mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
wip: add Transformer Field to Node UI
This commit is contained in:
parent
0c970bc880
commit
ddbd2ebd9d
@ -8,13 +8,7 @@ from invokeai.app.services.shared.invocation_context import InvocationContext
|
|||||||
from invokeai.app.shared.models import FreeUConfig
|
from invokeai.app.shared.models import FreeUConfig
|
||||||
from invokeai.backend.model_manager.config import AnyModelConfig, BaseModelType, ModelType, SubModelType
|
from invokeai.backend.model_manager.config import AnyModelConfig, BaseModelType, ModelType, SubModelType
|
||||||
|
|
||||||
from .baseinvocation import (
|
from .baseinvocation import BaseInvocation, BaseInvocationOutput, Classification, invocation, invocation_output
|
||||||
BaseInvocation,
|
|
||||||
BaseInvocationOutput,
|
|
||||||
Classification,
|
|
||||||
invocation,
|
|
||||||
invocation_output,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
class ModelIdentifierField(BaseModel):
|
class ModelIdentifierField(BaseModel):
|
||||||
@ -54,6 +48,11 @@ class UNetField(BaseModel):
|
|||||||
freeu_config: Optional[FreeUConfig] = Field(default=None, description="FreeU configuration")
|
freeu_config: Optional[FreeUConfig] = Field(default=None, description="FreeU configuration")
|
||||||
|
|
||||||
|
|
||||||
|
class TransformerField(BaseModel):
|
||||||
|
transformer: ModelIdentifierField = Field(description="Info to load unet submodel")
|
||||||
|
scheduler: ModelIdentifierField = Field(description="Info to load scheduler submodel")
|
||||||
|
|
||||||
|
|
||||||
class CLIPField(BaseModel):
|
class CLIPField(BaseModel):
|
||||||
tokenizer: ModelIdentifierField = Field(description="Info to load tokenizer submodel")
|
tokenizer: ModelIdentifierField = Field(description="Info to load tokenizer submodel")
|
||||||
text_encoder: ModelIdentifierField = Field(description="Info to load text_encoder submodel")
|
text_encoder: ModelIdentifierField = Field(description="Info to load text_encoder submodel")
|
||||||
|
@ -1,17 +1,10 @@
|
|||||||
from pydantic import BaseModel, Field
|
|
||||||
|
|
||||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
|
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
|
||||||
from invokeai.app.invocations.fields import FieldDescriptions, InputField, OutputField, UIType
|
from invokeai.app.invocations.fields import FieldDescriptions, InputField, OutputField, UIType
|
||||||
from invokeai.app.invocations.model import CLIPField, ModelIdentifierField, VAEField
|
from invokeai.app.invocations.model import CLIPField, ModelIdentifierField, TransformerField, VAEField
|
||||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||||
from invokeai.backend.model_manager.config import SubModelType
|
from invokeai.backend.model_manager.config import SubModelType
|
||||||
|
|
||||||
|
|
||||||
class TransformerField(BaseModel):
|
|
||||||
transformer: ModelIdentifierField = Field(description="Info to load unet submodel")
|
|
||||||
scheduler: ModelIdentifierField = Field(description="Info to load scheduler submodel")
|
|
||||||
|
|
||||||
|
|
||||||
@invocation_output("sd3_model_loader_output")
|
@invocation_output("sd3_model_loader_output")
|
||||||
class SD3ModelLoaderOutput(BaseInvocationOutput):
|
class SD3ModelLoaderOutput(BaseInvocationOutput):
|
||||||
"""Stable Diffuion 3 base model loader output"""
|
"""Stable Diffuion 3 base model loader output"""
|
||||||
|
@ -36,6 +36,7 @@ export const MODEL_TYPES = [
|
|||||||
'SDXLRefinerModelField',
|
'SDXLRefinerModelField',
|
||||||
'VaeModelField',
|
'VaeModelField',
|
||||||
'UNetField',
|
'UNetField',
|
||||||
|
'TransformerField',
|
||||||
'VAEField',
|
'VAEField',
|
||||||
'CLIPField',
|
'CLIPField',
|
||||||
'T2IAdapterModelField',
|
'T2IAdapterModelField',
|
||||||
@ -68,6 +69,7 @@ export const FIELD_COLORS: { [key: string]: string } = {
|
|||||||
T2IAdapterField: 'teal.500',
|
T2IAdapterField: 'teal.500',
|
||||||
T2IAdapterModelField: 'teal.500',
|
T2IAdapterModelField: 'teal.500',
|
||||||
UNetField: 'red.500',
|
UNetField: 'red.500',
|
||||||
|
TransformerField: 'red.500',
|
||||||
VAEField: 'blue.500',
|
VAEField: 'blue.500',
|
||||||
VAEModelField: 'teal.500',
|
VAEModelField: 'teal.500',
|
||||||
};
|
};
|
||||||
|
@ -298,6 +298,11 @@ const FIELD_TYPE_V1_TO_STATELESS_FIELD_TYPE_V2: {
|
|||||||
isCollection: false,
|
isCollection: false,
|
||||||
isCollectionOrScalar: false,
|
isCollectionOrScalar: false,
|
||||||
},
|
},
|
||||||
|
TransformerField: {
|
||||||
|
name: 'TransformerField',
|
||||||
|
isCollection: false,
|
||||||
|
isCollectionOrScalar: false,
|
||||||
|
},
|
||||||
VaeField: {
|
VaeField: {
|
||||||
name: 'VaeField',
|
name: 'VaeField',
|
||||||
isCollection: false,
|
isCollection: false,
|
||||||
|
@ -99,6 +99,7 @@ const zFieldTypeV1 = z.enum([
|
|||||||
'T2IAdapterModelField',
|
'T2IAdapterModelField',
|
||||||
'T2IAdapterPolymorphic',
|
'T2IAdapterPolymorphic',
|
||||||
'UNetField',
|
'UNetField',
|
||||||
|
'TransformerField',
|
||||||
'VaeField',
|
'VaeField',
|
||||||
'VaeModelField',
|
'VaeModelField',
|
||||||
]);
|
]);
|
||||||
@ -367,6 +368,17 @@ const zUNetInputFieldValue = zInputFieldValueBase.extend({
|
|||||||
value: zUNetField.optional(),
|
value: zUNetField.optional(),
|
||||||
});
|
});
|
||||||
|
|
||||||
|
const zTransformerField = z.object({
|
||||||
|
unet: zModelInfo,
|
||||||
|
scheduler: zModelInfo,
|
||||||
|
loras: z.array(zLoraInfo),
|
||||||
|
});
|
||||||
|
|
||||||
|
const zTransformerInputFieldValue = zInputFieldValueBase.extend({
|
||||||
|
type: z.literal('TransformerField'),
|
||||||
|
value: zTransformerField.optional(),
|
||||||
|
});
|
||||||
|
|
||||||
const zClipField = z.object({
|
const zClipField = z.object({
|
||||||
tokenizer: zModelInfo,
|
tokenizer: zModelInfo,
|
||||||
text_encoder: zModelInfo,
|
text_encoder: zModelInfo,
|
||||||
@ -588,6 +600,7 @@ const zInputFieldValue = z.discriminatedUnion('type', [
|
|||||||
zT2IAdapterCollectionInputFieldValue,
|
zT2IAdapterCollectionInputFieldValue,
|
||||||
zT2IAdapterPolymorphicInputFieldValue,
|
zT2IAdapterPolymorphicInputFieldValue,
|
||||||
zUNetInputFieldValue,
|
zUNetInputFieldValue,
|
||||||
|
zTransformerInputFieldValue,
|
||||||
zVaeInputFieldValue,
|
zVaeInputFieldValue,
|
||||||
zVaeModelInputFieldValue,
|
zVaeModelInputFieldValue,
|
||||||
zMetadataItemInputFieldValue,
|
zMetadataItemInputFieldValue,
|
||||||
|
@ -7276,145 +7276,145 @@ export type components = {
|
|||||||
project_id: string | null;
|
project_id: string | null;
|
||||||
};
|
};
|
||||||
InvocationOutputMap: {
|
InvocationOutputMap: {
|
||||||
float_to_int: components["schemas"]["IntegerOutput"];
|
|
||||||
range_of_size: components["schemas"]["IntegerCollectionOutput"];
|
|
||||||
img_hue_adjust: components["schemas"]["ImageOutput"];
|
|
||||||
hed_image_processor: components["schemas"]["ImageOutput"];
|
|
||||||
img_blur: components["schemas"]["ImageOutput"];
|
|
||||||
infill_tile: components["schemas"]["ImageOutput"];
|
infill_tile: components["schemas"]["ImageOutput"];
|
||||||
conditioning_collection: components["schemas"]["ConditioningCollectionOutput"];
|
model_identifier: components["schemas"]["ModelIdentifierOutput"];
|
||||||
div: components["schemas"]["IntegerOutput"];
|
tile_image_processor: components["schemas"]["ImageOutput"];
|
||||||
color_correct: components["schemas"]["ImageOutput"];
|
|
||||||
calculate_image_tiles_min_overlap: components["schemas"]["CalculateImageTilesOutput"];
|
|
||||||
boolean_collection: components["schemas"]["BooleanCollectionOutput"];
|
|
||||||
image_collection: components["schemas"]["ImageCollectionOutput"];
|
|
||||||
img_mul: components["schemas"]["ImageOutput"];
|
|
||||||
sdxl_model_loader: components["schemas"]["SDXLModelLoaderOutput"];
|
|
||||||
img_lerp: components["schemas"]["ImageOutput"];
|
|
||||||
l2i: components["schemas"]["ImageOutput"];
|
|
||||||
string_collection: components["schemas"]["StringCollectionOutput"];
|
|
||||||
face_off: components["schemas"]["FaceOffOutput"];
|
|
||||||
sdxl_refiner_compel_prompt: components["schemas"]["ConditioningOutput"];
|
|
||||||
normalbae_image_processor: components["schemas"]["ImageOutput"];
|
|
||||||
dynamic_prompt: components["schemas"]["StringCollectionOutput"];
|
|
||||||
float_math: components["schemas"]["FloatOutput"];
|
|
||||||
ideal_size: components["schemas"]["IdealSizeOutput"];
|
|
||||||
sub: components["schemas"]["IntegerOutput"];
|
|
||||||
string: components["schemas"]["StringOutput"];
|
|
||||||
core_metadata: components["schemas"]["MetadataOutput"];
|
|
||||||
latents: components["schemas"]["LatentsOutput"];
|
|
||||||
crop_latents: components["schemas"]["LatentsOutput"];
|
|
||||||
denoise_latents: components["schemas"]["LatentsOutput"];
|
|
||||||
range: components["schemas"]["IntegerCollectionOutput"];
|
|
||||||
unsharp_mask: components["schemas"]["ImageOutput"];
|
|
||||||
pidi_image_processor: components["schemas"]["ImageOutput"];
|
|
||||||
float_collection: components["schemas"]["FloatCollectionOutput"];
|
|
||||||
i2l: components["schemas"]["LatentsOutput"];
|
|
||||||
face_identifier: components["schemas"]["ImageOutput"];
|
|
||||||
step_param_easing: components["schemas"]["FloatCollectionOutput"];
|
|
||||||
img_pad_crop: components["schemas"]["ImageOutput"];
|
|
||||||
lineart_image_processor: components["schemas"]["ImageOutput"];
|
|
||||||
infill_rgba: components["schemas"]["ImageOutput"];
|
|
||||||
lblend: components["schemas"]["LatentsOutput"];
|
|
||||||
mlsd_image_processor: components["schemas"]["ImageOutput"];
|
|
||||||
lresize: components["schemas"]["LatentsOutput"];
|
|
||||||
mask_combine: components["schemas"]["ImageOutput"];
|
mask_combine: components["schemas"]["ImageOutput"];
|
||||||
string_replace: components["schemas"]["StringOutput"];
|
invert_tensor_mask: components["schemas"]["MaskOutput"];
|
||||||
conditioning: components["schemas"]["ConditioningOutput"];
|
img_chan: components["schemas"]["ImageOutput"];
|
||||||
scheduler: components["schemas"]["SchedulerOutput"];
|
sub: components["schemas"]["IntegerOutput"];
|
||||||
add: components["schemas"]["IntegerOutput"];
|
mediapipe_face_processor: components["schemas"]["ImageOutput"];
|
||||||
metadata: components["schemas"]["MetadataOutput"];
|
compel: components["schemas"]["ConditioningOutput"];
|
||||||
random_range: components["schemas"]["IntegerCollectionOutput"];
|
sd3_model_loader: components["schemas"]["SD3ModelLoaderOutput"];
|
||||||
img_ilerp: components["schemas"]["ImageOutput"];
|
rand_float: components["schemas"]["FloatOutput"];
|
||||||
canvas_paste_back: components["schemas"]["ImageOutput"];
|
zoe_depth_image_processor: components["schemas"]["ImageOutput"];
|
||||||
mask_from_id: components["schemas"]["ImageOutput"];
|
infill_rgba: components["schemas"]["ImageOutput"];
|
||||||
tile_to_properties: components["schemas"]["TileToPropertiesOutput"];
|
color_map_image_processor: components["schemas"]["ImageOutput"];
|
||||||
sdxl_compel_prompt: components["schemas"]["ConditioningOutput"];
|
img_hue_adjust: components["schemas"]["ImageOutput"];
|
||||||
img_resize: components["schemas"]["ImageOutput"];
|
lineart_image_processor: components["schemas"]["ImageOutput"];
|
||||||
mul: components["schemas"]["IntegerOutput"];
|
metadata_item: components["schemas"]["MetadataItemOutput"];
|
||||||
integer_collection: components["schemas"]["IntegerCollectionOutput"];
|
|
||||||
infill_patchmatch: components["schemas"]["ImageOutput"];
|
|
||||||
t2i_adapter: components["schemas"]["T2IAdapterOutput"];
|
|
||||||
lora_loader: components["schemas"]["LoRALoaderOutput"];
|
|
||||||
iterate: components["schemas"]["IterateInvocationOutput"];
|
|
||||||
depth_anything_image_processor: components["schemas"]["ImageOutput"];
|
|
||||||
content_shuffle_image_processor: components["schemas"]["ImageOutput"];
|
|
||||||
string_join: components["schemas"]["StringOutput"];
|
|
||||||
esrgan: components["schemas"]["ImageOutput"];
|
|
||||||
dw_openpose_image_processor: components["schemas"]["ImageOutput"];
|
|
||||||
round_float: components["schemas"]["FloatOutput"];
|
|
||||||
noise: components["schemas"]["NoiseOutput"];
|
|
||||||
img_channel_offset: components["schemas"]["ImageOutput"];
|
|
||||||
calculate_image_tiles: components["schemas"]["CalculateImageTilesOutput"];
|
|
||||||
cv_inpaint: components["schemas"]["ImageOutput"];
|
|
||||||
lineart_anime_image_processor: components["schemas"]["ImageOutput"];
|
|
||||||
lora_selector: components["schemas"]["LoRASelectorOutput"];
|
|
||||||
float: components["schemas"]["FloatOutput"];
|
float: components["schemas"]["FloatOutput"];
|
||||||
merge_metadata: components["schemas"]["MetadataOutput"];
|
create_gradient_mask: components["schemas"]["GradientMaskOutput"];
|
||||||
|
crop_latents: components["schemas"]["LatentsOutput"];
|
||||||
|
segment_anything_processor: components["schemas"]["ImageOutput"];
|
||||||
|
sdxl_refiner_model_loader: components["schemas"]["SDXLRefinerModelLoaderOutput"];
|
||||||
|
string_join: components["schemas"]["StringOutput"];
|
||||||
|
heuristic_resize: components["schemas"]["ImageOutput"];
|
||||||
|
lblend: components["schemas"]["LatentsOutput"];
|
||||||
|
lineart_anime_image_processor: components["schemas"]["ImageOutput"];
|
||||||
|
string_split_neg: components["schemas"]["StringPosNegOutput"];
|
||||||
|
alpha_mask_to_tensor: components["schemas"]["MaskOutput"];
|
||||||
|
infill_lama: components["schemas"]["ImageOutput"];
|
||||||
|
float_collection: components["schemas"]["FloatCollectionOutput"];
|
||||||
|
conditioning_collection: components["schemas"]["ConditioningCollectionOutput"];
|
||||||
|
lscale: components["schemas"]["LatentsOutput"];
|
||||||
|
clip_skip: components["schemas"]["CLIPSkipInvocationOutput"];
|
||||||
|
float_to_int: components["schemas"]["IntegerOutput"];
|
||||||
|
float_math: components["schemas"]["FloatOutput"];
|
||||||
|
collect: components["schemas"]["CollectInvocationOutput"];
|
||||||
|
boolean: components["schemas"]["BooleanOutput"];
|
||||||
|
latents: components["schemas"]["LatentsOutput"];
|
||||||
|
blank_image: components["schemas"]["ImageOutput"];
|
||||||
|
vae_loader: components["schemas"]["VAEOutput"];
|
||||||
|
denoise_latents: components["schemas"]["LatentsOutput"];
|
||||||
|
dw_openpose_image_processor: components["schemas"]["ImageOutput"];
|
||||||
|
range_of_size: components["schemas"]["IntegerCollectionOutput"];
|
||||||
|
face_mask_detection: components["schemas"]["FaceMaskOutput"];
|
||||||
|
tomask: components["schemas"]["ImageOutput"];
|
||||||
|
rectangle_mask: components["schemas"]["MaskOutput"];
|
||||||
|
controlnet: components["schemas"]["ControlOutput"];
|
||||||
|
seamless: components["schemas"]["SeamlessModeOutput"];
|
||||||
|
pair_tile_image: components["schemas"]["PairTileImageOutput"];
|
||||||
|
unsharp_mask: components["schemas"]["ImageOutput"];
|
||||||
|
hed_image_processor: components["schemas"]["ImageOutput"];
|
||||||
|
metadata: components["schemas"]["MetadataOutput"];
|
||||||
|
freeu: components["schemas"]["UNetOutput"];
|
||||||
|
image_collection: components["schemas"]["ImageCollectionOutput"];
|
||||||
|
dynamic_prompt: components["schemas"]["StringCollectionOutput"];
|
||||||
|
face_off: components["schemas"]["FaceOffOutput"];
|
||||||
|
sdxl_model_loader: components["schemas"]["SDXLModelLoaderOutput"];
|
||||||
|
show_image: components["schemas"]["ImageOutput"];
|
||||||
|
img_nsfw: components["schemas"]["ImageOutput"];
|
||||||
|
round_float: components["schemas"]["FloatOutput"];
|
||||||
|
string: components["schemas"]["StringOutput"];
|
||||||
|
calculate_image_tiles: components["schemas"]["CalculateImageTilesOutput"];
|
||||||
|
img_crop: components["schemas"]["ImageOutput"];
|
||||||
|
mask_edge: components["schemas"]["ImageOutput"];
|
||||||
|
normalbae_image_processor: components["schemas"]["ImageOutput"];
|
||||||
|
save_image: components["schemas"]["ImageOutput"];
|
||||||
|
add: components["schemas"]["IntegerOutput"];
|
||||||
|
main_model_loader: components["schemas"]["ModelLoaderOutput"];
|
||||||
|
color: components["schemas"]["ColorOutput"];
|
||||||
|
string_replace: components["schemas"]["StringOutput"];
|
||||||
|
img_lerp: components["schemas"]["ImageOutput"];
|
||||||
|
midas_depth_image_processor: components["schemas"]["ImageOutput"];
|
||||||
|
infill_patchmatch: components["schemas"]["ImageOutput"];
|
||||||
|
noise: components["schemas"]["NoiseOutput"];
|
||||||
|
img_watermark: components["schemas"]["ImageOutput"];
|
||||||
|
depth_anything_image_processor: components["schemas"]["ImageOutput"];
|
||||||
|
i2l: components["schemas"]["LatentsOutput"];
|
||||||
|
tile_to_properties: components["schemas"]["TileToPropertiesOutput"];
|
||||||
|
canvas_paste_back: components["schemas"]["ImageOutput"];
|
||||||
|
mul: components["schemas"]["IntegerOutput"];
|
||||||
|
pidi_image_processor: components["schemas"]["ImageOutput"];
|
||||||
|
sdxl_compel_prompt: components["schemas"]["ConditioningOutput"];
|
||||||
|
img_conv: components["schemas"]["ImageOutput"];
|
||||||
|
sdxl_lora_loader: components["schemas"]["SDXLLoRALoaderOutput"];
|
||||||
|
mask_from_id: components["schemas"]["ImageOutput"];
|
||||||
|
lora_loader: components["schemas"]["LoRALoaderOutput"];
|
||||||
|
step_param_easing: components["schemas"]["FloatCollectionOutput"];
|
||||||
|
face_identifier: components["schemas"]["ImageOutput"];
|
||||||
|
calculate_image_tiles_even_split: components["schemas"]["CalculateImageTilesOutput"];
|
||||||
|
esrgan: components["schemas"]["ImageOutput"];
|
||||||
|
color_correct: components["schemas"]["ImageOutput"];
|
||||||
|
lora_selector: components["schemas"]["LoRASelectorOutput"];
|
||||||
|
cv_inpaint: components["schemas"]["ImageOutput"];
|
||||||
|
img_pad_crop: components["schemas"]["ImageOutput"];
|
||||||
|
merge_tiles_to_image: components["schemas"]["ImageOutput"];
|
||||||
|
img_channel_offset: components["schemas"]["ImageOutput"];
|
||||||
|
string_collection: components["schemas"]["StringCollectionOutput"];
|
||||||
|
scheduler: components["schemas"]["SchedulerOutput"];
|
||||||
|
conditioning: components["schemas"]["ConditioningOutput"];
|
||||||
|
string_split: components["schemas"]["String2Output"];
|
||||||
|
string_join_three: components["schemas"]["StringOutput"];
|
||||||
|
img_ilerp: components["schemas"]["ImageOutput"];
|
||||||
|
lora_collection_loader: components["schemas"]["LoRALoaderOutput"];
|
||||||
|
core_metadata: components["schemas"]["MetadataOutput"];
|
||||||
float_range: components["schemas"]["FloatCollectionOutput"];
|
float_range: components["schemas"]["FloatCollectionOutput"];
|
||||||
|
random_range: components["schemas"]["IntegerCollectionOutput"];
|
||||||
|
rand_int: components["schemas"]["IntegerOutput"];
|
||||||
|
canny_image_processor: components["schemas"]["ImageOutput"];
|
||||||
|
merge_metadata: components["schemas"]["MetadataOutput"];
|
||||||
|
latents_collection: components["schemas"]["LatentsCollectionOutput"];
|
||||||
|
range: components["schemas"]["IntegerCollectionOutput"];
|
||||||
|
iterate: components["schemas"]["IterateInvocationOutput"];
|
||||||
|
img_scale: components["schemas"]["ImageOutput"];
|
||||||
|
img_blur: components["schemas"]["ImageOutput"];
|
||||||
|
img_channel_multiply: components["schemas"]["ImageOutput"];
|
||||||
|
integer_math: components["schemas"]["IntegerOutput"];
|
||||||
|
calculate_image_tiles_min_overlap: components["schemas"]["CalculateImageTilesOutput"];
|
||||||
|
img_mul: components["schemas"]["ImageOutput"];
|
||||||
|
mlsd_image_processor: components["schemas"]["ImageOutput"];
|
||||||
ip_adapter: components["schemas"]["IPAdapterOutput"];
|
ip_adapter: components["schemas"]["IPAdapterOutput"];
|
||||||
|
sdxl_lora_collection_loader: components["schemas"]["SDXLLoRALoaderOutput"];
|
||||||
|
content_shuffle_image_processor: components["schemas"]["ImageOutput"];
|
||||||
|
infill_cv2: components["schemas"]["ImageOutput"];
|
||||||
|
prompt_from_file: components["schemas"]["StringCollectionOutput"];
|
||||||
|
image: components["schemas"]["ImageOutput"];
|
||||||
|
img_resize: components["schemas"]["ImageOutput"];
|
||||||
|
boolean_collection: components["schemas"]["BooleanCollectionOutput"];
|
||||||
|
lresize: components["schemas"]["LatentsOutput"];
|
||||||
|
l2i: components["schemas"]["ImageOutput"];
|
||||||
|
integer_collection: components["schemas"]["IntegerCollectionOutput"];
|
||||||
|
t2i_adapter: components["schemas"]["T2IAdapterOutput"];
|
||||||
|
div: components["schemas"]["IntegerOutput"];
|
||||||
|
leres_image_processor: components["schemas"]["ImageOutput"];
|
||||||
|
sdxl_refiner_compel_prompt: components["schemas"]["ConditioningOutput"];
|
||||||
|
ideal_size: components["schemas"]["IdealSizeOutput"];
|
||||||
|
integer: components["schemas"]["IntegerOutput"];
|
||||||
create_denoise_mask: components["schemas"]["DenoiseMaskOutput"];
|
create_denoise_mask: components["schemas"]["DenoiseMaskOutput"];
|
||||||
img_paste: components["schemas"]["ImageOutput"];
|
img_paste: components["schemas"]["ImageOutput"];
|
||||||
save_image: components["schemas"]["ImageOutput"];
|
|
||||||
color_map_image_processor: components["schemas"]["ImageOutput"];
|
|
||||||
rand_float: components["schemas"]["FloatOutput"];
|
|
||||||
midas_depth_image_processor: components["schemas"]["ImageOutput"];
|
|
||||||
blank_image: components["schemas"]["ImageOutput"];
|
|
||||||
sdxl_refiner_model_loader: components["schemas"]["SDXLRefinerModelLoaderOutput"];
|
|
||||||
rectangle_mask: components["schemas"]["MaskOutput"];
|
|
||||||
collect: components["schemas"]["CollectInvocationOutput"];
|
|
||||||
tomask: components["schemas"]["ImageOutput"];
|
|
||||||
model_identifier: components["schemas"]["ModelIdentifierOutput"];
|
|
||||||
lora_collection_loader: components["schemas"]["LoRALoaderOutput"];
|
|
||||||
rand_int: components["schemas"]["IntegerOutput"];
|
|
||||||
sd3_model_loader: components["schemas"]["SD3ModelLoaderOutput"];
|
|
||||||
infill_lama: components["schemas"]["ImageOutput"];
|
|
||||||
heuristic_resize: components["schemas"]["ImageOutput"];
|
|
||||||
latents_collection: components["schemas"]["LatentsCollectionOutput"];
|
|
||||||
face_mask_detection: components["schemas"]["FaceMaskOutput"];
|
|
||||||
vae_loader: components["schemas"]["VAEOutput"];
|
|
||||||
invert_tensor_mask: components["schemas"]["MaskOutput"];
|
|
||||||
integer: components["schemas"]["IntegerOutput"];
|
|
||||||
img_channel_multiply: components["schemas"]["ImageOutput"];
|
|
||||||
clip_skip: components["schemas"]["CLIPSkipInvocationOutput"];
|
|
||||||
tile_image_processor: components["schemas"]["ImageOutput"];
|
|
||||||
freeu: components["schemas"]["UNetOutput"];
|
|
||||||
boolean: components["schemas"]["BooleanOutput"];
|
|
||||||
sdxl_lora_collection_loader: components["schemas"]["SDXLLoRALoaderOutput"];
|
|
||||||
mediapipe_face_processor: components["schemas"]["ImageOutput"];
|
|
||||||
prompt_from_file: components["schemas"]["StringCollectionOutput"];
|
|
||||||
img_nsfw: components["schemas"]["ImageOutput"];
|
|
||||||
string_split_neg: components["schemas"]["StringPosNegOutput"];
|
|
||||||
img_chan: components["schemas"]["ImageOutput"];
|
|
||||||
seamless: components["schemas"]["SeamlessModeOutput"];
|
|
||||||
img_scale: components["schemas"]["ImageOutput"];
|
|
||||||
sdxl_lora_loader: components["schemas"]["SDXLLoRALoaderOutput"];
|
|
||||||
mask_edge: components["schemas"]["ImageOutput"];
|
|
||||||
alpha_mask_to_tensor: components["schemas"]["MaskOutput"];
|
|
||||||
create_gradient_mask: components["schemas"]["GradientMaskOutput"];
|
|
||||||
controlnet: components["schemas"]["ControlOutput"];
|
|
||||||
leres_image_processor: components["schemas"]["ImageOutput"];
|
|
||||||
main_model_loader: components["schemas"]["ModelLoaderOutput"];
|
|
||||||
calculate_image_tiles_even_split: components["schemas"]["CalculateImageTilesOutput"];
|
|
||||||
string_split: components["schemas"]["String2Output"];
|
|
||||||
img_watermark: components["schemas"]["ImageOutput"];
|
|
||||||
merge_tiles_to_image: components["schemas"]["ImageOutput"];
|
|
||||||
img_conv: components["schemas"]["ImageOutput"];
|
|
||||||
segment_anything_processor: components["schemas"]["ImageOutput"];
|
|
||||||
image_mask_to_tensor: components["schemas"]["MaskOutput"];
|
image_mask_to_tensor: components["schemas"]["MaskOutput"];
|
||||||
zoe_depth_image_processor: components["schemas"]["ImageOutput"];
|
|
||||||
show_image: components["schemas"]["ImageOutput"];
|
|
||||||
string_join_three: components["schemas"]["StringOutput"];
|
|
||||||
pair_tile_image: components["schemas"]["PairTileImageOutput"];
|
|
||||||
infill_cv2: components["schemas"]["ImageOutput"];
|
|
||||||
integer_math: components["schemas"]["IntegerOutput"];
|
|
||||||
color: components["schemas"]["ColorOutput"];
|
|
||||||
canny_image_processor: components["schemas"]["ImageOutput"];
|
|
||||||
img_crop: components["schemas"]["ImageOutput"];
|
|
||||||
lscale: components["schemas"]["LatentsOutput"];
|
|
||||||
metadata_item: components["schemas"]["MetadataItemOutput"];
|
|
||||||
image: components["schemas"]["ImageOutput"];
|
|
||||||
compel: components["schemas"]["ConditioningOutput"];
|
|
||||||
};
|
};
|
||||||
/**
|
/**
|
||||||
* InvocationStartedEvent
|
* InvocationStartedEvent
|
||||||
|
@ -39,6 +39,7 @@ from invokeai.app.invocations.model import (
|
|||||||
ModelIdentifierField,
|
ModelIdentifierField,
|
||||||
ModelLoaderOutput,
|
ModelLoaderOutput,
|
||||||
SDXLLoRALoaderOutput,
|
SDXLLoRALoaderOutput,
|
||||||
|
TransformerField,
|
||||||
UNetField,
|
UNetField,
|
||||||
UNetOutput,
|
UNetOutput,
|
||||||
VAEField,
|
VAEField,
|
||||||
@ -117,6 +118,7 @@ __all__ = [
|
|||||||
# invokeai.app.invocations.model
|
# invokeai.app.invocations.model
|
||||||
"ModelIdentifierField",
|
"ModelIdentifierField",
|
||||||
"UNetField",
|
"UNetField",
|
||||||
|
"TransformerField",
|
||||||
"CLIPField",
|
"CLIPField",
|
||||||
"VAEField",
|
"VAEField",
|
||||||
"UNetOutput",
|
"UNetOutput",
|
||||||
|
Loading…
x
Reference in New Issue
Block a user