mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Switched over to ControlNet control_mode with 4 options: balanced, more_prompt, more_control, even_more_control. Based on True/False combinations of internal booleans cfg_injection and soft_injection
This commit is contained in:
parent
8495764d45
commit
de3e6cdb02
@ -94,7 +94,7 @@ CONTROLNET_DEFAULT_MODELS = [
|
||||
]
|
||||
|
||||
CONTROLNET_NAME_VALUES = Literal[tuple(CONTROLNET_DEFAULT_MODELS)]
|
||||
# CONTROLNET_MODE_VALUES = Literal[tuple(["BALANCED", "PROMPT", "CONTROL"])]
|
||||
CONTROLNET_MODE_VALUES = Literal[tuple(["balanced", "more_prompt", "more_control", "even_more_control"])]
|
||||
|
||||
class ControlField(BaseModel):
|
||||
image: ImageField = Field(default=None, description="The control image")
|
||||
@ -105,9 +105,8 @@ class ControlField(BaseModel):
|
||||
description="When the ControlNet is first applied (% of total steps)")
|
||||
end_step_percent: float = Field(default=1, ge=0, le=1,
|
||||
description="When the ControlNet is last applied (% of total steps)")
|
||||
# guess_mode: bool = Field(default=False, description="Toggle for guess mode")
|
||||
cfg_injection: bool = Field(default=False, description="Toggle for cfg injection")
|
||||
soft_injection: bool = Field(default=False, description="Toggle for soft injection")
|
||||
control_mode: CONTROLNET_MODE_VALUES = Field(default="balanced", description="The contorl mode to use")
|
||||
|
||||
@validator("control_weight")
|
||||
def abs_le_one(cls, v):
|
||||
"""validate that all abs(values) are <=1"""
|
||||
@ -148,14 +147,11 @@ class ControlNetInvocation(BaseInvocation):
|
||||
control_model: CONTROLNET_NAME_VALUES = Field(default="lllyasviel/sd-controlnet-canny",
|
||||
description="control model used")
|
||||
control_weight: Union[float, List[float]] = Field(default=1.0, description="The weight given to the ControlNet")
|
||||
# TODO: add support in backend core for begin_step_percent, end_step_percent, guess_mode
|
||||
begin_step_percent: float = Field(default=0, ge=0, le=1,
|
||||
description="When the ControlNet is first applied (% of total steps)")
|
||||
end_step_percent: float = Field(default=1, ge=0, le=1,
|
||||
description="When the ControlNet is last applied (% of total steps)")
|
||||
# guess_mode: bool = Field(default=False, description="Toggle for guess mode")
|
||||
cfg_injection: bool = Field(default=False, description="Toggle for cfg injection")
|
||||
soft_injection: bool = Field(default=False, description="Toggle for soft injection")
|
||||
control_mode: CONTROLNET_MODE_VALUES = Field(default="balanced", description="The control mode used")
|
||||
# fmt: on
|
||||
|
||||
class Config(InvocationConfig):
|
||||
@ -173,7 +169,6 @@ class ControlNetInvocation(BaseInvocation):
|
||||
}
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ControlOutput:
|
||||
|
||||
return ControlOutput(
|
||||
control=ControlField(
|
||||
image=self.image,
|
||||
@ -181,9 +176,7 @@ class ControlNetInvocation(BaseInvocation):
|
||||
control_weight=self.control_weight,
|
||||
begin_step_percent=self.begin_step_percent,
|
||||
end_step_percent=self.end_step_percent,
|
||||
# guess_mode=self.guess_mode,
|
||||
cfg_injection=self.cfg_injection,
|
||||
soft_injection=self.soft_injection,
|
||||
control_mode=self.control_mode,
|
||||
),
|
||||
)
|
||||
|
||||
|
@ -282,19 +282,14 @@ class TextToLatentsInvocation(BaseInvocation):
|
||||
control_height_resize = latents_shape[2] * 8
|
||||
control_width_resize = latents_shape[3] * 8
|
||||
if control_input is None:
|
||||
# print("control input is None")
|
||||
control_list = None
|
||||
elif isinstance(control_input, list) and len(control_input) == 0:
|
||||
# print("control input is empty list")
|
||||
control_list = None
|
||||
elif isinstance(control_input, ControlField):
|
||||
# print("control input is ControlField")
|
||||
control_list = [control_input]
|
||||
elif isinstance(control_input, list) and len(control_input) > 0 and isinstance(control_input[0], ControlField):
|
||||
# print("control input is list[ControlField]")
|
||||
control_list = control_input
|
||||
else:
|
||||
# print("input control is unrecognized:", type(self.control))
|
||||
control_list = None
|
||||
if (control_list is None):
|
||||
control_data = None
|
||||
@ -337,18 +332,14 @@ class TextToLatentsInvocation(BaseInvocation):
|
||||
# num_images_per_prompt=num_images_per_prompt,
|
||||
device=control_model.device,
|
||||
dtype=control_model.dtype,
|
||||
# guess_mode=control_info.guess_mode,
|
||||
cfg_injection=control_info.cfg_injection,
|
||||
soft_injection=control_info.soft_injection,
|
||||
control_mode=control_info.control_mode,
|
||||
)
|
||||
control_item = ControlNetData(model=control_model,
|
||||
image_tensor=control_image,
|
||||
weight=control_info.control_weight,
|
||||
begin_step_percent=control_info.begin_step_percent,
|
||||
end_step_percent=control_info.end_step_percent,
|
||||
# guess_mode=control_info.guess_mode,
|
||||
cfg_injection=control_info.cfg_injection,
|
||||
soft_injection=control_info.soft_injection,
|
||||
control_mode=control_info.control_mode,
|
||||
)
|
||||
control_data.append(control_item)
|
||||
# MultiControlNetModel has been refactored out, just need list[ControlNetData]
|
||||
|
@ -221,10 +221,8 @@ class ControlNetData:
|
||||
weight: Union[float, List[float]] = Field(default=1.0)
|
||||
begin_step_percent: float = Field(default=0.0)
|
||||
end_step_percent: float = Field(default=1.0)
|
||||
# FIXME: replace with guess_mode with enum control_mode: BALANCED, MORE_PROMPT, MORE_CONTROL
|
||||
guess_mode: bool = Field(default=False) # guess_mode can work with or without prompt
|
||||
cfg_injection: bool = Field(default=False)
|
||||
soft_injection: bool = Field(default=False)
|
||||
control_mode: str = Field(default="balanced")
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class ConditioningData:
|
||||
@ -662,44 +660,30 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
# i.e. before or after passing it to InvokeAIDiffuserComponent
|
||||
unet_latent_input = self.scheduler.scale_model_input(latents, timestep)
|
||||
|
||||
# # guess mode handling from diffusers
|
||||
# if guess_mode and do_classifier_free_guidance:
|
||||
# # Infer ControlNet only for the conditional batch.
|
||||
# control_model_input = latents
|
||||
# control_model_input = self.scheduler.scale_model_input(control_model_input, t)
|
||||
# controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
|
||||
# else:
|
||||
# control_model_input = unet_latent_input
|
||||
# controlnet_prompt_embeds = prompt_embeds
|
||||
|
||||
# default is no controlnet, so set controlnet processing output to None
|
||||
down_block_res_samples, mid_block_res_sample = None, None
|
||||
|
||||
if control_data is not None:
|
||||
# FIXME: make sure guidance_scale <= 1.0 is handled correctly if doing per-step guidance setting
|
||||
# UPDATE: I think this is fixed now with pydantic validator for cfg_scale?
|
||||
# So we should _never_ have guidance_scale <= 1.0
|
||||
# if conditioning_data.guidance_scale > 1.0:
|
||||
# if conditioning_data.guidance_scale is not None:
|
||||
# if guess_mode is False:
|
||||
# # expand the latents input to control model if doing classifier free guidance
|
||||
# # (which I think for now is always true, there is conditional elsewhere that stops execution if
|
||||
# # classifier_free_guidance is <= 1.0 ?)
|
||||
# control_latent_input = torch.cat([unet_latent_input] * 2)
|
||||
# else:
|
||||
# control_latent_input = unet_latent_input
|
||||
# control_data should be type List[ControlNetData]
|
||||
# this loop covers both ControlNet (one ControlNetData in list)
|
||||
# and MultiControlNet (multiple ControlNetData in list)
|
||||
for i, control_datum in enumerate(control_data):
|
||||
# print("controlnet", i, "==>", type(control_datum))
|
||||
control_mode = control_datum.control_mode
|
||||
# soft_injection and cfg_injection are the two ControlNet control_mode booleans
|
||||
# that are combined at higher level to make control_mode enum
|
||||
# soft_injection determines whether to do per-layer re-weighting adjustment (if True)
|
||||
# or default weighting (if False)
|
||||
soft_injection = (control_mode == "more_prompt" or control_mode == "more_control")
|
||||
# cfg_injection = determines whether to apply ControlNet to only the conditional (if True)
|
||||
# or the default both conditional and unconditional (if False)
|
||||
cfg_injection = (control_mode == "more_control" or control_mode == "even_more_control")
|
||||
|
||||
first_control_step = math.floor(control_datum.begin_step_percent * total_step_count)
|
||||
last_control_step = math.ceil(control_datum.end_step_percent * total_step_count)
|
||||
# only apply controlnet if current step is within the controlnet's begin/end step range
|
||||
if step_index >= first_control_step and step_index <= last_control_step:
|
||||
# guess_mode = control_datum.guess_mode
|
||||
guess_mode = control_datum.cfg_injection
|
||||
if guess_mode:
|
||||
|
||||
if cfg_injection:
|
||||
control_latent_input = unet_latent_input
|
||||
else:
|
||||
# expand the latents input to control model if doing classifier free guidance
|
||||
@ -707,15 +691,11 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
# classifier_free_guidance is <= 1.0 ?)
|
||||
control_latent_input = torch.cat([unet_latent_input] * 2)
|
||||
|
||||
print("running controlnet", i, "for step", step_index)
|
||||
print("guess mode: ", guess_mode)
|
||||
print("guess mode type: ", type(guess_mode))
|
||||
if guess_mode: # only using prompt conditioning in unconditioned
|
||||
if cfg_injection: # only applying ControlNet to conditional instead of in unconditioned
|
||||
encoder_hidden_states = torch.cat([conditioning_data.unconditioned_embeddings])
|
||||
else:
|
||||
encoder_hidden_states = torch.cat([conditioning_data.unconditioned_embeddings,
|
||||
conditioning_data.text_embeddings])
|
||||
print("encoder_hidden_states.shape", encoder_hidden_states.shape)
|
||||
if isinstance(control_datum.weight, list):
|
||||
# if controlnet has multiple weights, use the weight for the current step
|
||||
controlnet_weight = control_datum.weight[step_index]
|
||||
@ -723,32 +703,17 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
# if controlnet has a single weight, use it for all steps
|
||||
controlnet_weight = control_datum.weight
|
||||
|
||||
# guess mode handling from diffusers controlnet pipeline:
|
||||
# if guess_mode and do_classifier_free_guidance:
|
||||
# # Infer ControlNet only for the conditional batch.
|
||||
# latent_control_input = latents
|
||||
# latent_control_input = self.scheduler.scale_model_input(control_model_input, t)
|
||||
# controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
|
||||
# else:
|
||||
# control_model_input = unet_latent_input
|
||||
# controlnet_prompt_embeds = prompt_embeds
|
||||
|
||||
# controlnet(s) inference
|
||||
down_samples, mid_sample = control_datum.model(
|
||||
sample=control_latent_input,
|
||||
timestep=timestep,
|
||||
# encoder_hidden_states=torch.cat([conditioning_data.unconditioned_embeddings,
|
||||
# conditioning_data.text_embeddings]),
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
controlnet_cond=control_datum.image_tensor,
|
||||
conditioning_scale=controlnet_weight, # controlnet specific, NOT the guidance scale
|
||||
# cross_attention_kwargs,
|
||||
# guess_mode=guess_mode,
|
||||
guess_mode=control_datum.soft_injection,
|
||||
guess_mode=soft_injection, # this is still called guess_mode in diffusers ControlNetModel
|
||||
return_dict=False,
|
||||
)
|
||||
print("finished ControlNetModel() call, step", step_index)
|
||||
if guess_mode:
|
||||
if cfg_injection:
|
||||
# Inferred ControlNet only for the conditional batch.
|
||||
# To apply the output of ControlNet to both the unconditional and conditional batches,
|
||||
# add 0 to the unconditional batch to keep it unchanged.
|
||||
@ -765,14 +730,6 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
]
|
||||
mid_block_res_sample += mid_sample
|
||||
|
||||
# guess mode handling from diffusers controlnet pipeline:
|
||||
# if guess_mode and do_classifier_free_guidance:
|
||||
# # Inferred ControlNet only for the conditional batch.
|
||||
# # To apply the output of ControlNet to both the unconditional and conditional batches,
|
||||
# # add 0 to the unconditional batch to keep it unchanged.
|
||||
# down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
|
||||
# mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
|
||||
|
||||
# predict the noise residual
|
||||
noise_pred = self.invokeai_diffuser.do_diffusion_step(
|
||||
x=unet_latent_input,
|
||||
@ -1103,9 +1060,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
device="cuda",
|
||||
dtype=torch.float16,
|
||||
do_classifier_free_guidance=True,
|
||||
guess_mode=False,
|
||||
soft_injection=False,
|
||||
cfg_injection=False,
|
||||
control_mode="balanced"
|
||||
):
|
||||
|
||||
if not isinstance(image, torch.Tensor):
|
||||
@ -1136,7 +1091,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
repeat_by = num_images_per_prompt
|
||||
image = image.repeat_interleave(repeat_by, dim=0)
|
||||
image = image.to(device=device, dtype=dtype)
|
||||
# if do_classifier_free_guidance and not guess_mode:
|
||||
cfg_injection = (control_mode == "more_control" or control_mode == "even_more_control")
|
||||
if do_classifier_free_guidance and not cfg_injection:
|
||||
image = torch.cat([image] * 2)
|
||||
return image
|
||||
|
Loading…
Reference in New Issue
Block a user