mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
wip: add Transformer Field to Node UI
This commit is contained in:
parent
0c970bc880
commit
ddbd2ebd9d
@ -8,13 +8,7 @@ from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.shared.models import FreeUConfig
|
||||
from invokeai.backend.model_manager.config import AnyModelConfig, BaseModelType, ModelType, SubModelType
|
||||
|
||||
from .baseinvocation import (
|
||||
BaseInvocation,
|
||||
BaseInvocationOutput,
|
||||
Classification,
|
||||
invocation,
|
||||
invocation_output,
|
||||
)
|
||||
from .baseinvocation import BaseInvocation, BaseInvocationOutput, Classification, invocation, invocation_output
|
||||
|
||||
|
||||
class ModelIdentifierField(BaseModel):
|
||||
@ -54,6 +48,11 @@ class UNetField(BaseModel):
|
||||
freeu_config: Optional[FreeUConfig] = Field(default=None, description="FreeU configuration")
|
||||
|
||||
|
||||
class TransformerField(BaseModel):
|
||||
transformer: ModelIdentifierField = Field(description="Info to load unet submodel")
|
||||
scheduler: ModelIdentifierField = Field(description="Info to load scheduler submodel")
|
||||
|
||||
|
||||
class CLIPField(BaseModel):
|
||||
tokenizer: ModelIdentifierField = Field(description="Info to load tokenizer submodel")
|
||||
text_encoder: ModelIdentifierField = Field(description="Info to load text_encoder submodel")
|
||||
|
@ -1,17 +1,10 @@
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
|
||||
from invokeai.app.invocations.fields import FieldDescriptions, InputField, OutputField, UIType
|
||||
from invokeai.app.invocations.model import CLIPField, ModelIdentifierField, VAEField
|
||||
from invokeai.app.invocations.model import CLIPField, ModelIdentifierField, TransformerField, VAEField
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.model_manager.config import SubModelType
|
||||
|
||||
|
||||
class TransformerField(BaseModel):
|
||||
transformer: ModelIdentifierField = Field(description="Info to load unet submodel")
|
||||
scheduler: ModelIdentifierField = Field(description="Info to load scheduler submodel")
|
||||
|
||||
|
||||
@invocation_output("sd3_model_loader_output")
|
||||
class SD3ModelLoaderOutput(BaseInvocationOutput):
|
||||
"""Stable Diffuion 3 base model loader output"""
|
||||
|
@ -36,6 +36,7 @@ export const MODEL_TYPES = [
|
||||
'SDXLRefinerModelField',
|
||||
'VaeModelField',
|
||||
'UNetField',
|
||||
'TransformerField',
|
||||
'VAEField',
|
||||
'CLIPField',
|
||||
'T2IAdapterModelField',
|
||||
@ -68,6 +69,7 @@ export const FIELD_COLORS: { [key: string]: string } = {
|
||||
T2IAdapterField: 'teal.500',
|
||||
T2IAdapterModelField: 'teal.500',
|
||||
UNetField: 'red.500',
|
||||
TransformerField: 'red.500',
|
||||
VAEField: 'blue.500',
|
||||
VAEModelField: 'teal.500',
|
||||
};
|
||||
|
@ -298,6 +298,11 @@ const FIELD_TYPE_V1_TO_STATELESS_FIELD_TYPE_V2: {
|
||||
isCollection: false,
|
||||
isCollectionOrScalar: false,
|
||||
},
|
||||
TransformerField: {
|
||||
name: 'TransformerField',
|
||||
isCollection: false,
|
||||
isCollectionOrScalar: false,
|
||||
},
|
||||
VaeField: {
|
||||
name: 'VaeField',
|
||||
isCollection: false,
|
||||
|
@ -99,6 +99,7 @@ const zFieldTypeV1 = z.enum([
|
||||
'T2IAdapterModelField',
|
||||
'T2IAdapterPolymorphic',
|
||||
'UNetField',
|
||||
'TransformerField',
|
||||
'VaeField',
|
||||
'VaeModelField',
|
||||
]);
|
||||
@ -367,6 +368,17 @@ const zUNetInputFieldValue = zInputFieldValueBase.extend({
|
||||
value: zUNetField.optional(),
|
||||
});
|
||||
|
||||
const zTransformerField = z.object({
|
||||
unet: zModelInfo,
|
||||
scheduler: zModelInfo,
|
||||
loras: z.array(zLoraInfo),
|
||||
});
|
||||
|
||||
const zTransformerInputFieldValue = zInputFieldValueBase.extend({
|
||||
type: z.literal('TransformerField'),
|
||||
value: zTransformerField.optional(),
|
||||
});
|
||||
|
||||
const zClipField = z.object({
|
||||
tokenizer: zModelInfo,
|
||||
text_encoder: zModelInfo,
|
||||
@ -588,6 +600,7 @@ const zInputFieldValue = z.discriminatedUnion('type', [
|
||||
zT2IAdapterCollectionInputFieldValue,
|
||||
zT2IAdapterPolymorphicInputFieldValue,
|
||||
zUNetInputFieldValue,
|
||||
zTransformerInputFieldValue,
|
||||
zVaeInputFieldValue,
|
||||
zVaeModelInputFieldValue,
|
||||
zMetadataItemInputFieldValue,
|
||||
|
@ -7276,145 +7276,145 @@ export type components = {
|
||||
project_id: string | null;
|
||||
};
|
||||
InvocationOutputMap: {
|
||||
float_to_int: components["schemas"]["IntegerOutput"];
|
||||
range_of_size: components["schemas"]["IntegerCollectionOutput"];
|
||||
img_hue_adjust: components["schemas"]["ImageOutput"];
|
||||
hed_image_processor: components["schemas"]["ImageOutput"];
|
||||
img_blur: components["schemas"]["ImageOutput"];
|
||||
infill_tile: components["schemas"]["ImageOutput"];
|
||||
conditioning_collection: components["schemas"]["ConditioningCollectionOutput"];
|
||||
div: components["schemas"]["IntegerOutput"];
|
||||
color_correct: components["schemas"]["ImageOutput"];
|
||||
calculate_image_tiles_min_overlap: components["schemas"]["CalculateImageTilesOutput"];
|
||||
boolean_collection: components["schemas"]["BooleanCollectionOutput"];
|
||||
image_collection: components["schemas"]["ImageCollectionOutput"];
|
||||
img_mul: components["schemas"]["ImageOutput"];
|
||||
sdxl_model_loader: components["schemas"]["SDXLModelLoaderOutput"];
|
||||
img_lerp: components["schemas"]["ImageOutput"];
|
||||
l2i: components["schemas"]["ImageOutput"];
|
||||
string_collection: components["schemas"]["StringCollectionOutput"];
|
||||
face_off: components["schemas"]["FaceOffOutput"];
|
||||
sdxl_refiner_compel_prompt: components["schemas"]["ConditioningOutput"];
|
||||
normalbae_image_processor: components["schemas"]["ImageOutput"];
|
||||
dynamic_prompt: components["schemas"]["StringCollectionOutput"];
|
||||
float_math: components["schemas"]["FloatOutput"];
|
||||
ideal_size: components["schemas"]["IdealSizeOutput"];
|
||||
sub: components["schemas"]["IntegerOutput"];
|
||||
string: components["schemas"]["StringOutput"];
|
||||
core_metadata: components["schemas"]["MetadataOutput"];
|
||||
latents: components["schemas"]["LatentsOutput"];
|
||||
crop_latents: components["schemas"]["LatentsOutput"];
|
||||
denoise_latents: components["schemas"]["LatentsOutput"];
|
||||
range: components["schemas"]["IntegerCollectionOutput"];
|
||||
unsharp_mask: components["schemas"]["ImageOutput"];
|
||||
pidi_image_processor: components["schemas"]["ImageOutput"];
|
||||
float_collection: components["schemas"]["FloatCollectionOutput"];
|
||||
i2l: components["schemas"]["LatentsOutput"];
|
||||
face_identifier: components["schemas"]["ImageOutput"];
|
||||
step_param_easing: components["schemas"]["FloatCollectionOutput"];
|
||||
img_pad_crop: components["schemas"]["ImageOutput"];
|
||||
lineart_image_processor: components["schemas"]["ImageOutput"];
|
||||
infill_rgba: components["schemas"]["ImageOutput"];
|
||||
lblend: components["schemas"]["LatentsOutput"];
|
||||
mlsd_image_processor: components["schemas"]["ImageOutput"];
|
||||
lresize: components["schemas"]["LatentsOutput"];
|
||||
model_identifier: components["schemas"]["ModelIdentifierOutput"];
|
||||
tile_image_processor: components["schemas"]["ImageOutput"];
|
||||
mask_combine: components["schemas"]["ImageOutput"];
|
||||
string_replace: components["schemas"]["StringOutput"];
|
||||
conditioning: components["schemas"]["ConditioningOutput"];
|
||||
scheduler: components["schemas"]["SchedulerOutput"];
|
||||
add: components["schemas"]["IntegerOutput"];
|
||||
metadata: components["schemas"]["MetadataOutput"];
|
||||
random_range: components["schemas"]["IntegerCollectionOutput"];
|
||||
img_ilerp: components["schemas"]["ImageOutput"];
|
||||
canvas_paste_back: components["schemas"]["ImageOutput"];
|
||||
mask_from_id: components["schemas"]["ImageOutput"];
|
||||
tile_to_properties: components["schemas"]["TileToPropertiesOutput"];
|
||||
sdxl_compel_prompt: components["schemas"]["ConditioningOutput"];
|
||||
img_resize: components["schemas"]["ImageOutput"];
|
||||
mul: components["schemas"]["IntegerOutput"];
|
||||
integer_collection: components["schemas"]["IntegerCollectionOutput"];
|
||||
infill_patchmatch: components["schemas"]["ImageOutput"];
|
||||
t2i_adapter: components["schemas"]["T2IAdapterOutput"];
|
||||
lora_loader: components["schemas"]["LoRALoaderOutput"];
|
||||
iterate: components["schemas"]["IterateInvocationOutput"];
|
||||
depth_anything_image_processor: components["schemas"]["ImageOutput"];
|
||||
content_shuffle_image_processor: components["schemas"]["ImageOutput"];
|
||||
string_join: components["schemas"]["StringOutput"];
|
||||
esrgan: components["schemas"]["ImageOutput"];
|
||||
dw_openpose_image_processor: components["schemas"]["ImageOutput"];
|
||||
round_float: components["schemas"]["FloatOutput"];
|
||||
noise: components["schemas"]["NoiseOutput"];
|
||||
img_channel_offset: components["schemas"]["ImageOutput"];
|
||||
calculate_image_tiles: components["schemas"]["CalculateImageTilesOutput"];
|
||||
cv_inpaint: components["schemas"]["ImageOutput"];
|
||||
lineart_anime_image_processor: components["schemas"]["ImageOutput"];
|
||||
lora_selector: components["schemas"]["LoRASelectorOutput"];
|
||||
invert_tensor_mask: components["schemas"]["MaskOutput"];
|
||||
img_chan: components["schemas"]["ImageOutput"];
|
||||
sub: components["schemas"]["IntegerOutput"];
|
||||
mediapipe_face_processor: components["schemas"]["ImageOutput"];
|
||||
compel: components["schemas"]["ConditioningOutput"];
|
||||
sd3_model_loader: components["schemas"]["SD3ModelLoaderOutput"];
|
||||
rand_float: components["schemas"]["FloatOutput"];
|
||||
zoe_depth_image_processor: components["schemas"]["ImageOutput"];
|
||||
infill_rgba: components["schemas"]["ImageOutput"];
|
||||
color_map_image_processor: components["schemas"]["ImageOutput"];
|
||||
img_hue_adjust: components["schemas"]["ImageOutput"];
|
||||
lineart_image_processor: components["schemas"]["ImageOutput"];
|
||||
metadata_item: components["schemas"]["MetadataItemOutput"];
|
||||
float: components["schemas"]["FloatOutput"];
|
||||
merge_metadata: components["schemas"]["MetadataOutput"];
|
||||
create_gradient_mask: components["schemas"]["GradientMaskOutput"];
|
||||
crop_latents: components["schemas"]["LatentsOutput"];
|
||||
segment_anything_processor: components["schemas"]["ImageOutput"];
|
||||
sdxl_refiner_model_loader: components["schemas"]["SDXLRefinerModelLoaderOutput"];
|
||||
string_join: components["schemas"]["StringOutput"];
|
||||
heuristic_resize: components["schemas"]["ImageOutput"];
|
||||
lblend: components["schemas"]["LatentsOutput"];
|
||||
lineart_anime_image_processor: components["schemas"]["ImageOutput"];
|
||||
string_split_neg: components["schemas"]["StringPosNegOutput"];
|
||||
alpha_mask_to_tensor: components["schemas"]["MaskOutput"];
|
||||
infill_lama: components["schemas"]["ImageOutput"];
|
||||
float_collection: components["schemas"]["FloatCollectionOutput"];
|
||||
conditioning_collection: components["schemas"]["ConditioningCollectionOutput"];
|
||||
lscale: components["schemas"]["LatentsOutput"];
|
||||
clip_skip: components["schemas"]["CLIPSkipInvocationOutput"];
|
||||
float_to_int: components["schemas"]["IntegerOutput"];
|
||||
float_math: components["schemas"]["FloatOutput"];
|
||||
collect: components["schemas"]["CollectInvocationOutput"];
|
||||
boolean: components["schemas"]["BooleanOutput"];
|
||||
latents: components["schemas"]["LatentsOutput"];
|
||||
blank_image: components["schemas"]["ImageOutput"];
|
||||
vae_loader: components["schemas"]["VAEOutput"];
|
||||
denoise_latents: components["schemas"]["LatentsOutput"];
|
||||
dw_openpose_image_processor: components["schemas"]["ImageOutput"];
|
||||
range_of_size: components["schemas"]["IntegerCollectionOutput"];
|
||||
face_mask_detection: components["schemas"]["FaceMaskOutput"];
|
||||
tomask: components["schemas"]["ImageOutput"];
|
||||
rectangle_mask: components["schemas"]["MaskOutput"];
|
||||
controlnet: components["schemas"]["ControlOutput"];
|
||||
seamless: components["schemas"]["SeamlessModeOutput"];
|
||||
pair_tile_image: components["schemas"]["PairTileImageOutput"];
|
||||
unsharp_mask: components["schemas"]["ImageOutput"];
|
||||
hed_image_processor: components["schemas"]["ImageOutput"];
|
||||
metadata: components["schemas"]["MetadataOutput"];
|
||||
freeu: components["schemas"]["UNetOutput"];
|
||||
image_collection: components["schemas"]["ImageCollectionOutput"];
|
||||
dynamic_prompt: components["schemas"]["StringCollectionOutput"];
|
||||
face_off: components["schemas"]["FaceOffOutput"];
|
||||
sdxl_model_loader: components["schemas"]["SDXLModelLoaderOutput"];
|
||||
show_image: components["schemas"]["ImageOutput"];
|
||||
img_nsfw: components["schemas"]["ImageOutput"];
|
||||
round_float: components["schemas"]["FloatOutput"];
|
||||
string: components["schemas"]["StringOutput"];
|
||||
calculate_image_tiles: components["schemas"]["CalculateImageTilesOutput"];
|
||||
img_crop: components["schemas"]["ImageOutput"];
|
||||
mask_edge: components["schemas"]["ImageOutput"];
|
||||
normalbae_image_processor: components["schemas"]["ImageOutput"];
|
||||
save_image: components["schemas"]["ImageOutput"];
|
||||
add: components["schemas"]["IntegerOutput"];
|
||||
main_model_loader: components["schemas"]["ModelLoaderOutput"];
|
||||
color: components["schemas"]["ColorOutput"];
|
||||
string_replace: components["schemas"]["StringOutput"];
|
||||
img_lerp: components["schemas"]["ImageOutput"];
|
||||
midas_depth_image_processor: components["schemas"]["ImageOutput"];
|
||||
infill_patchmatch: components["schemas"]["ImageOutput"];
|
||||
noise: components["schemas"]["NoiseOutput"];
|
||||
img_watermark: components["schemas"]["ImageOutput"];
|
||||
depth_anything_image_processor: components["schemas"]["ImageOutput"];
|
||||
i2l: components["schemas"]["LatentsOutput"];
|
||||
tile_to_properties: components["schemas"]["TileToPropertiesOutput"];
|
||||
canvas_paste_back: components["schemas"]["ImageOutput"];
|
||||
mul: components["schemas"]["IntegerOutput"];
|
||||
pidi_image_processor: components["schemas"]["ImageOutput"];
|
||||
sdxl_compel_prompt: components["schemas"]["ConditioningOutput"];
|
||||
img_conv: components["schemas"]["ImageOutput"];
|
||||
sdxl_lora_loader: components["schemas"]["SDXLLoRALoaderOutput"];
|
||||
mask_from_id: components["schemas"]["ImageOutput"];
|
||||
lora_loader: components["schemas"]["LoRALoaderOutput"];
|
||||
step_param_easing: components["schemas"]["FloatCollectionOutput"];
|
||||
face_identifier: components["schemas"]["ImageOutput"];
|
||||
calculate_image_tiles_even_split: components["schemas"]["CalculateImageTilesOutput"];
|
||||
esrgan: components["schemas"]["ImageOutput"];
|
||||
color_correct: components["schemas"]["ImageOutput"];
|
||||
lora_selector: components["schemas"]["LoRASelectorOutput"];
|
||||
cv_inpaint: components["schemas"]["ImageOutput"];
|
||||
img_pad_crop: components["schemas"]["ImageOutput"];
|
||||
merge_tiles_to_image: components["schemas"]["ImageOutput"];
|
||||
img_channel_offset: components["schemas"]["ImageOutput"];
|
||||
string_collection: components["schemas"]["StringCollectionOutput"];
|
||||
scheduler: components["schemas"]["SchedulerOutput"];
|
||||
conditioning: components["schemas"]["ConditioningOutput"];
|
||||
string_split: components["schemas"]["String2Output"];
|
||||
string_join_three: components["schemas"]["StringOutput"];
|
||||
img_ilerp: components["schemas"]["ImageOutput"];
|
||||
lora_collection_loader: components["schemas"]["LoRALoaderOutput"];
|
||||
core_metadata: components["schemas"]["MetadataOutput"];
|
||||
float_range: components["schemas"]["FloatCollectionOutput"];
|
||||
random_range: components["schemas"]["IntegerCollectionOutput"];
|
||||
rand_int: components["schemas"]["IntegerOutput"];
|
||||
canny_image_processor: components["schemas"]["ImageOutput"];
|
||||
merge_metadata: components["schemas"]["MetadataOutput"];
|
||||
latents_collection: components["schemas"]["LatentsCollectionOutput"];
|
||||
range: components["schemas"]["IntegerCollectionOutput"];
|
||||
iterate: components["schemas"]["IterateInvocationOutput"];
|
||||
img_scale: components["schemas"]["ImageOutput"];
|
||||
img_blur: components["schemas"]["ImageOutput"];
|
||||
img_channel_multiply: components["schemas"]["ImageOutput"];
|
||||
integer_math: components["schemas"]["IntegerOutput"];
|
||||
calculate_image_tiles_min_overlap: components["schemas"]["CalculateImageTilesOutput"];
|
||||
img_mul: components["schemas"]["ImageOutput"];
|
||||
mlsd_image_processor: components["schemas"]["ImageOutput"];
|
||||
ip_adapter: components["schemas"]["IPAdapterOutput"];
|
||||
sdxl_lora_collection_loader: components["schemas"]["SDXLLoRALoaderOutput"];
|
||||
content_shuffle_image_processor: components["schemas"]["ImageOutput"];
|
||||
infill_cv2: components["schemas"]["ImageOutput"];
|
||||
prompt_from_file: components["schemas"]["StringCollectionOutput"];
|
||||
image: components["schemas"]["ImageOutput"];
|
||||
img_resize: components["schemas"]["ImageOutput"];
|
||||
boolean_collection: components["schemas"]["BooleanCollectionOutput"];
|
||||
lresize: components["schemas"]["LatentsOutput"];
|
||||
l2i: components["schemas"]["ImageOutput"];
|
||||
integer_collection: components["schemas"]["IntegerCollectionOutput"];
|
||||
t2i_adapter: components["schemas"]["T2IAdapterOutput"];
|
||||
div: components["schemas"]["IntegerOutput"];
|
||||
leres_image_processor: components["schemas"]["ImageOutput"];
|
||||
sdxl_refiner_compel_prompt: components["schemas"]["ConditioningOutput"];
|
||||
ideal_size: components["schemas"]["IdealSizeOutput"];
|
||||
integer: components["schemas"]["IntegerOutput"];
|
||||
create_denoise_mask: components["schemas"]["DenoiseMaskOutput"];
|
||||
img_paste: components["schemas"]["ImageOutput"];
|
||||
save_image: components["schemas"]["ImageOutput"];
|
||||
color_map_image_processor: components["schemas"]["ImageOutput"];
|
||||
rand_float: components["schemas"]["FloatOutput"];
|
||||
midas_depth_image_processor: components["schemas"]["ImageOutput"];
|
||||
blank_image: components["schemas"]["ImageOutput"];
|
||||
sdxl_refiner_model_loader: components["schemas"]["SDXLRefinerModelLoaderOutput"];
|
||||
rectangle_mask: components["schemas"]["MaskOutput"];
|
||||
collect: components["schemas"]["CollectInvocationOutput"];
|
||||
tomask: components["schemas"]["ImageOutput"];
|
||||
model_identifier: components["schemas"]["ModelIdentifierOutput"];
|
||||
lora_collection_loader: components["schemas"]["LoRALoaderOutput"];
|
||||
rand_int: components["schemas"]["IntegerOutput"];
|
||||
sd3_model_loader: components["schemas"]["SD3ModelLoaderOutput"];
|
||||
infill_lama: components["schemas"]["ImageOutput"];
|
||||
heuristic_resize: components["schemas"]["ImageOutput"];
|
||||
latents_collection: components["schemas"]["LatentsCollectionOutput"];
|
||||
face_mask_detection: components["schemas"]["FaceMaskOutput"];
|
||||
vae_loader: components["schemas"]["VAEOutput"];
|
||||
invert_tensor_mask: components["schemas"]["MaskOutput"];
|
||||
integer: components["schemas"]["IntegerOutput"];
|
||||
img_channel_multiply: components["schemas"]["ImageOutput"];
|
||||
clip_skip: components["schemas"]["CLIPSkipInvocationOutput"];
|
||||
tile_image_processor: components["schemas"]["ImageOutput"];
|
||||
freeu: components["schemas"]["UNetOutput"];
|
||||
boolean: components["schemas"]["BooleanOutput"];
|
||||
sdxl_lora_collection_loader: components["schemas"]["SDXLLoRALoaderOutput"];
|
||||
mediapipe_face_processor: components["schemas"]["ImageOutput"];
|
||||
prompt_from_file: components["schemas"]["StringCollectionOutput"];
|
||||
img_nsfw: components["schemas"]["ImageOutput"];
|
||||
string_split_neg: components["schemas"]["StringPosNegOutput"];
|
||||
img_chan: components["schemas"]["ImageOutput"];
|
||||
seamless: components["schemas"]["SeamlessModeOutput"];
|
||||
img_scale: components["schemas"]["ImageOutput"];
|
||||
sdxl_lora_loader: components["schemas"]["SDXLLoRALoaderOutput"];
|
||||
mask_edge: components["schemas"]["ImageOutput"];
|
||||
alpha_mask_to_tensor: components["schemas"]["MaskOutput"];
|
||||
create_gradient_mask: components["schemas"]["GradientMaskOutput"];
|
||||
controlnet: components["schemas"]["ControlOutput"];
|
||||
leres_image_processor: components["schemas"]["ImageOutput"];
|
||||
main_model_loader: components["schemas"]["ModelLoaderOutput"];
|
||||
calculate_image_tiles_even_split: components["schemas"]["CalculateImageTilesOutput"];
|
||||
string_split: components["schemas"]["String2Output"];
|
||||
img_watermark: components["schemas"]["ImageOutput"];
|
||||
merge_tiles_to_image: components["schemas"]["ImageOutput"];
|
||||
img_conv: components["schemas"]["ImageOutput"];
|
||||
segment_anything_processor: components["schemas"]["ImageOutput"];
|
||||
image_mask_to_tensor: components["schemas"]["MaskOutput"];
|
||||
zoe_depth_image_processor: components["schemas"]["ImageOutput"];
|
||||
show_image: components["schemas"]["ImageOutput"];
|
||||
string_join_three: components["schemas"]["StringOutput"];
|
||||
pair_tile_image: components["schemas"]["PairTileImageOutput"];
|
||||
infill_cv2: components["schemas"]["ImageOutput"];
|
||||
integer_math: components["schemas"]["IntegerOutput"];
|
||||
color: components["schemas"]["ColorOutput"];
|
||||
canny_image_processor: components["schemas"]["ImageOutput"];
|
||||
img_crop: components["schemas"]["ImageOutput"];
|
||||
lscale: components["schemas"]["LatentsOutput"];
|
||||
metadata_item: components["schemas"]["MetadataItemOutput"];
|
||||
image: components["schemas"]["ImageOutput"];
|
||||
compel: components["schemas"]["ConditioningOutput"];
|
||||
};
|
||||
/**
|
||||
* InvocationStartedEvent
|
||||
|
@ -39,6 +39,7 @@ from invokeai.app.invocations.model import (
|
||||
ModelIdentifierField,
|
||||
ModelLoaderOutput,
|
||||
SDXLLoRALoaderOutput,
|
||||
TransformerField,
|
||||
UNetField,
|
||||
UNetOutput,
|
||||
VAEField,
|
||||
@ -117,6 +118,7 @@ __all__ = [
|
||||
# invokeai.app.invocations.model
|
||||
"ModelIdentifierField",
|
||||
"UNetField",
|
||||
"TransformerField",
|
||||
"CLIPField",
|
||||
"VAEField",
|
||||
"UNetOutput",
|
||||
|
Loading…
Reference in New Issue
Block a user