mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Add TODO comment about peformance bottleneck in LoRA loading code.
This commit is contained in:
parent
6e4de001f1
commit
dcf11a01ce
@ -544,6 +544,10 @@ class LoRAModelRaw(RawModel): # (torch.nn.Module):
|
|||||||
for layer_key, values in state_dict.items():
|
for layer_key, values in state_dict.items():
|
||||||
layer = layer_cls(layer_key, values)
|
layer = layer_cls(layer_key, values)
|
||||||
|
|
||||||
|
# TODO(ryand): This .to() call causes an implicit CUDA sync point in a tight loop. This is very slow (even
|
||||||
|
# slower than loading the weights from disk). We should ideally only be copying the weights once - right
|
||||||
|
# before they are used. Or, if we want to do this here, then setting non_blocking = True would probably
|
||||||
|
# help.
|
||||||
layer.to(device=device, dtype=dtype)
|
layer.to(device=device, dtype=dtype)
|
||||||
model.layers[layer_key] = layer
|
model.layers[layer_key] = layer
|
||||||
return model
|
return model
|
||||||
|
Loading…
Reference in New Issue
Block a user