mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
BREAKING CHANGES: invocations now require model key, not base/type/name
- Implement new model loader and modify invocations and embeddings - Finish implementation loaders for all models currently supported by InvokeAI. - Move lora, textual_inversion, and model patching support into backend/embeddings. - Restore support for model cache statistics collection (a little ugly, needs work). - Fixed up invocations that load and patch models. - Move seamless and silencewarnings utils into better location
This commit is contained in:
committed by
psychedelicious
parent
fbded1c0f2
commit
dfcf38be91
@ -2,7 +2,8 @@ import os
|
||||
from builtins import float
|
||||
from typing import List, Union
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, Field, field_validator, model_validator
|
||||
from pydantic import BaseModel, Field, field_validator, model_validator
|
||||
from typing_extensions import Self
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import (
|
||||
BaseInvocation,
|
||||
@ -18,18 +19,13 @@ from invokeai.backend.model_management.models.base import BaseModelType, ModelTy
|
||||
from invokeai.backend.model_management.models.ip_adapter import get_ip_adapter_image_encoder_model_id
|
||||
|
||||
|
||||
# LS: Consider moving these two classes into model.py
|
||||
class IPAdapterModelField(BaseModel):
|
||||
model_name: str = Field(description="Name of the IP-Adapter model")
|
||||
base_model: BaseModelType = Field(description="Base model")
|
||||
|
||||
model_config = ConfigDict(protected_namespaces=())
|
||||
key: str = Field(description="Key to the IP-Adapter model")
|
||||
|
||||
|
||||
class CLIPVisionModelField(BaseModel):
|
||||
model_name: str = Field(description="Name of the CLIP Vision image encoder model")
|
||||
base_model: BaseModelType = Field(description="Base model (usually 'Any')")
|
||||
|
||||
model_config = ConfigDict(protected_namespaces=())
|
||||
key: str = Field(description="Key to the CLIP Vision image encoder model")
|
||||
|
||||
|
||||
class IPAdapterField(BaseModel):
|
||||
@ -46,16 +42,26 @@ class IPAdapterField(BaseModel):
|
||||
|
||||
@field_validator("weight")
|
||||
@classmethod
|
||||
def validate_ip_adapter_weight(cls, v):
|
||||
def validate_ip_adapter_weight(cls, v: float) -> float:
|
||||
validate_weights(v)
|
||||
return v
|
||||
|
||||
@model_validator(mode="after")
|
||||
def validate_begin_end_step_percent(self):
|
||||
def validate_begin_end_step_percent(self) -> Self:
|
||||
validate_begin_end_step(self.begin_step_percent, self.end_step_percent)
|
||||
return self
|
||||
|
||||
|
||||
def get_ip_adapter_image_encoder_model_id(model_path: str):
|
||||
"""Read the ID of the image encoder associated with the IP-Adapter at `model_path`."""
|
||||
image_encoder_config_file = os.path.join(model_path, "image_encoder.txt")
|
||||
|
||||
with open(image_encoder_config_file, "r") as f:
|
||||
image_encoder_model = f.readline().strip()
|
||||
|
||||
return image_encoder_model
|
||||
|
||||
|
||||
@invocation_output("ip_adapter_output")
|
||||
class IPAdapterOutput(BaseInvocationOutput):
|
||||
# Outputs
|
||||
@ -84,33 +90,36 @@ class IPAdapterInvocation(BaseInvocation):
|
||||
|
||||
@field_validator("weight")
|
||||
@classmethod
|
||||
def validate_ip_adapter_weight(cls, v):
|
||||
def validate_ip_adapter_weight(cls, v: float) -> float:
|
||||
validate_weights(v)
|
||||
return v
|
||||
|
||||
@model_validator(mode="after")
|
||||
def validate_begin_end_step_percent(self):
|
||||
def validate_begin_end_step_percent(self) -> Self:
|
||||
validate_begin_end_step(self.begin_step_percent, self.end_step_percent)
|
||||
return self
|
||||
|
||||
def invoke(self, context: InvocationContext) -> IPAdapterOutput:
|
||||
# Lookup the CLIP Vision encoder that is intended to be used with the IP-Adapter model.
|
||||
ip_adapter_info = context.models.get_info(
|
||||
self.ip_adapter_model.model_name, self.ip_adapter_model.base_model, ModelType.IPAdapter
|
||||
)
|
||||
ip_adapter_info = context.services.model_records.get_model(self.ip_adapter_model.key)
|
||||
# HACK(ryand): This is bad for a couple of reasons: 1) we are bypassing the model manager to read the model
|
||||
# directly, and 2) we are reading from disk every time this invocation is called without caching the result.
|
||||
# A better solution would be to store the image encoder model reference in the IP-Adapter model info, but this
|
||||
# is currently messy due to differences between how the model info is generated when installing a model from
|
||||
# disk vs. downloading the model.
|
||||
# TODO (LS): Fix the issue above by:
|
||||
# 1. Change IPAdapterConfig definition to include a field for the repo_id of the image encoder model.
|
||||
# 2. Update probe.py to read `image_encoder.txt` and store it in the config.
|
||||
# 3. Change below to get the image encoder from the configuration record.
|
||||
image_encoder_model_id = get_ip_adapter_image_encoder_model_id(
|
||||
os.path.join(context.config.get().models_path, ip_adapter_info["path"])
|
||||
os.path.join(context.services.configuration.get_config().models_path, ip_adapter_info.path)
|
||||
)
|
||||
image_encoder_model_name = image_encoder_model_id.split("/")[-1].strip()
|
||||
image_encoder_model = CLIPVisionModelField(
|
||||
model_name=image_encoder_model_name,
|
||||
base_model=BaseModelType.Any,
|
||||
image_encoder_models = context.services.model_records.search_by_attr(
|
||||
model_name=image_encoder_model_name, base_model=BaseModelType.Any, model_type=ModelType.CLIPVision
|
||||
)
|
||||
assert len(image_encoder_models) == 1
|
||||
image_encoder_model = CLIPVisionModelField(key=image_encoder_models[0].key)
|
||||
return IPAdapterOutput(
|
||||
ip_adapter=IPAdapterField(
|
||||
image=self.image,
|
||||
|
Reference in New Issue
Block a user