mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Add compel node and conditioning field type
This commit is contained in:
272
invokeai/app/invocations/compel.py
Normal file
272
invokeai/app/invocations/compel.py
Normal file
@ -0,0 +1,272 @@
|
||||
from typing import Literal, Optional, Union
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from invokeai.app.invocations.util.choose_model import choose_model
|
||||
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig
|
||||
|
||||
from ...backend.util.devices import choose_torch_device, torch_dtype
|
||||
from ...backend.stable_diffusion.diffusion import InvokeAIDiffuserComponent
|
||||
from ...backend.stable_diffusion.textual_inversion_manager import TextualInversionManager
|
||||
|
||||
from compel import Compel
|
||||
from compel.prompt_parser import (
|
||||
Blend,
|
||||
CrossAttentionControlSubstitute,
|
||||
FlattenedPrompt,
|
||||
Fragment,
|
||||
)
|
||||
|
||||
from invokeai.backend.globals import Globals
|
||||
|
||||
|
||||
class ConditioningField(BaseModel):
|
||||
conditioning_name: Optional[str] = Field(default=None, description="The name of conditioning data")
|
||||
class Config:
|
||||
schema_extra = {"required": ["conditioning_name"]}
|
||||
|
||||
|
||||
class CompelOutput(BaseInvocationOutput):
|
||||
"""Compel parser output"""
|
||||
|
||||
#fmt: off
|
||||
type: Literal["compel_output"] = "compel_output"
|
||||
# name + loras -> pipeline + loras
|
||||
# model: ModelField = Field(default=None, description="Model")
|
||||
# src? + loras -> tokenizer + text_encoder + loras
|
||||
# clip: ClipField = Field(default=None, description="Text encoder(clip)")
|
||||
positive: ConditioningField = Field(default=None, description="Positive conditioning")
|
||||
negative: ConditioningField = Field(default=None, description="Negative conditioning")
|
||||
#fmt: on
|
||||
|
||||
|
||||
class CompelInvocation(BaseInvocation):
|
||||
|
||||
type: Literal["compel"] = "compel"
|
||||
|
||||
positive_prompt: str = Field(default="", description="Positive prompt")
|
||||
negative_prompt: str = Field(default="", description="Negative prompt")
|
||||
|
||||
model: str = Field(default="", description="Model to use")
|
||||
truncate_long_prompts: bool = Field(default=False, description="Whether or not to truncate long prompt to 77 tokens")
|
||||
|
||||
# name + loras -> pipeline + loras
|
||||
# model: ModelField = Field(default=None, description="Model to use")
|
||||
# src? + loras -> tokenizer + text_encoder + loras
|
||||
# clip: ClipField = Field(default=None, description="Text encoder(clip) to use")
|
||||
|
||||
# Schema customisation
|
||||
class Config(InvocationConfig):
|
||||
schema_extra = {
|
||||
"ui": {
|
||||
"tags": ["latents", "noise"],
|
||||
"type_hints": {
|
||||
"model": "model"
|
||||
}
|
||||
},
|
||||
}
|
||||
|
||||
def invoke(self, context: InvocationContext) -> CompelOutput:
|
||||
|
||||
# TODO: load without model
|
||||
model = choose_model(context.services.model_manager, self.model)
|
||||
pipeline = model["model"]
|
||||
tokenizer = pipeline.tokenizer
|
||||
text_encoder = pipeline.text_encoder
|
||||
|
||||
# TODO: global? input?
|
||||
#use_full_precision = precision == "float32" or precision == "autocast"
|
||||
use_full_precision = False
|
||||
|
||||
textual_inversion_manager = TextualInversionManager(
|
||||
tokenizer=tokenizer,
|
||||
text_encoder=text_encoder,
|
||||
full_precision=use_full_precision,
|
||||
)
|
||||
|
||||
# lazy-load any deferred textual inversions.
|
||||
# this might take a couple of seconds the first time a textual inversion is used.
|
||||
textual_inversion_manager.create_deferred_token_ids_for_any_trigger_terms(
|
||||
self.positive_prompt + "[" + self.negative_prompt + "]"
|
||||
)
|
||||
|
||||
compel = Compel(
|
||||
tokenizer=tokenizer,
|
||||
text_encoder=text_encoder,
|
||||
textual_inversion_manager=textual_inversion_manager,
|
||||
dtype_for_device_getter=torch_dtype,
|
||||
truncate_long_prompts=self.truncate_long_prompts,
|
||||
)
|
||||
|
||||
|
||||
# TODO: support legacy blend?
|
||||
|
||||
positive_prompt: Union[FlattenedPrompt, Blend] = Compel.parse_prompt_string(self.positive_prompt)
|
||||
negative_prompt: Union[FlattenedPrompt, Blend] = Compel.parse_prompt_string(self.negative_prompt)
|
||||
|
||||
if True: #getattr(Globals, "log_tokenization", False):
|
||||
log_tokenization(positive_prompt, negative_prompt, tokenizer=tokenizer)
|
||||
|
||||
# TODO: add lora(with model and clip field types)
|
||||
c, c_options = compel.build_conditioning_tensor_for_prompt_object(positive_prompt)
|
||||
uc, uc_options = compel.build_conditioning_tensor_for_prompt_object(negative_prompt)
|
||||
|
||||
if not self.truncate_long_prompts:
|
||||
[c, uc] = compel.pad_conditioning_tensors_to_same_length([c, uc])
|
||||
|
||||
c_ec = InvokeAIDiffuserComponent.ExtraConditioningInfo(
|
||||
tokens_count_including_eos_bos=get_max_token_count(tokenizer, positive_prompt),
|
||||
cross_attention_control_args=c_options.get("cross_attention_control", None),
|
||||
)
|
||||
|
||||
uc_ec = InvokeAIDiffuserComponent.ExtraConditioningInfo(
|
||||
tokens_count_including_eos_bos=get_max_token_count(tokenizer, negative_prompt),
|
||||
cross_attention_control_args=uc_options.get("cross_attention_control", None),
|
||||
)
|
||||
|
||||
name_prefix = f'{context.graph_execution_state_id}__{self.id}'
|
||||
name_positive = f"{name_prefix}_positive"
|
||||
name_negative = f"{name_prefix}_negative"
|
||||
|
||||
# TODO: hacky but works ;D maybe rename latents somehow?
|
||||
context.services.latents.set(name_positive, (c, c_ec))
|
||||
context.services.latents.set(name_negative, (uc, uc_ec))
|
||||
|
||||
return CompelOutput(
|
||||
positive=ConditioningField(
|
||||
conditioning_name=name_positive,
|
||||
),
|
||||
negative=ConditioningField(
|
||||
conditioning_name=name_negative,
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
def get_max_token_count(
|
||||
tokenizer, prompt: Union[FlattenedPrompt, Blend], truncate_if_too_long=False
|
||||
) -> int:
|
||||
if type(prompt) is Blend:
|
||||
blend: Blend = prompt
|
||||
return max(
|
||||
[
|
||||
get_max_token_count(tokenizer, c, truncate_if_too_long)
|
||||
for c in blend.prompts
|
||||
]
|
||||
)
|
||||
else:
|
||||
return len(
|
||||
get_tokens_for_prompt_object(tokenizer, prompt, truncate_if_too_long)
|
||||
)
|
||||
|
||||
|
||||
def get_tokens_for_prompt_object(
|
||||
tokenizer, parsed_prompt: FlattenedPrompt, truncate_if_too_long=True
|
||||
) -> [str]:
|
||||
if type(parsed_prompt) is Blend:
|
||||
raise ValueError(
|
||||
"Blend is not supported here - you need to get tokens for each of its .children"
|
||||
)
|
||||
|
||||
text_fragments = [
|
||||
x.text
|
||||
if type(x) is Fragment
|
||||
else (
|
||||
" ".join([f.text for f in x.original])
|
||||
if type(x) is CrossAttentionControlSubstitute
|
||||
else str(x)
|
||||
)
|
||||
for x in parsed_prompt.children
|
||||
]
|
||||
text = " ".join(text_fragments)
|
||||
tokens = tokenizer.tokenize(text)
|
||||
if truncate_if_too_long:
|
||||
max_tokens_length = tokenizer.model_max_length - 2 # typically 75
|
||||
tokens = tokens[0:max_tokens_length]
|
||||
return tokens
|
||||
|
||||
|
||||
def log_tokenization(
|
||||
positive_prompt: Union[Blend, FlattenedPrompt],
|
||||
negative_prompt: Union[Blend, FlattenedPrompt],
|
||||
tokenizer,
|
||||
):
|
||||
print(f"\n>> [TOKENLOG] Parsed Prompt: {positive_prompt}")
|
||||
print(f"\n>> [TOKENLOG] Parsed Negative Prompt: {negative_prompt}")
|
||||
|
||||
log_tokenization_for_prompt_object(positive_prompt, tokenizer)
|
||||
log_tokenization_for_prompt_object(
|
||||
negative_prompt, tokenizer, display_label_prefix="(negative prompt)"
|
||||
)
|
||||
|
||||
|
||||
def log_tokenization_for_prompt_object(
|
||||
p: Union[Blend, FlattenedPrompt], tokenizer, display_label_prefix=None
|
||||
):
|
||||
display_label_prefix = display_label_prefix or ""
|
||||
if type(p) is Blend:
|
||||
blend: Blend = p
|
||||
for i, c in enumerate(blend.prompts):
|
||||
log_tokenization_for_prompt_object(
|
||||
c,
|
||||
tokenizer,
|
||||
display_label_prefix=f"{display_label_prefix}(blend part {i + 1}, weight={blend.weights[i]})",
|
||||
)
|
||||
elif type(p) is FlattenedPrompt:
|
||||
flattened_prompt: FlattenedPrompt = p
|
||||
if flattened_prompt.wants_cross_attention_control:
|
||||
original_fragments = []
|
||||
edited_fragments = []
|
||||
for f in flattened_prompt.children:
|
||||
if type(f) is CrossAttentionControlSubstitute:
|
||||
original_fragments += f.original
|
||||
edited_fragments += f.edited
|
||||
else:
|
||||
original_fragments.append(f)
|
||||
edited_fragments.append(f)
|
||||
|
||||
original_text = " ".join([x.text for x in original_fragments])
|
||||
log_tokenization_for_text(
|
||||
original_text,
|
||||
tokenizer,
|
||||
display_label=f"{display_label_prefix}(.swap originals)",
|
||||
)
|
||||
edited_text = " ".join([x.text for x in edited_fragments])
|
||||
log_tokenization_for_text(
|
||||
edited_text,
|
||||
tokenizer,
|
||||
display_label=f"{display_label_prefix}(.swap replacements)",
|
||||
)
|
||||
else:
|
||||
text = " ".join([x.text for x in flattened_prompt.children])
|
||||
log_tokenization_for_text(
|
||||
text, tokenizer, display_label=display_label_prefix
|
||||
)
|
||||
|
||||
|
||||
def log_tokenization_for_text(text, tokenizer, display_label=None, truncate_if_too_long=False):
|
||||
"""shows how the prompt is tokenized
|
||||
# usually tokens have '</w>' to indicate end-of-word,
|
||||
# but for readability it has been replaced with ' '
|
||||
"""
|
||||
tokens = tokenizer.tokenize(text)
|
||||
tokenized = ""
|
||||
discarded = ""
|
||||
usedTokens = 0
|
||||
totalTokens = len(tokens)
|
||||
|
||||
for i in range(0, totalTokens):
|
||||
token = tokens[i].replace("</w>", " ")
|
||||
# alternate color
|
||||
s = (usedTokens % 6) + 1
|
||||
if truncate_if_too_long and i >= tokenizer.model_max_length:
|
||||
discarded = discarded + f"\x1b[0;3{s};40m{token}"
|
||||
else:
|
||||
tokenized = tokenized + f"\x1b[0;3{s};40m{token}"
|
||||
usedTokens += 1
|
||||
|
||||
if usedTokens > 0:
|
||||
print(f'\n>> [TOKENLOG] Tokens {display_label or ""} ({usedTokens}):')
|
||||
print(f"{tokenized}\x1b[0m")
|
||||
|
||||
if discarded != "":
|
||||
print(f"\n>> [TOKENLOG] Tokens Discarded ({totalTokens - usedTokens}):")
|
||||
print(f"{discarded}\x1b[0m")
|
Reference in New Issue
Block a user