Clean up NF4 implementation.

This commit is contained in:
Ryan Dick 2024-08-15 16:30:47 +00:00
parent 1b80832b22
commit dc66952491
4 changed files with 216 additions and 180 deletions

View File

@ -21,7 +21,7 @@ from invokeai.app.invocations.fields import (
) )
from invokeai.app.invocations.primitives import ImageOutput from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.bnb import quantize_model_nf4 from invokeai.backend.quantization.bnb_nf4 import quantize_model_nf4
from invokeai.backend.quantization.fast_quantized_diffusion_model import FastQuantizedDiffusersModel from invokeai.backend.quantization.fast_quantized_diffusion_model import FastQuantizedDiffusersModel
from invokeai.backend.quantization.fast_quantized_transformers_model import FastQuantizedTransformersModel from invokeai.backend.quantization.fast_quantized_transformers_model import FastQuantizedTransformersModel
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import FLUXConditioningInfo from invokeai.backend.stable_diffusion.diffusion.conditioning_data import FLUXConditioningInfo

View File

@ -1,4 +1,4 @@
from typing import Any, Optional, Set, Tuple, Type from typing import Any, Optional, Set, Type
import accelerate import accelerate
import bitsandbytes as bnb import bitsandbytes as bnb
@ -51,47 +51,6 @@ import torch
# self.SCB = SCB # self.SCB = SCB
class InvokeLinearNF4(bnb.nn.LinearNF4):
def _load_from_state_dict(
self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
):
"""This method is based on the logic in the bitsandbytes serialization unit tests for `Linear4bit`:
https://github.com/bitsandbytes-foundation/bitsandbytes/blob/6d714a5cce3db5bd7f577bc447becc7a92d5ccc7/tests/test_linear4bit.py#L52-L71
I'm not sure why this was not included in the original `Linear4bit` implementation.
"""
weight = state_dict.pop(prefix + "weight")
bias = state_dict.pop(prefix + "bias", None)
# During serialization, the quant_state is stored as subkeys of "weight.".
# We expect the remaining keys to be quant_state keys. We validate that they at least have the correct prefix.
quant_state_sd = state_dict
assert all(k.startswith(prefix + "weight.") for k in quant_state_sd.keys())
if len(quant_state_sd) > 0:
# We are loading a quantized state dict.
self.weight = bnb.nn.Params4bit.from_prequantized(
data=weight, quantized_stats=quant_state_sd, device=weight.device
)
self.bias = bias if bias is None else torch.nn.Parameter(bias, requires_grad=False)
else:
# We are loading a non-quantized state dict.
# We could simply call the `super()._load_from_state_dict` method here, but then we wouldn't be able to load
# into from a state_dict into a model on the "meta" device. By initializing a new `Params4bit` object, we
# work around this issue.
self.weight = bnb.nn.Params4bit(
data=weight,
requires_grad=self.weight.requires_grad,
compress_statistics=self.weight.compress_statistics,
quant_type=self.weight.quant_type,
quant_storage=self.weight.quant_storage,
module=self,
)
self.bias = bias if bias is None else torch.nn.Parameter(bias)
class Invoke2Linear8bitLt(torch.nn.Linear): class Invoke2Linear8bitLt(torch.nn.Linear):
"""This class is the base module for the [LLM.int8()](https://arxiv.org/abs/2208.07339) algorithm.""" """This class is the base module for the [LLM.int8()](https://arxiv.org/abs/2208.07339) algorithm."""
@ -474,27 +433,6 @@ def convert_model_to_bnb_llm_int8(model: torch.nn.Module, ignore_modules: set[st
# incompatible_keys.missing_keys.remove(key) # incompatible_keys.missing_keys.remove(key)
def _replace_param(
param: torch.nn.Parameter, data: torch.Tensor, quant_state: Optional[Tuple] = None
) -> torch.nn.Parameter:
# doing `param.data = weight` raises a RuntimeError if param.data was on meta-device, so
# we need to re-create the parameters instead of overwriting the data
if param.device.type == "meta":
if isinstance(param, bnb.nn.Params4bit):
return bnb.nn.Params4bit(
data,
requires_grad=data.requires_grad,
quant_state=quant_state,
compress_statistics=param.compress_statistics,
quant_type=param.quant_type,
)
return torch.nn.Parameter(data, requires_grad=data.requires_grad)
param.data = data
if isinstance(param, bnb.nn.Params4bit):
param.quant_state = quant_state
return param
def _convert_linear_layers( def _convert_linear_layers(
module: torch.nn.Module, linear_cls: Type, ignore_modules: Set[str], prefix: str = "" module: torch.nn.Module, linear_cls: Type, ignore_modules: Set[str], prefix: str = ""
) -> None: ) -> None:
@ -543,35 +481,6 @@ def _convert_linear_layers_to_llm_8bit(module: torch.nn.Module, ignore_modules:
_convert_linear_layers_to_llm_8bit(child, ignore_modules, prefix=fullname) _convert_linear_layers_to_llm_8bit(child, ignore_modules, prefix=fullname)
def _convert_linear_layers_to_nf4(
module: torch.nn.Module, ignore_modules: Set[str], compute_dtype: torch.dtype, prefix: str = ""
) -> None:
for name, child in module.named_children():
fullname = f"{prefix}.{name}" if prefix else name
if isinstance(child, torch.nn.Linear) and not any(fullname.startswith(s) for s in ignore_modules):
has_bias = child.bias is not None
replacement = InvokeLinearNF4(
child.in_features,
child.out_features,
bias=has_bias,
compute_dtype=torch.float16,
# TODO(ryand): Test compress_statistics=True.
# compress_statistics=True,
)
# replacement.weight.data = child.weight.data
# if has_bias:
# replacement.bias.data = child.bias.data
if has_bias:
replacement.bias = _replace_param(replacement.bias, child.bias.data)
replacement.weight = _replace_param(
replacement.weight, child.weight.data, quant_state=replacement.weight.quant_state
)
replacement.requires_grad_(False)
module.__setattr__(name, replacement)
else:
_convert_linear_layers_to_nf4(child, ignore_modules, compute_dtype=compute_dtype, prefix=fullname)
# def _replace_linear_layers( # def _replace_linear_layers(
# model: torch.nn.Module, # model: torch.nn.Module,
# linear_layer_type: Literal["Linear8bitLt", "Linear4bit"], # linear_layer_type: Literal["Linear8bitLt", "Linear4bit"],
@ -646,17 +555,3 @@ def quantize_model_llm_int8(model: torch.nn.Module, modules_to_not_convert: set[
_convert_linear_layers_to_llm_8bit(module=model, ignore_modules=modules_to_not_convert) _convert_linear_layers_to_llm_8bit(module=model, ignore_modules=modules_to_not_convert)
return model return model
def quantize_model_nf4(model: torch.nn.Module, modules_to_not_convert: set[str], compute_dtype: torch.dtype):
"""Apply bitsandbytes nf4 quantization to the model."""
# model_device = get_parameter_device(model)
# if model_device.type != "meta":
# # Note: This is not strictly required, but I can't think of a good reason to quantize a model that's not on the
# # meta device, so we enforce it for now.
# raise RuntimeError("The model should be on the meta device to apply LLM.8bit() quantization.")
# with accelerate.init_empty_weights():
_convert_linear_layers_to_nf4(module=model, ignore_modules=modules_to_not_convert, compute_dtype=compute_dtype)
return model

View File

@ -1,4 +1,5 @@
import time import time
from contextlib import contextmanager
from pathlib import Path from pathlib import Path
import accelerate import accelerate
@ -6,100 +7,88 @@ import torch
from diffusers.models.transformers.transformer_flux import FluxTransformer2DModel from diffusers.models.transformers.transformer_flux import FluxTransformer2DModel
from safetensors.torch import load_file, save_file from safetensors.torch import load_file, save_file
from invokeai.backend.bnb import quantize_model_nf4 from invokeai.backend.quantization.bnb_nf4 import quantize_model_nf4
# Docs:
# https://huggingface.co/docs/accelerate/usage_guides/quantization
# https://huggingface.co/docs/bitsandbytes/v0.43.3/en/integrations#accelerate
def get_parameter_device(parameter: torch.nn.Module): @contextmanager
return next(parameter.parameters()).device def log_time(name: str):
"""Helper context manager to log the time taken by a block of code."""
start = time.time()
try:
yield None
finally:
end = time.time()
print(f"'{name}' took {end - start:.4f} secs")
def load_flux_transformer(path: Path) -> FluxTransformer2DModel: def main():
model_config = FluxTransformer2DModel.load_config(path, local_files_only=True) # Load the FLUX transformer model onto the meta device.
model_path = Path(
"/data/invokeai/models/.download_cache/black-forest-labs_flux.1-schnell/FLUX.1-schnell/transformer/"
)
with log_time("Intialize FLUX transformer on meta device"):
model_config = FluxTransformer2DModel.load_config(model_path, local_files_only=True)
with accelerate.init_empty_weights(): with accelerate.init_empty_weights():
empty_model = FluxTransformer2DModel.from_config(model_config) empty_model = FluxTransformer2DModel.from_config(model_config)
assert isinstance(empty_model, FluxTransformer2DModel) assert isinstance(empty_model, FluxTransformer2DModel)
model_nf4_path = path / "bnb_nf4" # TODO(ryand): We may want to add some modules to not quantize here (e.g. the proj_out layer). See the accelerate
# `get_keys_to_not_convert(...)` function for a heuristic to determine which modules to not quantize.
modules_to_not_convert: set[str] = set()
model_nf4_path = model_path / "bnb_nf4"
if model_nf4_path.exists(): if model_nf4_path.exists():
# The quantized model already exists, load it and return it. # The quantized model already exists, load it and return it.
# Note that the model loading code is the same when loading from quantized vs original weights. The only print(f"A pre-quantized model already exists at '{model_nf4_path}'. Attempting to load it...")
# difference is the weights_location.
# model = load_and_quantize_model(
# empty_model,
# weights_location=model_8bit_path,
# bnb_quantization_config=bnb_quantization_config,
# # device_map="auto",
# device_map={"": "cpu"},
# )
# TODO: Handle the keys that were not quantized (get_keys_to_not_convert). # Replace the linear layers with NF4 quantized linear layers (still on the meta device).
with accelerate.init_empty_weights(): with log_time("Replace linear layers with NF4 layers"), accelerate.init_empty_weights():
model = quantize_model_nf4(empty_model, modules_to_not_convert=set(), compute_dtype=torch.bfloat16) model = quantize_model_nf4(
empty_model, modules_to_not_convert=modules_to_not_convert, compute_dtype=torch.bfloat16
)
model.to_empty(device="cpu") with log_time("Load state dict into model"):
sd = load_file(model_nf4_path / "model.safetensors") sd = load_file(model_nf4_path / "model.safetensors")
model.load_state_dict(sd, strict=True) model.load_state_dict(sd, strict=True, assign=True)
with log_time("Move model to cuda"):
model = model.to("cuda") model = model.to("cuda")
print(f"Successfully loaded pre-quantized model from '{model_nf4_path}'.")
else: else:
# The quantized model does not exist yet, quantize and save it. # The quantized model does not exist, quantize the model and save it.
# model = load_and_quantize_model( print(f"No pre-quantized model found at '{model_nf4_path}'. Quantizing the model...")
# empty_model,
# weights_location=path,
# bnb_quantization_config=bnb_quantization_config,
# device_map="auto",
# )
# keys_to_not_convert = get_keys_to_not_convert(empty_model) # TODO with log_time("Replace linear layers with NF4 layers"), accelerate.init_empty_weights():
model = quantize_model_nf4(
# model_8bit_path.mkdir(parents=True, exist_ok=True) empty_model, modules_to_not_convert=modules_to_not_convert, compute_dtype=torch.bfloat16
# accl = accelerate.Accelerator() )
# accl.save_model(model, model_8bit_path)
# ---------------------
with accelerate.init_empty_weights():
model = quantize_model_nf4(empty_model, modules_to_not_convert=set(), compute_dtype=torch.bfloat16)
with log_time("Load state dict into model"):
# Load sharded state dict. # Load sharded state dict.
files = list(path.glob("*.safetensors")) files = list(model_path.glob("*.safetensors"))
state_dict = dict() state_dict = dict()
for file in files: for file in files:
sd = load_file(file) sd = load_file(file)
state_dict.update(sd) state_dict.update(sd)
# model.to_empty(device="cpu")
# model.to(dtype=torch.float16)
model.load_state_dict(state_dict, strict=True, assign=True) model.load_state_dict(state_dict, strict=True, assign=True)
# Load the state dict into the model. The bitsandbytes layers know how to load from both quantized and with log_time("Move model to cuda and quantize"):
# non-quantized state dicts.
# model.to_empty(device="cpu")
# model.to(dtype=torch.float16)
# result = model.load_state_dict(state_dict, strict=True)
model = model.to("cuda") model = model.to("cuda")
with log_time("Save quantized model"):
model_nf4_path.mkdir(parents=True, exist_ok=True) model_nf4_path.mkdir(parents=True, exist_ok=True)
save_file(model.state_dict(), model_nf4_path / "model.safetensors") output_path = model_nf4_path / "model.safetensors"
save_file(model.state_dict(), output_path)
# --------------------- print(f"Successfully quantized and saved model to '{output_path}'.")
assert isinstance(model, FluxTransformer2DModel) assert isinstance(model, FluxTransformer2DModel)
return model return model
def main():
start = time.time()
model = load_flux_transformer(
Path("/data/invokeai/models/.download_cache/black-forest-labs_flux.1-schnell/FLUX.1-schnell/transformer/")
)
print(f"Time to load: {time.time() - start}s")
print("hi")
if __name__ == "__main__": if __name__ == "__main__":
main() main()

View File

@ -0,0 +1,152 @@
import bitsandbytes as bnb
import torch
# This file contains utils for working with models that use bitsandbytes NF4 quantization.
# The utils in this file are partially inspired by:
# https://github.com/Lightning-AI/pytorch-lightning/blob/1551a16b94f5234a4a78801098f64d0732ef5cb5/src/lightning/fabric/plugins/precision/bitsandbytes.py
class InvokeLinearNF4(bnb.nn.LinearNF4):
"""A class that extends `bnb.nn.LinearNF4` to add the following functionality:
- Ability to load Linear NF4 layers from a pre-quantized state_dict.
- Ability to load Linear NF4 layers from a state_dict when the model is on the "meta" device.
"""
def _load_from_state_dict(
self,
state_dict: dict[str, torch.Tensor],
prefix: str,
local_metadata,
strict,
missing_keys,
unexpected_keys,
error_msgs,
):
"""This method is based on the logic in the bitsandbytes serialization unit tests for `Linear4bit`:
https://github.com/bitsandbytes-foundation/bitsandbytes/blob/6d714a5cce3db5bd7f577bc447becc7a92d5ccc7/tests/test_linear4bit.py#L52-L71
"""
weight = state_dict.pop(prefix + "weight")
bias = state_dict.pop(prefix + "bias", None)
# We expect the remaining keys to be quant_state keys.
quant_state_sd = state_dict
# During serialization, the quant_state is stored as subkeys of "weight." (See
# `bnb.nn.LinearNF4._save_to_state_dict()`). We validate that they at least have the correct prefix.
# TODO(ryand): Technically, we should be using `strict`, `missing_keys`, `unexpected_keys`, and `error_msgs`
# rather than raising an exception to correctly implement this API.
assert all(k.startswith(prefix + "weight.") for k in quant_state_sd.keys())
if len(quant_state_sd) > 0:
# We are loading a pre-quantized state dict.
self.weight = bnb.nn.Params4bit.from_prequantized(
data=weight, quantized_stats=quant_state_sd, device=weight.device
)
self.bias = bias if bias is None else torch.nn.Parameter(bias, requires_grad=False)
else:
# We are loading a non-quantized state dict.
# We could simply call the `super()._load_from_state_dict()` method here, but then we wouldn't be able to
# load from a state_dict into a model on the "meta" device. Attempting to load into a model on the "meta"
# device requires setting `assign=True`, doing this with the default `super()._load_from_state_dict()`
# implementation causes `Params4Bit` to be replaced by a `torch.nn.Parameter`. By initializing a new
# `Params4bit` object, we work around this issue. It's a bit hacky, but it gets the job done.
self.weight = bnb.nn.Params4bit(
data=weight,
requires_grad=self.weight.requires_grad,
compress_statistics=self.weight.compress_statistics,
quant_type=self.weight.quant_type,
quant_storage=self.weight.quant_storage,
module=self,
)
self.bias = bias if bias is None else torch.nn.Parameter(bias)
def _replace_param(
param: torch.nn.Parameter | bnb.nn.Params4bit,
data: torch.Tensor,
) -> torch.nn.Parameter:
"""A helper function to replace the data of a model parameter with new data in a way that allows replacing params on
the "meta" device.
Supports both `torch.nn.Parameter` and `bnb.nn.Params4bit` parameters.
"""
if param.device.type == "meta":
# Doing `param.data = data` raises a RuntimeError if param.data was on the "meta" device, so we need to
# re-create the param instead of overwriting the data.
if isinstance(param, bnb.nn.Params4bit):
return bnb.nn.Params4bit(
data,
requires_grad=data.requires_grad,
quant_state=param.quant_state,
compress_statistics=param.compress_statistics,
quant_type=param.quant_type,
)
return torch.nn.Parameter(data, requires_grad=data.requires_grad)
param.data = data
return param
def _convert_linear_layers_to_nf4(
module: torch.nn.Module,
ignore_modules: set[str],
compute_dtype: torch.dtype,
compress_statistics: bool = False,
prefix: str = "",
) -> None:
"""Convert all linear layers in the model to NF4 quantized linear layers.
Args:
module: All linear layers in this module will be converted.
ignore_modules: A set of module prefixes to ignore when converting linear layers.
compute_dtype: The dtype to use for computation in the quantized linear layers.
compress_statistics: Whether to enable nested quantization (aka double quantization) where the quantization
constants from the first quantization are quantized again.
prefix: The prefix of the current module in the model. Used to call this function recursively.
"""
for name, child in module.named_children():
fullname = f"{prefix}.{name}" if prefix else name
if isinstance(child, torch.nn.Linear) and not any(fullname.startswith(s) for s in ignore_modules):
has_bias = child.bias is not None
replacement = InvokeLinearNF4(
child.in_features,
child.out_features,
bias=has_bias,
compute_dtype=torch.float16,
compress_statistics=compress_statistics,
)
if has_bias:
replacement.bias = _replace_param(replacement.bias, child.bias.data)
replacement.weight = _replace_param(replacement.weight, child.weight.data)
replacement.requires_grad_(False)
module.__setattr__(name, replacement)
else:
_convert_linear_layers_to_nf4(child, ignore_modules, compute_dtype=compute_dtype, prefix=fullname)
def quantize_model_nf4(model: torch.nn.Module, modules_to_not_convert: set[str], compute_dtype: torch.dtype):
"""Apply bitsandbytes nf4 quantization to the model.
You likely want to call this function inside a `accelerate.init_empty_weights()` context.
Example usage:
```
# Initialize the model from a config on the meta device.
with accelerate.init_empty_weights():
model = ModelClass.from_config(...)
# Add NF4 quantization linear layers to the model - still on the meta device.
with accelerate.init_empty_weights():
model = quantize_model_nf4(model, modules_to_not_convert=set(), compute_dtype=torch.float16)
# Load a state_dict into the model. (Could be either a prequantized or non-quantized state_dict.)
model.load_state_dict(state_dict, strict=True, assign=True)
# Move the model to the "cuda" device. If the model was non-quantized, this is where the weight quantization takes
# place.
model.to("cuda")
```
"""
_convert_linear_layers_to_nf4(module=model, ignore_modules=modules_to_not_convert, compute_dtype=compute_dtype)
return model