mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Small QoL imporvements
This commit is contained in:
parent
a21156e3e3
commit
de1cea92ce
133
.gitignore
vendored
Normal file
133
.gitignore
vendored
Normal file
@ -0,0 +1,133 @@
|
|||||||
|
# ignore default image save location and model symbolic link
|
||||||
|
outputs/
|
||||||
|
models/ldm/stable-diffusion-v1/model.ckpt
|
||||||
|
|
||||||
|
# Byte-compiled / optimized / DLL files
|
||||||
|
__pycache__/
|
||||||
|
*.py[cod]
|
||||||
|
*$py.class
|
||||||
|
|
||||||
|
# C extensions
|
||||||
|
*.so
|
||||||
|
|
||||||
|
# Distribution / packaging
|
||||||
|
.Python
|
||||||
|
build/
|
||||||
|
develop-eggs/
|
||||||
|
dist/
|
||||||
|
downloads/
|
||||||
|
eggs/
|
||||||
|
.eggs/
|
||||||
|
lib/
|
||||||
|
lib64/
|
||||||
|
parts/
|
||||||
|
sdist/
|
||||||
|
var/
|
||||||
|
wheels/
|
||||||
|
pip-wheel-metadata/
|
||||||
|
share/python-wheels/
|
||||||
|
*.egg-info/
|
||||||
|
.installed.cfg
|
||||||
|
*.egg
|
||||||
|
MANIFEST
|
||||||
|
|
||||||
|
# PyInstaller
|
||||||
|
# Usually these files are written by a python script from a template
|
||||||
|
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
||||||
|
*.manifest
|
||||||
|
*.spec
|
||||||
|
|
||||||
|
# Installer logs
|
||||||
|
pip-log.txt
|
||||||
|
pip-delete-this-directory.txt
|
||||||
|
|
||||||
|
# Unit test / coverage reports
|
||||||
|
htmlcov/
|
||||||
|
.tox/
|
||||||
|
.nox/
|
||||||
|
.coverage
|
||||||
|
.coverage.*
|
||||||
|
.cache
|
||||||
|
nosetests.xml
|
||||||
|
coverage.xml
|
||||||
|
*.cover
|
||||||
|
*.py,cover
|
||||||
|
.hypothesis/
|
||||||
|
.pytest_cache/
|
||||||
|
|
||||||
|
# Translations
|
||||||
|
*.mo
|
||||||
|
*.pot
|
||||||
|
|
||||||
|
# Django stuff:
|
||||||
|
*.log
|
||||||
|
local_settings.py
|
||||||
|
db.sqlite3
|
||||||
|
db.sqlite3-journal
|
||||||
|
|
||||||
|
# Flask stuff:
|
||||||
|
instance/
|
||||||
|
.webassets-cache
|
||||||
|
|
||||||
|
# Scrapy stuff:
|
||||||
|
.scrapy
|
||||||
|
|
||||||
|
# Sphinx documentation
|
||||||
|
docs/_build/
|
||||||
|
|
||||||
|
# PyBuilder
|
||||||
|
target/
|
||||||
|
|
||||||
|
# Jupyter Notebook
|
||||||
|
.ipynb_checkpoints
|
||||||
|
|
||||||
|
# IPython
|
||||||
|
profile_default/
|
||||||
|
ipython_config.py
|
||||||
|
|
||||||
|
# pyenv
|
||||||
|
.python-version
|
||||||
|
|
||||||
|
# pipenv
|
||||||
|
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
||||||
|
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
||||||
|
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
||||||
|
# install all needed dependencies.
|
||||||
|
#Pipfile.lock
|
||||||
|
|
||||||
|
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
||||||
|
__pypackages__/
|
||||||
|
|
||||||
|
# Celery stuff
|
||||||
|
celerybeat-schedule
|
||||||
|
celerybeat.pid
|
||||||
|
|
||||||
|
# SageMath parsed files
|
||||||
|
*.sage.py
|
||||||
|
|
||||||
|
# Environments
|
||||||
|
.env
|
||||||
|
.venv
|
||||||
|
env/
|
||||||
|
venv/
|
||||||
|
ENV/
|
||||||
|
env.bak/
|
||||||
|
venv.bak/
|
||||||
|
|
||||||
|
# Spyder project settings
|
||||||
|
.spyderproject
|
||||||
|
.spyproject
|
||||||
|
|
||||||
|
# Rope project settings
|
||||||
|
.ropeproject
|
||||||
|
|
||||||
|
# mkdocs documentation
|
||||||
|
/site
|
||||||
|
|
||||||
|
# mypy
|
||||||
|
.mypy_cache/
|
||||||
|
.dmypy.json
|
||||||
|
dmypy.json
|
||||||
|
|
||||||
|
# Pyre type checker
|
||||||
|
.pyre/
|
229
ldm/simplet2i.py
229
ldm/simplet2i.py
@ -113,7 +113,8 @@ The vast majority of these arguments default to reasonable values.
|
|||||||
precision='autocast',
|
precision='autocast',
|
||||||
full_precision=False,
|
full_precision=False,
|
||||||
strength=0.75, # default in scripts/img2img.py
|
strength=0.75, # default in scripts/img2img.py
|
||||||
latent_diffusion_weights=False # just to keep track of this parameter when regenerating prompt
|
latent_diffusion_weights=False, # just to keep track of this parameter when regenerating prompt
|
||||||
|
device='cuda'
|
||||||
):
|
):
|
||||||
self.outdir = outdir
|
self.outdir = outdir
|
||||||
self.batch_size = batch_size
|
self.batch_size = batch_size
|
||||||
@ -136,11 +137,13 @@ The vast majority of these arguments default to reasonable values.
|
|||||||
self.model = None # empty for now
|
self.model = None # empty for now
|
||||||
self.sampler = None
|
self.sampler = None
|
||||||
self.latent_diffusion_weights=latent_diffusion_weights
|
self.latent_diffusion_weights=latent_diffusion_weights
|
||||||
|
self.device = device
|
||||||
if seed is None:
|
if seed is None:
|
||||||
self.seed = self._new_seed()
|
self.seed = self._new_seed()
|
||||||
else:
|
else:
|
||||||
self.seed = seed
|
self.seed = seed
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
def txt2img(self,prompt,outdir=None,batch_size=None,iterations=None,
|
def txt2img(self,prompt,outdir=None,batch_size=None,iterations=None,
|
||||||
steps=None,seed=None,grid=None,individual=None,width=None,height=None,
|
steps=None,seed=None,grid=None,individual=None,width=None,height=None,
|
||||||
cfg_scale=None,ddim_eta=None,strength=None,init_img=None,skip_normalize=False):
|
cfg_scale=None,ddim_eta=None,strength=None,init_img=None,skip_normalize=False):
|
||||||
@ -191,69 +194,67 @@ The vast majority of these arguments default to reasonable values.
|
|||||||
|
|
||||||
# Gawd. Too many levels of indent here. Need to refactor into smaller routines!
|
# Gawd. Too many levels of indent here. Need to refactor into smaller routines!
|
||||||
try:
|
try:
|
||||||
with torch.no_grad():
|
with precision_scope(self.device.type), model.ema_scope():
|
||||||
with precision_scope("cuda"):
|
all_samples = list()
|
||||||
with model.ema_scope():
|
for n in trange(iterations, desc="Sampling"):
|
||||||
all_samples = list()
|
seed_everything(seed)
|
||||||
for n in trange(iterations, desc="Sampling"):
|
for prompts in tqdm(data, desc="data", dynamic_ncols=True):
|
||||||
seed_everything(seed)
|
uc = None
|
||||||
for prompts in tqdm(data, desc="data", dynamic_ncols=True):
|
if cfg_scale != 1.0:
|
||||||
uc = None
|
uc = model.get_learned_conditioning(batch_size * [""])
|
||||||
if cfg_scale != 1.0:
|
if isinstance(prompts, tuple):
|
||||||
uc = model.get_learned_conditioning(batch_size * [""])
|
prompts = list(prompts)
|
||||||
if isinstance(prompts, tuple):
|
|
||||||
prompts = list(prompts)
|
|
||||||
|
|
||||||
# weighted sub-prompts
|
# weighted sub-prompts
|
||||||
subprompts,weights = T2I._split_weighted_subprompts(prompts[0])
|
subprompts,weights = T2I._split_weighted_subprompts(prompts[0])
|
||||||
if len(subprompts) > 1:
|
if len(subprompts) > 1:
|
||||||
# i dont know if this is correct.. but it works
|
# i dont know if this is correct.. but it works
|
||||||
c = torch.zeros_like(uc)
|
c = torch.zeros_like(uc)
|
||||||
# get total weight for normalizing
|
# get total weight for normalizing
|
||||||
totalWeight = sum(weights)
|
totalWeight = sum(weights)
|
||||||
# normalize each "sub prompt" and add it
|
# normalize each "sub prompt" and add it
|
||||||
for i in range(0,len(subprompts)):
|
for i in range(0,len(subprompts)):
|
||||||
weight = weights[i]
|
weight = weights[i]
|
||||||
if not skip_normalize:
|
if not skip_normalize:
|
||||||
weight = weight / totalWeight
|
weight = weight / totalWeight
|
||||||
c = torch.add(c,model.get_learned_conditioning(subprompts[i]), alpha=weight)
|
c = torch.add(c,model.get_learned_conditioning(subprompts[i]), alpha=weight)
|
||||||
else: # just standard 1 prompt
|
else: # just standard 1 prompt
|
||||||
c = model.get_learned_conditioning(prompts)
|
c = model.get_learned_conditioning(prompts)
|
||||||
|
|
||||||
shape = [self.latent_channels, height // self.downsampling_factor, width // self.downsampling_factor]
|
shape = [self.latent_channels, height // self.downsampling_factor, width // self.downsampling_factor]
|
||||||
samples_ddim, _ = sampler.sample(S=steps,
|
samples_ddim, _ = sampler.sample(S=steps,
|
||||||
conditioning=c,
|
conditioning=c,
|
||||||
batch_size=batch_size,
|
batch_size=batch_size,
|
||||||
shape=shape,
|
shape=shape,
|
||||||
verbose=False,
|
verbose=False,
|
||||||
unconditional_guidance_scale=cfg_scale,
|
unconditional_guidance_scale=cfg_scale,
|
||||||
unconditional_conditioning=uc,
|
unconditional_conditioning=uc,
|
||||||
eta=ddim_eta,
|
eta=ddim_eta,
|
||||||
x_T=start_code)
|
x_T=start_code)
|
||||||
|
|
||||||
x_samples_ddim = model.decode_first_stage(samples_ddim)
|
x_samples_ddim = model.decode_first_stage(samples_ddim)
|
||||||
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
||||||
|
|
||||||
if not grid:
|
if not grid:
|
||||||
for x_sample in x_samples_ddim:
|
for x_sample in x_samples_ddim:
|
||||||
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
|
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
|
||||||
filename = self._unique_filename(outdir,previousname=filename,
|
filename = self._unique_filename(outdir,previousname=filename,
|
||||||
seed=seed,isbatch=(batch_size>1))
|
seed=seed,isbatch=(batch_size>1))
|
||||||
assert not os.path.exists(filename)
|
assert not os.path.exists(filename)
|
||||||
Image.fromarray(x_sample.astype(np.uint8)).save(filename)
|
Image.fromarray(x_sample.astype(np.uint8)).save(filename)
|
||||||
images.append([filename,seed])
|
images.append([filename,seed])
|
||||||
else:
|
else:
|
||||||
all_samples.append(x_samples_ddim)
|
all_samples.append(x_samples_ddim)
|
||||||
seeds.append(seed)
|
seeds.append(seed)
|
||||||
|
|
||||||
image_count += 1
|
image_count += 1
|
||||||
seed = self._new_seed()
|
seed = self._new_seed()
|
||||||
if grid:
|
if grid:
|
||||||
images = self._make_grid(samples=all_samples,
|
images = self._make_grid(samples=all_samples,
|
||||||
seeds=seeds,
|
seeds=seeds,
|
||||||
batch_size=batch_size,
|
batch_size=batch_size,
|
||||||
iterations=iterations,
|
iterations=iterations,
|
||||||
outdir=outdir)
|
outdir=outdir)
|
||||||
except KeyboardInterrupt:
|
except KeyboardInterrupt:
|
||||||
print('*interrupted*')
|
print('*interrupted*')
|
||||||
print('Partial results will be returned; if --grid was requested, nothing will be returned.')
|
print('Partial results will be returned; if --grid was requested, nothing will be returned.')
|
||||||
@ -266,6 +267,7 @@ The vast majority of these arguments default to reasonable values.
|
|||||||
return images
|
return images
|
||||||
|
|
||||||
# There is lots of shared code between this and txt2img and should be refactored.
|
# There is lots of shared code between this and txt2img and should be refactored.
|
||||||
|
@torch.no_grad()
|
||||||
def img2img(self,prompt,outdir=None,init_img=None,batch_size=None,iterations=None,
|
def img2img(self,prompt,outdir=None,init_img=None,batch_size=None,iterations=None,
|
||||||
steps=None,seed=None,grid=None,individual=None,width=None,height=None,
|
steps=None,seed=None,grid=None,individual=None,width=None,height=None,
|
||||||
cfg_scale=None,ddim_eta=None,strength=None,skip_normalize=False):
|
cfg_scale=None,ddim_eta=None,strength=None,skip_normalize=False):
|
||||||
@ -312,7 +314,7 @@ The vast majority of these arguments default to reasonable values.
|
|||||||
assert os.path.isfile(init_img)
|
assert os.path.isfile(init_img)
|
||||||
init_image = self._load_img(init_img).to(self.device)
|
init_image = self._load_img(init_img).to(self.device)
|
||||||
init_image = repeat(init_image, '1 ... -> b ...', b=batch_size)
|
init_image = repeat(init_image, '1 ... -> b ...', b=batch_size)
|
||||||
with precision_scope("cuda"):
|
with precision_scope(self.device.type):
|
||||||
init_latent = model.get_first_stage_encoding(model.encode_first_stage(init_image)) # move to latent space
|
init_latent = model.get_first_stage_encoding(model.encode_first_stage(init_image)) # move to latent space
|
||||||
|
|
||||||
sampler.make_schedule(ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=False)
|
sampler.make_schedule(ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=False)
|
||||||
@ -334,63 +336,61 @@ The vast majority of these arguments default to reasonable values.
|
|||||||
|
|
||||||
# Gawd. Too many levels of indent here. Need to refactor into smaller routines!
|
# Gawd. Too many levels of indent here. Need to refactor into smaller routines!
|
||||||
try:
|
try:
|
||||||
with torch.no_grad():
|
with precision_scope(self.device.type), model.ema_scope():
|
||||||
with precision_scope("cuda"):
|
all_samples = list()
|
||||||
with model.ema_scope():
|
for n in trange(iterations, desc="Sampling"):
|
||||||
all_samples = list()
|
seed_everything(seed)
|
||||||
for n in trange(iterations, desc="Sampling"):
|
for prompts in tqdm(data, desc="data", dynamic_ncols=True):
|
||||||
seed_everything(seed)
|
uc = None
|
||||||
for prompts in tqdm(data, desc="data", dynamic_ncols=True):
|
if cfg_scale != 1.0:
|
||||||
uc = None
|
uc = model.get_learned_conditioning(batch_size * [""])
|
||||||
if cfg_scale != 1.0:
|
if isinstance(prompts, tuple):
|
||||||
uc = model.get_learned_conditioning(batch_size * [""])
|
prompts = list(prompts)
|
||||||
if isinstance(prompts, tuple):
|
|
||||||
prompts = list(prompts)
|
|
||||||
|
|
||||||
# weighted sub-prompts
|
# weighted sub-prompts
|
||||||
subprompts,weights = T2I._split_weighted_subprompts(prompts[0])
|
subprompts,weights = T2I._split_weighted_subprompts(prompts[0])
|
||||||
if len(subprompts) > 1:
|
if len(subprompts) > 1:
|
||||||
# i dont know if this is correct.. but it works
|
# i dont know if this is correct.. but it works
|
||||||
c = torch.zeros_like(uc)
|
c = torch.zeros_like(uc)
|
||||||
# get total weight for normalizing
|
# get total weight for normalizing
|
||||||
totalWeight = sum(weights)
|
totalWeight = sum(weights)
|
||||||
# normalize each "sub prompt" and add it
|
# normalize each "sub prompt" and add it
|
||||||
for i in range(0,len(subprompts)):
|
for i in range(0,len(subprompts)):
|
||||||
weight = weights[i]
|
weight = weights[i]
|
||||||
if not skip_normalize:
|
if not skip_normalize:
|
||||||
weight = weight / totalWeight
|
weight = weight / totalWeight
|
||||||
c = torch.add(c,model.get_learned_conditioning(subprompts[i]), alpha=weight)
|
c = torch.add(c,model.get_learned_conditioning(subprompts[i]), alpha=weight)
|
||||||
else: # just standard 1 prompt
|
else: # just standard 1 prompt
|
||||||
c = model.get_learned_conditioning(prompts)
|
c = model.get_learned_conditioning(prompts)
|
||||||
|
|
||||||
# encode (scaled latent)
|
# encode (scaled latent)
|
||||||
z_enc = sampler.stochastic_encode(init_latent, torch.tensor([t_enc]*batch_size).to(self.device))
|
z_enc = sampler.stochastic_encode(init_latent, torch.tensor([t_enc]*batch_size).to(self.device))
|
||||||
# decode it
|
# decode it
|
||||||
samples = sampler.decode(z_enc, c, t_enc, unconditional_guidance_scale=cfg_scale,
|
samples = sampler.decode(z_enc, c, t_enc, unconditional_guidance_scale=cfg_scale,
|
||||||
unconditional_conditioning=uc,)
|
unconditional_conditioning=uc,)
|
||||||
|
|
||||||
x_samples = model.decode_first_stage(samples)
|
x_samples = model.decode_first_stage(samples)
|
||||||
x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0)
|
x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0)
|
||||||
|
|
||||||
if not grid:
|
if not grid:
|
||||||
for x_sample in x_samples:
|
for x_sample in x_samples:
|
||||||
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
|
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
|
||||||
filename = self._unique_filename(outdir,previousname=filename,
|
filename = self._unique_filename(outdir,previousname=filename,
|
||||||
seed=seed,isbatch=(batch_size>1))
|
seed=seed,isbatch=(batch_size>1))
|
||||||
assert not os.path.exists(filename)
|
assert not os.path.exists(filename)
|
||||||
Image.fromarray(x_sample.astype(np.uint8)).save(filename)
|
Image.fromarray(x_sample.astype(np.uint8)).save(filename)
|
||||||
images.append([filename,seed])
|
images.append([filename,seed])
|
||||||
else:
|
else:
|
||||||
all_samples.append(x_samples)
|
all_samples.append(x_samples)
|
||||||
seeds.append(seed)
|
seeds.append(seed)
|
||||||
image_count +=1
|
image_count +=1
|
||||||
seed = self._new_seed()
|
seed = self._new_seed()
|
||||||
if grid:
|
if grid:
|
||||||
images = self._make_grid(samples=all_samples,
|
images = self._make_grid(samples=all_samples,
|
||||||
seeds=seeds,
|
seeds=seeds,
|
||||||
batch_size=batch_size,
|
batch_size=batch_size,
|
||||||
iterations=iterations,
|
iterations=iterations,
|
||||||
outdir=outdir)
|
outdir=outdir)
|
||||||
|
|
||||||
except KeyboardInterrupt:
|
except KeyboardInterrupt:
|
||||||
print('*interrupted*')
|
print('*interrupted*')
|
||||||
@ -429,7 +429,7 @@ The vast majority of these arguments default to reasonable values.
|
|||||||
seed_everything(self.seed)
|
seed_everything(self.seed)
|
||||||
try:
|
try:
|
||||||
config = OmegaConf.load(self.config)
|
config = OmegaConf.load(self.config)
|
||||||
self.device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
self.device = torch.device(self.device) if torch.cuda.is_available() else torch.device("cpu")
|
||||||
model = self._load_model_from_config(config,self.weights)
|
model = self._load_model_from_config(config,self.weights)
|
||||||
self.model = model.to(self.device)
|
self.model = model.to(self.device)
|
||||||
except AttributeError:
|
except AttributeError:
|
||||||
@ -458,7 +458,6 @@ The vast majority of these arguments default to reasonable values.
|
|||||||
sd = pl_sd["state_dict"]
|
sd = pl_sd["state_dict"]
|
||||||
model = instantiate_from_config(config.model)
|
model = instantiate_from_config(config.model)
|
||||||
m, u = model.load_state_dict(sd, strict=False)
|
m, u = model.load_state_dict(sd, strict=False)
|
||||||
model.cuda()
|
|
||||||
model.eval()
|
model.eval()
|
||||||
if self.full_precision:
|
if self.full_precision:
|
||||||
print('Using slower but more accurate full-precision math (--full_precision)')
|
print('Using slower but more accurate full-precision math (--full_precision)')
|
||||||
|
@ -57,7 +57,8 @@ def main():
|
|||||||
weights=weights,
|
weights=weights,
|
||||||
full_precision=opt.full_precision,
|
full_precision=opt.full_precision,
|
||||||
config=config,
|
config=config,
|
||||||
latent_diffusion_weights=opt.laion400m # this is solely for recreating the prompt
|
latent_diffusion_weights=opt.laion400m, # this is solely for recreating the prompt
|
||||||
|
device=opt.device
|
||||||
)
|
)
|
||||||
|
|
||||||
# make sure the output directory exists
|
# make sure the output directory exists
|
||||||
@ -268,6 +269,11 @@ def create_argv_parser():
|
|||||||
type=str,
|
type=str,
|
||||||
default="outputs/img-samples",
|
default="outputs/img-samples",
|
||||||
help="directory in which to place generated images and a log of prompts and seeds")
|
help="directory in which to place generated images and a log of prompts and seeds")
|
||||||
|
parser.add_argument('--device',
|
||||||
|
'-d',
|
||||||
|
type=str,
|
||||||
|
default="cuda",
|
||||||
|
help="device to run stable diffusion on. defaults to cuda `torch.cuda.current_device()` if avalible")
|
||||||
return parser
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user