mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
refactor multifile download code
This commit is contained in:
@ -128,7 +128,8 @@ The queue operates on a series of download job objects. These objects
|
||||
specify the source and destination of the download, and keep track of
|
||||
the progress of the download.
|
||||
|
||||
The only job type currently implemented is `DownloadJob`, a pydantic object with the
|
||||
Two job types are defined. `DownloadJob` and
|
||||
`MultiFileDownloadJob`. The former is a pydantic object with the
|
||||
following fields:
|
||||
|
||||
| **Field** | **Type** | **Default** | **Description** |
|
||||
@ -138,7 +139,7 @@ following fields:
|
||||
| `dest` | Path | | Where to download to |
|
||||
| `access_token` | str | | [optional] string containing authentication token for access |
|
||||
| `on_start` | Callable | | [optional] callback when the download starts |
|
||||
| `on_progress` | Callable | | [optional] callback called at intervals during download progress |
|
||||
| `on_progress` | Callable | | [optional] callback called at intervals during download progress |
|
||||
| `on_complete` | Callable | | [optional] callback called after successful download completion |
|
||||
| `on_error` | Callable | | [optional] callback called after an error occurs |
|
||||
| `id` | int | auto assigned | Job ID, an integer >= 0 |
|
||||
@ -190,6 +191,33 @@ A cancelled job will have status `DownloadJobStatus.ERROR` and an
|
||||
`error_type` field of "DownloadJobCancelledException". In addition,
|
||||
the job's `cancelled` property will be set to True.
|
||||
|
||||
The `MultiFileDownloadJob` is used for diffusers model downloads,
|
||||
which contain multiple files and directories under a common root:
|
||||
|
||||
| **Field** | **Type** | **Default** | **Description** |
|
||||
|----------------|-----------------|---------------|-----------------|
|
||||
| _Fields passed in at job creation time_ |
|
||||
| `download_parts` | Set[DownloadJob]| | Component download jobs |
|
||||
| `dest` | Path | | Where to download to |
|
||||
| `on_start` | Callable | | [optional] callback when the download starts |
|
||||
| `on_progress` | Callable | | [optional] callback called at intervals during download progress |
|
||||
| `on_complete` | Callable | | [optional] callback called after successful download completion |
|
||||
| `on_error` | Callable | | [optional] callback called after an error occurs |
|
||||
| `id` | int | auto assigned | Job ID, an integer >= 0 |
|
||||
| _Fields updated over the course of the download task_
|
||||
| `status` | DownloadJobStatus| | Status code |
|
||||
| `download_path` | Path | | Path to the root of the downloaded files |
|
||||
| `bytes` | int | 0 | Bytes downloaded so far |
|
||||
| `total_bytes` | int | 0 | Total size of the file at the remote site |
|
||||
| `error_type` | str | | String version of the exception that caused an error during download |
|
||||
| `error` | str | | String version of the traceback associated with an error |
|
||||
| `cancelled` | bool | False | Set to true if the job was cancelled by the caller|
|
||||
|
||||
Note that the MultiFileDownloadJob does not support the `priority`,
|
||||
`job_started`, `job_ended` or `content_type` attributes. You can get
|
||||
these from the individual download jobs in `download_parts`.
|
||||
|
||||
|
||||
### Callbacks
|
||||
|
||||
Download jobs can be associated with a series of callbacks, each with
|
||||
@ -251,11 +279,40 @@ jobs using `list_jobs()`, fetch a single job by its with
|
||||
running jobs with `cancel_all_jobs()`, and wait for all jobs to finish
|
||||
with `join()`.
|
||||
|
||||
#### job = queue.download(source, dest, priority, access_token)
|
||||
#### job = queue.download(source, dest, priority, access_token, on_start, on_progress, on_complete, on_cancelled, on_error)
|
||||
|
||||
Create a new download job and put it on the queue, returning the
|
||||
DownloadJob object.
|
||||
|
||||
#### multifile_job = queue.multifile_download(parts, dest, access_token, on_start, on_progress, on_complete, on_cancelled, on_error)
|
||||
|
||||
This is similar to download(), but instead of taking a single source,
|
||||
it accepts a `parts` argument consisting of a list of
|
||||
`RemoteModelFile` objects. Each part corresponds to a URL/Path pair,
|
||||
where the URL is the location of the remote file, and the Path is the
|
||||
destination.
|
||||
|
||||
`RemoteModelFile` can be imported from `invokeai.backend.model_manager.metadata`, and
|
||||
consists of a url/path pair. Note that the path *must* be relative.
|
||||
|
||||
The method returns a `MultiFileDownloadJob`.
|
||||
|
||||
|
||||
```
|
||||
from invokeai.backend.model_manager.metadata import RemoteModelFile
|
||||
remote_file_1 = RemoteModelFile(url='http://www.foo.bar/my/pytorch_model.safetensors'',
|
||||
path='my_model/textencoder/pytorch_model.safetensors'
|
||||
)
|
||||
remote_file_2 = RemoteModelFile(url='http://www.bar.baz/vae.ckpt',
|
||||
path='my_model/vae/diffusers_model.safetensors'
|
||||
)
|
||||
job = queue.multifile_download(parts=[remote_file_1, remote_file_2],
|
||||
dest='/tmp/downloads',
|
||||
on_progress=TqdmProgress().update)
|
||||
queue.wait_for_job(job)
|
||||
print(f"The files were downloaded to {job.download_path}")
|
||||
```
|
||||
|
||||
#### jobs = queue.list_jobs()
|
||||
|
||||
Return a list of all active and inactive `DownloadJob`s.
|
||||
|
@ -1577,3 +1577,41 @@ This method takes a model key, looks it up using the
|
||||
`ModelRecordServiceBase` object in `mm.store`, and passes the returned
|
||||
model configuration to `load_model_by_config()`. It may raise a
|
||||
`NotImplementedException`.
|
||||
|
||||
## Invocation Context Model Manager API
|
||||
|
||||
Within invocations, the following methods are available from the
|
||||
`InvocationContext` object:
|
||||
|
||||
### context.download_and_cache_model(source) -> Path
|
||||
|
||||
This method accepts a `source` of a model, downloads and caches it
|
||||
locally, and returns a Path to the local model. The source can be a
|
||||
local file or directory, a URL, or a HuggingFace repo_id.
|
||||
|
||||
In the case of HuggingFace repo_id, the following variants are
|
||||
recognized:
|
||||
|
||||
* stabilityai/stable-diffusion-v4 -- default model
|
||||
* stabilityai/stable-diffusion-v4:fp16 -- fp16 variant
|
||||
* stabilityai/stable-diffusion-v4:fp16:vae -- the fp16 vae subfolder
|
||||
* stabilityai/stable-diffusion-v4:onnx:vae -- the onnx variant vae subfolder
|
||||
|
||||
You can also point at an arbitrary individual file within a repo_id
|
||||
directory using this syntax:
|
||||
|
||||
* stabilityai/stable-diffusion-v4::/checkpoints/sd4.safetensors
|
||||
|
||||
### context.load_and_cache_model(source, [loader]) -> LoadedModel
|
||||
|
||||
This method takes a model source, downloads it, caches it, and then
|
||||
loads it into the RAM cache for use in inference. The optional loader
|
||||
is a Callable that accepts a Path to the object, and returns a
|
||||
`Dict[str, torch.Tensor]`. If no loader is provided, then the method
|
||||
will use `torch.load()` for a .ckpt or .bin checkpoint file,
|
||||
`safetensors.torch.load_file()` for a safetensors checkpoint file, or
|
||||
`*.from_pretrained()` for a directory that looks like a
|
||||
diffusers directory.
|
||||
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user