Small QoL imporvements

This commit is contained in:
Benjamin Warner 2022-08-23 12:49:17 -05:00
parent a21156e3e3
commit de1cea92ce
3 changed files with 254 additions and 116 deletions

133
.gitignore vendored Normal file
View File

@ -0,0 +1,133 @@
# ignore default image save location and model symbolic link
outputs/
models/ldm/stable-diffusion-v1/model.ckpt
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
pip-wheel-metadata/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
.python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/

View File

@ -113,7 +113,8 @@ The vast majority of these arguments default to reasonable values.
precision='autocast', precision='autocast',
full_precision=False, full_precision=False,
strength=0.75, # default in scripts/img2img.py strength=0.75, # default in scripts/img2img.py
latent_diffusion_weights=False # just to keep track of this parameter when regenerating prompt latent_diffusion_weights=False, # just to keep track of this parameter when regenerating prompt
device='cuda'
): ):
self.outdir = outdir self.outdir = outdir
self.batch_size = batch_size self.batch_size = batch_size
@ -136,11 +137,13 @@ The vast majority of these arguments default to reasonable values.
self.model = None # empty for now self.model = None # empty for now
self.sampler = None self.sampler = None
self.latent_diffusion_weights=latent_diffusion_weights self.latent_diffusion_weights=latent_diffusion_weights
self.device = device
if seed is None: if seed is None:
self.seed = self._new_seed() self.seed = self._new_seed()
else: else:
self.seed = seed self.seed = seed
@torch.no_grad()
def txt2img(self,prompt,outdir=None,batch_size=None,iterations=None, def txt2img(self,prompt,outdir=None,batch_size=None,iterations=None,
steps=None,seed=None,grid=None,individual=None,width=None,height=None, steps=None,seed=None,grid=None,individual=None,width=None,height=None,
cfg_scale=None,ddim_eta=None,strength=None,init_img=None,skip_normalize=False): cfg_scale=None,ddim_eta=None,strength=None,init_img=None,skip_normalize=False):
@ -191,9 +194,7 @@ The vast majority of these arguments default to reasonable values.
# Gawd. Too many levels of indent here. Need to refactor into smaller routines! # Gawd. Too many levels of indent here. Need to refactor into smaller routines!
try: try:
with torch.no_grad(): with precision_scope(self.device.type), model.ema_scope():
with precision_scope("cuda"):
with model.ema_scope():
all_samples = list() all_samples = list()
for n in trange(iterations, desc="Sampling"): for n in trange(iterations, desc="Sampling"):
seed_everything(seed) seed_everything(seed)
@ -266,6 +267,7 @@ The vast majority of these arguments default to reasonable values.
return images return images
# There is lots of shared code between this and txt2img and should be refactored. # There is lots of shared code between this and txt2img and should be refactored.
@torch.no_grad()
def img2img(self,prompt,outdir=None,init_img=None,batch_size=None,iterations=None, def img2img(self,prompt,outdir=None,init_img=None,batch_size=None,iterations=None,
steps=None,seed=None,grid=None,individual=None,width=None,height=None, steps=None,seed=None,grid=None,individual=None,width=None,height=None,
cfg_scale=None,ddim_eta=None,strength=None,skip_normalize=False): cfg_scale=None,ddim_eta=None,strength=None,skip_normalize=False):
@ -312,7 +314,7 @@ The vast majority of these arguments default to reasonable values.
assert os.path.isfile(init_img) assert os.path.isfile(init_img)
init_image = self._load_img(init_img).to(self.device) init_image = self._load_img(init_img).to(self.device)
init_image = repeat(init_image, '1 ... -> b ...', b=batch_size) init_image = repeat(init_image, '1 ... -> b ...', b=batch_size)
with precision_scope("cuda"): with precision_scope(self.device.type):
init_latent = model.get_first_stage_encoding(model.encode_first_stage(init_image)) # move to latent space init_latent = model.get_first_stage_encoding(model.encode_first_stage(init_image)) # move to latent space
sampler.make_schedule(ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=False) sampler.make_schedule(ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=False)
@ -334,9 +336,7 @@ The vast majority of these arguments default to reasonable values.
# Gawd. Too many levels of indent here. Need to refactor into smaller routines! # Gawd. Too many levels of indent here. Need to refactor into smaller routines!
try: try:
with torch.no_grad(): with precision_scope(self.device.type), model.ema_scope():
with precision_scope("cuda"):
with model.ema_scope():
all_samples = list() all_samples = list()
for n in trange(iterations, desc="Sampling"): for n in trange(iterations, desc="Sampling"):
seed_everything(seed) seed_everything(seed)
@ -429,7 +429,7 @@ The vast majority of these arguments default to reasonable values.
seed_everything(self.seed) seed_everything(self.seed)
try: try:
config = OmegaConf.load(self.config) config = OmegaConf.load(self.config)
self.device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") self.device = torch.device(self.device) if torch.cuda.is_available() else torch.device("cpu")
model = self._load_model_from_config(config,self.weights) model = self._load_model_from_config(config,self.weights)
self.model = model.to(self.device) self.model = model.to(self.device)
except AttributeError: except AttributeError:
@ -458,7 +458,6 @@ The vast majority of these arguments default to reasonable values.
sd = pl_sd["state_dict"] sd = pl_sd["state_dict"]
model = instantiate_from_config(config.model) model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=False) m, u = model.load_state_dict(sd, strict=False)
model.cuda()
model.eval() model.eval()
if self.full_precision: if self.full_precision:
print('Using slower but more accurate full-precision math (--full_precision)') print('Using slower but more accurate full-precision math (--full_precision)')

View File

@ -57,7 +57,8 @@ def main():
weights=weights, weights=weights,
full_precision=opt.full_precision, full_precision=opt.full_precision,
config=config, config=config,
latent_diffusion_weights=opt.laion400m # this is solely for recreating the prompt latent_diffusion_weights=opt.laion400m, # this is solely for recreating the prompt
device=opt.device
) )
# make sure the output directory exists # make sure the output directory exists
@ -268,6 +269,11 @@ def create_argv_parser():
type=str, type=str,
default="outputs/img-samples", default="outputs/img-samples",
help="directory in which to place generated images and a log of prompts and seeds") help="directory in which to place generated images and a log of prompts and seeds")
parser.add_argument('--device',
'-d',
type=str,
default="cuda",
help="device to run stable diffusion on. defaults to cuda `torch.cuda.current_device()` if avalible")
return parser return parser