diff --git a/invokeai/app/services/config/config_default.py b/invokeai/app/services/config/config_default.py index 8d534d59b9..2b93c53ba1 100644 --- a/invokeai/app/services/config/config_default.py +++ b/invokeai/app/services/config/config_default.py @@ -224,7 +224,61 @@ class URLRegexToken(BaseModel): class InvokeAIAppConfig(InvokeAISettings): - """Configuration object for InvokeAI App.""" + """Invoke App Configuration + + Attributes: + + host: **Web Server**: IP address to bind to. Use `0.0.0.0` to serve to your local network. + port: **Web Server**: Port to bind to. + allow_origins: **Web Server**: Allowed CORS origins. + allow_credentials: **Web Server**: Allow CORS credentials. + allow_methods: **Web Server**: Methods allowed for CORS. + allow_headers: **Web Server**: Headers allowed for CORS. + ssl_certfile: **Web Server**: SSL certificate file for HTTPS. + ssl_keyfile: **Web Server**: SSL key file for HTTPS. + esrgan: **Features**: Enables or disables the upscaling code. + internet_available: **Features**: If true, attempt to download models on the fly; otherwise only use local models. + log_tokenization: **Features**: Enable logging of parsed prompt tokens. + patchmatch: **Features**: Enable patchmatch inpaint code. + ignore_missing_core_models: **Features**: Ignore missing core models on startup. If `True`, the app will attempt to download missing models on startup. + root: **Paths**: The InvokeAI runtime root directory. + autoimport_dir: **Paths**: Path to a directory of models files to be imported on startup. + models_dir: **Paths**: Path to the models directory. + convert_cache_dir: **Paths**: Path to the converted models cache directory. When loading a non-diffusers model, it will be converted and store on disk at this location. + legacy_conf_dir: **Paths**: Path to directory of legacy checkpoint config files. + db_dir: **Paths**: Path to InvokeAI databases directory. + outdir: **Paths**: Path to directory for outputs. + use_memory_db: **Paths**: Use in-memory database. Useful for development. + custom_nodes_dir: **Paths**: Path to directory for custom nodes. + from_file: **Paths**: Take command input from the indicated file (command-line client only). + log_handlers: **Logging**: Log handler. Valid options are "console", "file=", "syslog=path|address:host:port", "http=". + log_format: **Logging**: Log format. Use "plain" for text-only, "color" for colorized output, "legacy" for 2.3-style logging and "syslog" for syslog-style. + log_level: **Logging**: Emit logging messages at this level or higher. + log_sql: **Logging**: Log SQL queries. `log_level` must be `debug` for this to do anything. Extremely verbose. + dev_reload: **Development**: Automatically reload when Python sources are changed. Does not reload node definitions. + profile_graphs: **Development**: Enable graph profiling using `cProfile`. + profile_prefix: **Development**: An optional prefix for profile output files. + profiles_dir: **Development**: Path to profiles output directory. + skip_model_hash: **Development**: Skip model hashing, instead assigning a UUID to models. Useful when using a memory db to reduce model installation time, or if you don't care about storing stable hashes for models. + version: **Other**: CLI arg - show InvokeAI version and exit. + civitai_api_key: **Other**: API key for CivitAI. + ram: **Model Cache**: Maximum memory amount used by memory model cache for rapid switching (GB). + vram: **Model Cache**: Amount of VRAM reserved for model storage (GB) + convert_cache: **Model Cache**: Maximum size of on-disk converted models cache (GB) + lazy_offload: **Model Cache**: Keep models in VRAM until their space is needed. + log_memory_usage: **Model Cache**: If True, a memory snapshot will be captured before and after every model cache operation, and the result will be logged (at debug level). There is a time cost to capturing the memory snapshots, so it is recommended to only enable this feature if you are actively inspecting the model cache's behaviour. + device: **Device**: Preferred execution device. `auto` will choose the device depending on the hardware platform and the installed torch capabilities. + precision: **Device**: Floating point precision. `float16` will consume half the memory of `float32` but produce slightly lower-quality images. The `auto` setting will guess the proper precision based on your video card and operating system. + sequential_guidance: **Generation**: Whether to calculate guidance in serial instead of in parallel, lowering memory requirements. + attention_type: **Generation**: Attention type. + attention_slice_size: **Generation**: Slice size, valid when attention_type=="sliced". + force_tiled_decode: **Generation**: Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty). + png_compress_level: **Generation**: The compress_level setting of PIL.Image.save(), used for PNG encoding. All settings are lossless. 0 = no compression, 1 = fastest with slightly larger filesize, 9 = slowest with smallest filesize. 1 is typically the best setting. + max_queue_size: **Queue**: Maximum number of items in the session queue. + allow_nodes: **Nodes**: List of nodes to allow. Omit to allow all. + deny_nodes: **Nodes**: List of nodes to deny. Omit to deny none. + node_cache_size: **Nodes**: How many cached nodes to keep in memory. + """ singleton_config: ClassVar[Optional[InvokeAIAppConfig]] = None singleton_init: ClassVar[Optional[Dict[str, Any]]] = None