(
|
||||
self.image.image_type, self.image.image_name
|
||||
)
|
||||
|
||||
# Convert PIL image to OpenCV format (numpy array), note color channel
|
||||
# ordering is changed from RGB to BGR
|
||||
image = numpy.array(pil_image.convert('RGB'))[:, :, ::-1]
|
||||
|
||||
# Convert image to HSV color space
|
||||
hsv_image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
|
||||
|
||||
# Adjust the hue
|
||||
hsv_image[:, :, 0] = (hsv_image[:, :, 0] + self.hue) % 180
|
||||
|
||||
# Convert image back to BGR color space
|
||||
image = cv2.cvtColor(hsv_image, cv2.COLOR_HSV2BGR)
|
||||
|
||||
# Convert back to PIL format and to original color mode
|
||||
pil_image = Image.fromarray(image[:, :, ::-1], 'RGB').convert('RGBA')
|
||||
|
||||
image_dto = context.services.images.create(
|
||||
image=pil_image,
|
||||
image_type=ImageType.RESULT,
|
||||
image_category=ImageCategory.GENERAL,
|
||||
node_id=self.id,
|
||||
session_id=context.graph_execution_state_id,
|
||||
)
|
||||
|
||||
return ImageOutput(
|
||||
image=ImageField(
|
||||
image_name=image_dto.image_name,
|
||||
image_type=image_dto.image_type,
|
||||
),
|
||||
width=image_dto.width,
|
||||
height=image_dto.height,
|
||||
)
|
||||
|
||||
class LuminosityAdjustmentInvocation(BaseInvocation):
|
||||
"""Adjusts the Luminosity (Value) of an image."""
|
||||
|
||||
# fmt: off
|
||||
type: Literal["luminosity_adjust"] = "luminosity_adjust"
|
||||
|
||||
# Inputs
|
||||
image: ImageField = Field(default=None, description="The image to adjust")
|
||||
luminosity: float = Field(default=1.0, description="The factor by which to adjust the luminosity (value)")
|
||||
# fmt: on
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
pil_image = context.services.images.get_pil_image(
|
||||
self.image.image_type, self.image.image_name
|
||||
)
|
||||
|
||||
# Convert PIL image to OpenCV format (numpy array), note color channel
|
||||
# ordering is changed from RGB to BGR
|
||||
image = numpy.array(pil_image.convert('RGB'))[:, :, ::-1]
|
||||
|
||||
# Convert image to HSV color space
|
||||
hsv_image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
|
||||
|
||||
# Adjust the luminosity (value)
|
||||
hsv_image[:, :, 2] = numpy.clip(hsv_image[:, :, 2] * self.luminosity, 0, 255)
|
||||
|
||||
# Convert image back to BGR color space
|
||||
image = cv2.cvtColor(hsv_image, cv2.COLOR_HSV2BGR)
|
||||
|
||||
# Convert back to PIL format and to original color mode
|
||||
pil_image = Image.fromarray(image[:, :, ::-1], 'RGB').convert('RGBA')
|
||||
|
||||
image_dto = context.services.images.create(
|
||||
image=pil_image,
|
||||
image_type=ImageType.RESULT,
|
||||
image_category=ImageCategory.GENERAL,
|
||||
node_id=self.id,
|
||||
session_id=context.graph_execution_state_id,
|
||||
)
|
||||
|
||||
return ImageOutput(
|
||||
image=ImageField(
|
||||
image_name=image_dto.image_name,
|
||||
image_type=image_dto.image_type,
|
||||
),
|
||||
width=image_dto.width,
|
||||
height=image_dto.height,
|
||||
)
|
||||
|
||||
class SaturationAdjustmentInvocation(BaseInvocation):
|
||||
"""Adjusts the Saturation of an image."""
|
||||
|
||||
# fmt: off
|
||||
type: Literal["saturation_adjust"] = "saturation_adjust"
|
||||
|
||||
# Inputs
|
||||
image: ImageField = Field(default=None, description="The image to adjust")
|
||||
saturation: float = Field(default=1.0, description="The factor by which to adjust the saturation")
|
||||
# fmt: on
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
pil_image = context.services.images.get_pil_image(
|
||||
self.image.image_type, self.image.image_name
|
||||
)
|
||||
|
||||
# Convert PIL image to OpenCV format (numpy array), note color channel
|
||||
# ordering is changed from RGB to BGR
|
||||
image = numpy.array(pil_image.convert('RGB'))[:, :, ::-1]
|
||||
|
||||
# Convert image to HSV color space
|
||||
hsv_image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
|
||||
|
||||
# Adjust the saturation
|
||||
hsv_image[:, :, 1] = numpy.clip(hsv_image[:, :, 1] * self.saturation, 0, 255)
|
||||
|
||||
# Convert image back to BGR color space
|
||||
image = cv2.cvtColor(hsv_image, cv2.COLOR_HSV2BGR)
|
||||
|
||||
# Convert back to PIL format and to original color mode
|
||||
pil_image = Image.fromarray(image[:, :, ::-1], 'RGB').convert('RGBA')
|
||||
|
||||
image_dto = context.services.images.create(
|
||||
image=pil_image,
|
||||
image_type=ImageType.RESULT,
|
||||
image_category=ImageCategory.GENERAL,
|
||||
node_id=self.id,
|
||||
session_id=context.graph_execution_state_id,
|
||||
)
|
||||
|
||||
return ImageOutput(
|
||||
image=ImageField(
|
||||
image_name=image_dto.image_name,
|
||||
image_type=image_dto.image_type,
|
||||
),
|
||||
width=image_dto.width,
|
||||
height=image_dto.height,
|
||||
)
|
||||
|
Loading…
Reference in New Issue
Block a user