enable .and() syntax and long prompts (#4112)

## What type of PR is this? (check all applicable)

- [ ] Refactor
- [X] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission

In current main, long prompts and support for [Compel's `.and()`
syntax](https://github.com/damian0815/compel/blob/main/doc/syntax.md#conjunction)
is missing. This PR adds it back.

### needs Compel>=2.0.2.dev1
This commit is contained in:
blessedcoolant 2023-08-30 02:30:22 +12:00 committed by GitHub
commit dd2057322c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 77 additions and 30 deletions

View File

@ -116,16 +116,15 @@ class CompelInvocation(BaseInvocation):
text_encoder=text_encoder,
textual_inversion_manager=ti_manager,
dtype_for_device_getter=torch_dtype,
truncate_long_prompts=True,
truncate_long_prompts=False,
)
conjunction = Compel.parse_prompt_string(self.prompt)
prompt: Union[FlattenedPrompt, Blend] = conjunction.prompts[0]
if context.services.configuration.log_tokenization:
log_tokenization_for_prompt_object(prompt, tokenizer)
log_tokenization_for_conjunction(conjunction, tokenizer)
c, options = compel.build_conditioning_tensor_for_prompt_object(prompt)
c, options = compel.build_conditioning_tensor_for_conjunction(conjunction)
ec = InvokeAIDiffuserComponent.ExtraConditioningInfo(
tokens_count_including_eos_bos=get_max_token_count(tokenizer, conjunction),
@ -231,7 +230,7 @@ class SDXLPromptInvocationBase:
text_encoder=text_encoder,
textual_inversion_manager=ti_manager,
dtype_for_device_getter=torch_dtype,
truncate_long_prompts=True, # TODO:
truncate_long_prompts=False, # TODO:
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, # TODO: clip skip
requires_pooled=get_pooled,
)
@ -240,8 +239,7 @@ class SDXLPromptInvocationBase:
if context.services.configuration.log_tokenization:
# TODO: better logging for and syntax
for prompt_obj in conjunction.prompts:
log_tokenization_for_prompt_object(prompt_obj, tokenizer)
log_tokenization_for_conjunction(conjunction, tokenizer)
# TODO: ask for optimizations? to not run text_encoder twice
c, options = compel.build_conditioning_tensor_for_conjunction(conjunction)

View File

@ -71,7 +71,6 @@ def set_seamless(model: Union[UNet2DConditionModel, AutoencoderKL], seamless_axe
"""
if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
print(f"applied - {m_name}")
m.asymmetric_padding_mode = {}
m.asymmetric_padding = {}
m.asymmetric_padding_mode["x"] = "circular" if ("x" in seamless_axes) else "constant"

View File

@ -1,11 +1,11 @@
from typing import Any, Dict, List, Optional, Tuple, Union
import diffusers
import torch
from torch import nn
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import FromOriginalControlnetMixin
from diffusers.models.attention_processor import AttentionProcessor, AttnProcessor
from diffusers.models.controlnet import ControlNetConditioningEmbedding, ControlNetOutput, zero_module
from diffusers.models.embeddings import (
TextImageProjection,
TextImageTimeEmbedding,
@ -14,16 +14,9 @@ from diffusers.models.embeddings import (
Timesteps,
)
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.unet_2d_blocks import (
CrossAttnDownBlock2D,
DownBlock2D,
UNetMidBlock2DCrossAttn,
get_down_block,
)
from diffusers.models.unet_2d_blocks import CrossAttnDownBlock2D, DownBlock2D, UNetMidBlock2DCrossAttn, get_down_block
from diffusers.models.unet_2d_condition import UNet2DConditionModel
import diffusers
from diffusers.models.controlnet import ControlNetConditioningEmbedding, ControlNetOutput, zero_module
from torch import nn
from invokeai.backend.util.logging import InvokeAILogger
@ -45,7 +38,8 @@ class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlnetMixin):
Whether to flip the sin to cos in the time embedding.
freq_shift (`int`, defaults to 0):
The frequency shift to apply to the time embedding.
down_block_types (`tuple[str]`, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
down_block_types (`tuple[str]`, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", \
"CrossAttnDownBlock2D", "DownBlock2D")`):
The tuple of downsample blocks to use.
only_cross_attention (`Union[bool, Tuple[bool]]`, defaults to `False`):
block_out_channels (`tuple[int]`, defaults to `(320, 640, 1280, 1280)`):
@ -147,7 +141,9 @@ class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlnetMixin):
# If `num_attention_heads` is not defined (which is the case for most models)
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
# The reason for this behavior is to correct for incorrectly named variables that were introduced
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
# when this library was created...
# The incorrect naming was only discovered much ...
# later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
# which is why we correct for the naming here.
num_attention_heads = num_attention_heads or attention_head_dim
@ -155,17 +151,20 @@ class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlnetMixin):
# Check inputs
if len(block_out_channels) != len(down_block_types):
raise ValueError(
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
f"Must provide the same number of `block_out_channels` as `down_block_types`. \
`block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
)
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
raise ValueError(
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
f"Must provide the same number of `only_cross_attention` as `down_block_types`. \
`only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
)
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
raise ValueError(
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
f"Must provide the same number of `num_attention_heads` as `down_block_types`. \
`num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
)
if isinstance(transformer_layers_per_block, int):
@ -202,7 +201,8 @@ class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlnetMixin):
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
elif encoder_hid_dim_type == "text_image_proj":
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
# they are set to `cross_attention_dim` here as this is exactly the required dimension ...
# for the currently only use
# case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
self.encoder_hid_proj = TextImageProjection(
text_embed_dim=encoder_hid_dim,
@ -250,8 +250,10 @@ class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlnetMixin):
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
)
elif addition_embed_type == "text_image":
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`.
# To not clutter the __init__ too much
# they are set to `cross_attention_dim` here as this is exactly the required dimension...
# for the currently only use
# case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
self.add_embedding = TextImageTimeEmbedding(
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
@ -673,12 +675,14 @@ class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlnetMixin):
elif self.config.addition_embed_type == "text_time":
if "text_embeds" not in added_cond_kwargs:
raise ValueError(
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which \
requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
)
text_embeds = added_cond_kwargs.get("text_embeds")
if "time_ids" not in added_cond_kwargs:
raise ValueError(
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which \
requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
)
time_ids = added_cond_kwargs.get("time_ids")
time_embeds = self.add_time_proj(time_ids.flatten())
@ -776,3 +780,49 @@ def new_LoRACompatibleConv_forward(self, x):
diffusers.models.lora.LoRACompatibleConv.forward = new_LoRACompatibleConv_forward
try:
import xformers
xformers_available = True
except Exception:
xformers_available = False
if xformers_available:
# TODO: remove when fixed in diffusers
_xformers_memory_efficient_attention = xformers.ops.memory_efficient_attention
def new_memory_efficient_attention(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_bias=None,
p: float = 0.0,
scale: Optional[float] = None,
*,
op=None,
):
# diffusers not align shape to 8, which is required by xformers
if attn_bias is not None and type(attn_bias) is torch.Tensor:
orig_size = attn_bias.shape[-1]
new_size = ((orig_size + 7) // 8) * 8
aligned_attn_bias = torch.zeros(
(attn_bias.shape[0], attn_bias.shape[1], new_size),
device=attn_bias.device,
dtype=attn_bias.dtype,
)
aligned_attn_bias[:, :, :orig_size] = attn_bias
attn_bias = aligned_attn_bias[:, :, :orig_size]
return _xformers_memory_efficient_attention(
query=query,
key=key,
value=value,
attn_bias=attn_bias,
p=p,
scale=scale,
op=op,
)
xformers.ops.memory_efficient_attention = new_memory_efficient_attention

View File

@ -36,7 +36,7 @@ dependencies = [
"albumentations",
"click",
"clip_anytorch", # replacing "clip @ https://github.com/openai/CLIP/archive/eaa22acb90a5876642d0507623e859909230a52d.zip",
"compel~=2.0.0",
"compel~=2.0.2",
"controlnet-aux>=0.0.6",
"timm==0.6.13", # needed to override timm latest in controlnet_aux, see https://github.com/isl-org/ZoeDepth/issues/26
"datasets",