Merge remote-tracking branch 'origin/main' into feat/taesd

# Conflicts:
#	invokeai/app/invocations/latent.py
This commit is contained in:
Kevin Turner 2023-08-25 15:21:47 -07:00
commit dff466244d
385 changed files with 10773 additions and 9990 deletions

37
.gitignore vendored
View File

@ -1,23 +1,8 @@
# ignore default image save location and model symbolic link
.idea/ .idea/
embeddings/
outputs/
models/ldm/stable-diffusion-v1/model.ckpt
**/restoration/codeformer/weights
# ignore user models config
configs/models.user.yaml
config/models.user.yml
invokeai.init
.version
.last_model
# ignore the Anaconda/Miniconda installer used while building Docker image # ignore the Anaconda/Miniconda installer used while building Docker image
anaconda.sh anaconda.sh
# ignore a directory which serves as a place for initial images
inputs/
# Byte-compiled / optimized / DLL files # Byte-compiled / optimized / DLL files
__pycache__/ __pycache__/
*.py[cod] *.py[cod]
@ -189,39 +174,17 @@ cython_debug/
# option (not recommended) you can uncomment the following to ignore the entire idea folder. # option (not recommended) you can uncomment the following to ignore the entire idea folder.
#.idea/ #.idea/
src
**/__pycache__/ **/__pycache__/
outputs
# Logs and associated folders
# created from generated embeddings.
logs
testtube
checkpoints
# If it's a Mac # If it's a Mac
.DS_Store .DS_Store
invokeai/frontend/yarn.lock
invokeai/frontend/node_modules
# Let the frontend manage its own gitignore # Let the frontend manage its own gitignore
!invokeai/frontend/web/* !invokeai/frontend/web/*
# Scratch folder # Scratch folder
.scratch/ .scratch/
.vscode/ .vscode/
gfpgan/
models/ldm/stable-diffusion-v1/*.sha256
# GFPGAN model files
gfpgan/
# config file (will be created by installer)
configs/models.yaml
# ignore initfile
.invokeai
# ignore environment.yml and requirements.txt # ignore environment.yml and requirements.txt
# these are links to the real files in environments-and-requirements # these are links to the real files in environments-and-requirements

View File

@ -43,7 +43,7 @@ Web Interface, interactive Command Line Interface, and also serves as
the foundation for multiple commercial products. the foundation for multiple commercial products.
**Quick links**: [[How to **Quick links**: [[How to
Install](https://invoke-ai.github.io/InvokeAI/#installation)] [<a Install](https://invoke-ai.github.io/InvokeAI/installation/INSTALLATION/)] [<a
href="https://discord.gg/ZmtBAhwWhy">Discord Server</a>] [<a href="https://discord.gg/ZmtBAhwWhy">Discord Server</a>] [<a
href="https://invoke-ai.github.io/InvokeAI/">Documentation and href="https://invoke-ai.github.io/InvokeAI/">Documentation and
Tutorials</a>] [<a Tutorials</a>] [<a
@ -81,7 +81,7 @@ Table of Contents 📝
## Quick Start ## Quick Start
For full installation and upgrade instructions, please see: For full installation and upgrade instructions, please see:
[InvokeAI Installation Overview](https://invoke-ai.github.io/InvokeAI/installation/) [InvokeAI Installation Overview](https://invoke-ai.github.io/InvokeAI/installation/INSTALLATION/)
If upgrading from version 2.3, please read [Migrating a 2.3 root If upgrading from version 2.3, please read [Migrating a 2.3 root
directory to 3.0](#migrating-to-3) first. directory to 3.0](#migrating-to-3) first.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 335 KiB

After

Width:  |  Height:  |  Size: 319 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 179 KiB

After

Width:  |  Height:  |  Size: 197 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 501 KiB

After

Width:  |  Height:  |  Size: 421 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 473 KiB

After

Width:  |  Height:  |  Size: 585 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 557 KiB

After

Width:  |  Height:  |  Size: 598 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 340 KiB

After

Width:  |  Height:  |  Size: 438 KiB

View File

@ -14,11 +14,14 @@ To join, just raise your hand on the InvokeAI Discord server (#dev-chat) or the
#### Development #### Development
If youd like to help with development, please see our [development guide](contribution_guides/development.md). If youre unfamiliar with contributing to open source projects, there is a tutorial contained within the development guide. If youd like to help with development, please see our [development guide](contribution_guides/development.md). If youre unfamiliar with contributing to open source projects, there is a tutorial contained within the development guide.
#### Nodes
If youd like to help with development, please see our [nodes contribution guide](/nodes/contributingNodes). If youre unfamiliar with contributing to open source projects, there is a tutorial contained within the development guide.
#### Documentation #### Documentation
If youd like to help with documentation, please see our [documentation guide](contribution_guides/documenation.md). If youd like to help with documentation, please see our [documentation guide](contribution_guides/documentation.md).
#### Translation #### Translation
If you'd like to help with translation, please see our [translation guide](docs/contributing/.contribution_guides/translation.md). If you'd like to help with translation, please see our [translation guide](contribution_guides/translation.md).
#### Tutorials #### Tutorials
Please reach out to @imic or @hipsterusername on [Discord](https://discord.gg/ZmtBAhwWhy) to help create tutorials for InvokeAI. Please reach out to @imic or @hipsterusername on [Discord](https://discord.gg/ZmtBAhwWhy) to help create tutorials for InvokeAI.

View File

@ -270,9 +270,12 @@ new Invocation ready to be used.
![resize node editor](../assets/contributing/resize_node_editor.png) ![resize node editor](../assets/contributing/resize_node_editor.png)
# Advanced ## Contributing Nodes
Once you've created a Node, the next step is to share it with the community! The best way to do this is to submit a Pull Request to add the Node to the [Community Nodes](nodes/communityNodes) list. If you're not sure how to do that, take a look a at our [contributing nodes overview](contributingNodes).
## Custom Input Fields ## Advanced
### Custom Input Fields
Now that you know how to create your own Invocations, let us dive into slightly Now that you know how to create your own Invocations, let us dive into slightly
more advanced topics. more advanced topics.
@ -352,7 +355,7 @@ input field.
We will discuss the `Config` class in extra detail later in this guide and how We will discuss the `Config` class in extra detail later in this guide and how
you can use it to make your Invocations more robust. you can use it to make your Invocations more robust.
## Custom Output Types ### Custom Output Types
Like with custom inputs, sometimes you might find yourself needing custom Like with custom inputs, sometimes you might find yourself needing custom
outputs that InvokeAI does not provide. We can easily set one up. outputs that InvokeAI does not provide. We can easily set one up.
@ -396,7 +399,7 @@ All set. We now have an output type that requires what we need to create a
blank_image. And if you noticed it, we even used the `Config` class to ensure blank_image. And if you noticed it, we even used the `Config` class to ensure
the fields are required. the fields are required.
## Custom Configuration ### Custom Configuration
As you might have noticed when making inputs and outputs, we used a class called As you might have noticed when making inputs and outputs, we used a class called
`Config` from _pydantic_ to further customize them. Because our inputs and `Config` from _pydantic_ to further customize them. Because our inputs and
@ -492,7 +495,7 @@ later time.
# **[TODO]** # **[TODO]**
## Custom Components For Frontend ### Custom Components For Frontend
Every backend input type should have a corresponding frontend component so the Every backend input type should have a corresponding frontend component so the
UI knows what to render when you use a particular field type. UI knows what to render when you use a particular field type.
@ -513,7 +516,7 @@ now.
--- ---
# OLD -- TO BE DELETED OR MOVED LATER <!-- # OLD -- TO BE DELETED OR MOVED LATER
--- ---
@ -787,4 +790,5 @@ With the customization in place, the schema will now show these properties as
required, obviating the need for extensive null checks in client code. required, obviating the need for extensive null checks in client code.
See this `pydantic` issue for discussion on this solution: See this `pydantic` issue for discussion on this solution:
<https://github.com/pydantic/pydantic/discussions/4577> <https://github.com/pydantic/pydantic/discussions/4577> -->

View File

@ -35,18 +35,17 @@ access.
## Backend ## Backend
The backend is contained within the `./invokeai/backend` folder structure. To The backend is contained within the `./invokeai/backend` and `./invokeai/app` directories.
get started however please install the development dependencies. To get started please install the development dependencies.
From the root of the repository run the following command. Note the use of `"`. From the root of the repository run the following command. Note the use of `"`.
```zsh ```zsh
pip install ".[test]" pip install ".[dev,test]"
``` ```
This in an optional group of packages which is defined within the These are optional groups of packages which are defined within the `pyproject.toml`
`pyproject.toml` and will be required for testing the changes you make the the and will be required for testing the changes you make to the code.
code.
### Running Tests ### Running Tests
@ -76,6 +75,20 @@ pytest --cov; open ./coverage/html/index.html
![html-detail](../assets/contributing/html-detail.png) ![html-detail](../assets/contributing/html-detail.png)
### Reloading Changes
Experimenting with changes to the Python source code is a drag if you have to re-start the server —
and re-load those multi-gigabyte models —
after every change.
For a faster development workflow, add the `--dev_reload` flag when starting the server.
The server will watch for changes to all the Python files in the `invokeai` directory and apply those changes to the
running server on the fly.
This will allow you to avoid restarting the server (and reloading models) in most cases, but there are some caveats; see
the [jurigged documentation](https://github.com/breuleux/jurigged#caveats) for details.
## Front End ## Front End
<!--#TODO: get input from blessedcoolant here, for the moment inserted the frontend README via snippets extension.--> <!--#TODO: get input from blessedcoolant here, for the moment inserted the frontend README via snippets extension.-->

View File

@ -175,22 +175,27 @@ These configuration settings allow you to enable and disable various InvokeAI fe
| `internet_available` | `true` | When a resource is not available locally, try to fetch it via the internet | | `internet_available` | `true` | When a resource is not available locally, try to fetch it via the internet |
| `log_tokenization` | `false` | Before each text2image generation, print a color-coded representation of the prompt to the console; this can help understand why a prompt is not working as expected | | `log_tokenization` | `false` | Before each text2image generation, print a color-coded representation of the prompt to the console; this can help understand why a prompt is not working as expected |
| `patchmatch` | `true` | Activate the "patchmatch" algorithm for improved inpainting | | `patchmatch` | `true` | Activate the "patchmatch" algorithm for improved inpainting |
| `restore` | `true` | Activate the facial restoration features (DEPRECATED; restoration features will be removed in 3.0.0) |
### Memory/Performance ### Generation
These options tune InvokeAI's memory and performance characteristics. These options tune InvokeAI's memory and performance characteristics.
| Setting | Default Value | Description | | Setting | Default Value | Description |
|----------|----------------|--------------| |-----------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| `always_use_cpu` | `false` | Use the CPU to generate images, even if a GPU is available | | `sequential_guidance` | `false` | Calculate guidance in serial rather than in parallel, lowering memory requirements at the cost of some performance loss |
| `free_gpu_mem` | `false` | Aggressively free up GPU memory after each operation; this will allow you to run in low-VRAM environments with some performance penalties | | `attention_type` | `auto` | Select the type of attention to use. One of `auto`,`normal`,`xformers`,`sliced`, or `torch-sdp` |
| `max_cache_size` | `6` | Amount of CPU RAM (in GB) to reserve for caching models in memory; more cache allows you to keep models in memory and switch among them quickly | | `attention_slice_size` | `auto` | When "sliced" attention is selected, set the slice size. One of `auto`, `balanced`, `max` or the integers 1-8|
| `max_vram_cache_size` | `2.75` | Amount of GPU VRAM (in GB) to reserve for caching models in VRAM; more cache speeds up generation but reduces the size of the images that can be generated. This can be set to zero to maximize the amount of memory available for generation. | | `force_tiled_decode` | `false` | Force the VAE step to decode in tiles, reducing memory consumption at the cost of performance |
| `precision` | `auto` | Floating point precision. One of `auto`, `float16` or `float32`. `float16` will consume half the memory of `float32` but produce slightly lower-quality images. The `auto` setting will guess the proper precision based on your video card and operating system |
| `sequential_guidance` | `false` | Calculate guidance in serial rather than in parallel, lowering memory requirements at the cost of some performance loss | ### Device
| `xformers_enabled` | `true` | If the x-formers memory-efficient attention module is installed, activate it for better memory usage and generation speed|
| `tiled_decode` | `false` | If true, then during the VAE decoding phase the image will be decoded a section at a time, reducing memory consumption at the cost of a performance hit | These options configure the generation execution device.
| Setting | Default Value | Description |
|-----------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| `device` | `auto` | Preferred execution device. One of `auto`, `cpu`, `cuda`, `cuda:1`, `mps`. `auto` will choose the device depending on the hardware platform and the installed torch capabilities. |
| `precision` | `auto` | Floating point precision. One of `auto`, `float16` or `float32`. `float16` will consume half the memory of `float32` but produce slightly lower-quality images. The `auto` setting will guess the proper precision based on your video card and operating system |
### Paths ### Paths

View File

@ -1,208 +0,0 @@
# Nodes Editor (Experimental)
🚨
*The node editor is experimental. We've made it accessible because we use it to develop the application, but we have not addressed the many known rough edges. It's very easy to shoot yourself in the foot, and we cannot offer support for it until it sees full release (ETA v3.1). Everything is subject to change without warning.*
🚨
The nodes editor is a blank canvas allowing for the use of individual functions and image transformations to control the image generation workflow. The node processing flow is usually done from left (inputs) to right (outputs), though linearity can become abstracted the more complex the node graph becomes. Nodes inputs and outputs are connected by dragging connectors from node to node.
To better understand how nodes are used, think of how an electric power bar works. It takes in one input (electricity from a wall outlet) and passes it to multiple devices through multiple outputs. Similarly, a node could have multiple inputs and outputs functioning at the same (or different) time, but all node outputs pass information onward like a power bar passes electricity. Not all outputs are compatible with all inputs, however - Each node has different constraints on how it is expecting to input/output information. In general, node outputs are colour-coded to match compatible inputs of other nodes.
## Anatomy of a Node
Individual nodes are made up of the following:
- Inputs: Edge points on the left side of the node window where you connect outputs from other nodes.
- Outputs: Edge points on the right side of the node window where you connect to inputs on other nodes.
- Options: Various options which are either manually configured, or overridden by connecting an output from another node to the input.
## Diffusion Overview
Taking the time to understand the diffusion process will help you to understand how to set up your nodes in the nodes editor.
There are two main spaces Stable Diffusion works in: image space and latent space.
Image space represents images in pixel form that you look at. Latent space represents compressed inputs. Its in latent space that Stable Diffusion processes images. A VAE (Variational Auto Encoder) is responsible for compressing and encoding inputs into latent space, as well as decoding outputs back into image space.
When you generate an image using text-to-image, multiple steps occur in latent space:
1. Random noise is generated at the chosen height and width. The noises characteristics are dictated by the chosen (or not chosen) seed. This noise tensor is passed into latent space. Well call this noise A.
1. Using a models U-Net, a noise predictor examines noise A, and the words tokenized by CLIP from your prompt (conditioning). It generates its own noise tensor to predict what the final image might look like in latent space. Well call this noise B.
1. Noise B is subtracted from noise A in an attempt to create a final latent image indicative of the inputs. This step is repeated for the number of sampler steps chosen.
1. The VAE decodes the final latent image from latent space into image space.
image-to-image is a similar process, with only step 1 being different:
1. The input image is decoded from image space into latent space by the VAE. Noise is then added to the input latent image. Denoising Strength dictates how much noise is added, 0 being none, and 1 being all-encompassing. Well call this noise A. The process is then the same as steps 2-4 in the text-to-image explanation above.
Furthermore, a model provides the CLIP prompt tokenizer, the VAE, and a U-Net (where noise prediction occurs given a prompt and initial noise tensor).
A noise scheduler (eg. DPM++ 2M Karras) schedules the subtraction of noise from the latent image across the sampler steps chosen (step 3 above). Less noise is usually subtracted at higher sampler steps.
## Node Types (Base Nodes)
| Node <img width=160 align="right"> | Function |
| ---------------------------------- | --------------------------------------------------------------------------------------|
| Add | Adds two numbers |
| CannyImageProcessor | Canny edge detection for ControlNet |
| ClipSkip | Skip layers in clip text_encoder model |
| Collect | Collects values into a collection |
| Prompt (Compel) | Parse prompt using compel package to conditioning |
| ContentShuffleImageProcessor | Applies content shuffle processing to image |
| ControlNet | Collects ControlNet info to pass to other nodes |
| CvInpaint | Simple inpaint using opencv |
| Divide | Divides two numbers |
| DynamicPrompt | Parses a prompt using adieyal/dynamic prompt's random or combinatorial generator |
| FloatLinearRange | Creates a range |
| HedImageProcessor | Applies HED edge detection to image |
| ImageBlur | Blurs an image |
| ImageChannel | Gets a channel from an image |
| ImageCollection | Load a collection of images and provide it as output |
| ImageConvert | Converts an image to a different mode |
| ImageCrop | Crops an image to a specified box. The box can be outside of the image. |
| ImageInverseLerp | Inverse linear interpolation of all pixels of an image |
| ImageLerp | Linear interpolation of all pixels of an image |
| ImageMultiply | Multiplies two images together using `PIL.ImageChops.Multiply()` |
| ImageNSFWBlurInvocation | Detects and blurs images that may contain sexually explicit content |
| ImagePaste | Pastes an image into another image |
| ImageProcessor | Base class for invocations that reprocess images for ControlNet |
| ImageResize | Resizes an image to specific dimensions |
| ImageScale | Scales an image by a factor |
| ImageToLatents | Scales latents by a given factor |
| ImageWatermarkInvocation | Adds an invisible watermark to images |
| InfillColor | Infills transparent areas of an image with a solid color |
| InfillPatchMatch | Infills transparent areas of an image using the PatchMatch algorithm |
| InfillTile | Infills transparent areas of an image with tiles of the image |
| Inpaint | Generates an image using inpaint |
| Iterate | Iterates over a list of items |
| LatentsToImage | Generates an image from latents |
| LatentsToLatents | Generates latents using latents as base image |
| LeresImageProcessor | Applies leres processing to image |
| LineartAnimeImageProcessor | Applies line art anime processing to image |
| LineartImageProcessor | Applies line art processing to image |
| LoadImage | Load an image and provide it as output |
| Lora Loader | Apply selected lora to unet and text_encoder |
| Model Loader | Loads a main model, outputting its submodels |
| MaskFromAlpha | Extracts the alpha channel of an image as a mask |
| MediapipeFaceProcessor | Applies mediapipe face processing to image |
| MidasDepthImageProcessor | Applies Midas depth processing to image |
| MlsdImageProcessor | Applied MLSD processing to image |
| Multiply | Multiplies two numbers |
| Noise | Generates latent noise |
| NormalbaeImageProcessor | Applies NormalBAE processing to image |
| OpenposeImageProcessor | Applies Openpose processing to image |
| ParamFloat | A float parameter |
| ParamInt | An integer parameter |
| PidiImageProcessor | Applies PIDI processing to an image |
| Progress Image | Displays the progress image in the Node Editor |
| RandomInit | Outputs a single random integer |
| RandomRange | Creates a collection of random numbers |
| Range | Creates a range of numbers from start to stop with step |
| RangeOfSize | Creates a range from start to start + size with step |
| ResizeLatents | Resizes latents to explicit width/height (in pixels). Provided dimensions are floor-divided by 8. |
| RestoreFace | Restores faces in the image |
| ScaleLatents | Scales latents by a given factor |
| SegmentAnythingProcessor | Applies segment anything processing to image |
| ShowImage | Displays a provided image, and passes it forward in the pipeline |
| StepParamEasing | Experimental per-step parameter for easing for denoising steps |
| Subtract | Subtracts two numbers |
| TextToLatents | Generates latents from conditionings |
| TileResampleProcessor | Bass class for invocations that preprocess images for ControlNet |
| Upscale | Upscales an image |
| VAE Loader | Loads a VAE model, outputting a VaeLoaderOutput |
| ZoeDepthImageProcessor | Applies Zoe depth processing to image |
## Node Grouping Concepts
There are several node grouping concepts that can be examined with a narrow focus. These (and other) groupings can be pieced together to make up functional graph setups, and are important to understanding how groups of nodes work together as part of a whole. Note that the screenshots below aren't examples of complete functioning node graphs (see Examples).
### Noise
As described, an initial noise tensor is necessary for the latent diffusion process. As a result, all non-image *ToLatents nodes require a noise node input.
![groupsnoise](../assets/nodes/groupsnoise.png)
### Conditioning
As described, conditioning is necessary for the latent diffusion process, whether empty or not. As a result, all non-image *ToLatents nodes require positive and negative conditioning inputs. Conditioning is reliant on a CLIP tokenizer provided by the Model Loader node.
![groupsconditioning](../assets/nodes/groupsconditioning.png)
### Image Space & VAE
The ImageToLatents node doesn't require a noise node input, but requires a VAE input to convert the image from image space into latent space. In reverse, the LatentsToImage node requires a VAE input to convert from latent space back into image space.
![groupsimgvae](../assets/nodes/groupsimgvae.png)
### Defined & Random Seeds
It is common to want to use both the same seed (for continuity) and random seeds (for variance). To define a seed, simply enter it into the 'Seed' field on a noise node. Conversely, the RandomInt node generates a random integer between 'Low' and 'High', and can be used as input to the 'Seed' edge point on a noise node to randomize your seed.
![groupsrandseed](../assets/nodes/groupsrandseed.png)
### Control
Control means to guide the diffusion process to adhere to a defined input or structure. Control can be provided as input to non-image *ToLatents nodes from ControlNet nodes. ControlNet nodes usually require an image processor which converts an input image for use with ControlNet.
![groupscontrol](../assets/nodes/groupscontrol.png)
### LoRA
The Lora Loader node lets you load a LoRA (say that ten times fast) and pass it as output to both the Prompt (Compel) and non-image *ToLatents nodes. A model's CLIP tokenizer is passed through the LoRA into Prompt (Compel), where it affects conditioning. A model's U-Net is also passed through the LoRA into a non-image *ToLatents node, where it affects noise prediction.
![groupslora](../assets/nodes/groupslora.png)
### Scaling
Use the ImageScale, ScaleLatents, and Upscale nodes to upscale images and/or latent images. The chosen method differs across contexts. However, be aware that latents are already noisy and compressed at their original resolution; scaling an image could produce more detailed results.
![groupsallscale](../assets/nodes/groupsallscale.png)
### Iteration + Multiple Images as Input
Iteration is a common concept in any processing, and means to repeat a process with given input. In nodes, you're able to use the Iterate node to iterate through collections usually gathered by the Collect node. The Iterate node has many potential uses, from processing a collection of images one after another, to varying seeds across multiple image generations and more. This screenshot demonstrates how to collect several images and pass them out one at a time.
![groupsiterate](../assets/nodes/groupsiterate.png)
### Multiple Image Generation + Random Seeds
Multiple image generation in the node editor is done using the RandomRange node. In this case, the 'Size' field represents the number of images to generate. As RandomRange produces a collection of integers, we need to add the Iterate node to iterate through the collection.
To control seeds across generations takes some care. The first row in the screenshot will generate multiple images with different seeds, but using the same RandomRange parameters across invocations will result in the same group of random seeds being used across the images, producing repeatable results. In the second row, adding the RandomInt node as input to RandomRange's 'Seed' edge point will ensure that seeds are varied across all images across invocations, producing varied results.
![groupsmultigenseeding](../assets/nodes/groupsmultigenseeding.png)
## Examples
With our knowledge of node grouping and the diffusion process, lets break down some basic graphs in the nodes editor. Note that a node's options can be overridden by inputs from other nodes. These examples aren't strict rules to follow and only demonstrate some basic configurations.
### Basic text-to-image Node Graph
![nodest2i](../assets/nodes/nodest2i.png)
- Model Loader: A necessity to generating images (as weve read above). We choose our model from the dropdown. It outputs a U-Net, CLIP tokenizer, and VAE.
- Prompt (Compel): Another necessity. Two prompt nodes are created. One will output positive conditioning (what you want, dog), one will output negative (what you dont want, cat). They both input the CLIP tokenizer that the Model Loader node outputs.
- Noise: Consider this noise A from step one of the text-to-image explanation above. Choose a seed number, width, and height.
- TextToLatents: This node takes many inputs for converting and processing text & noise from image space into latent space, hence the name TextTo**Latents**. In this setup, it inputs positive and negative conditioning from the prompt nodes for processing (step 2 above). It inputs noise from the noise node for processing (steps 2 & 3 above). Lastly, it inputs a U-Net from the Model Loader node for processing (step 2 above). It outputs latents for use in the next LatentsToImage node. Choose number of sampler steps, CFG scale, and scheduler.
- LatentsToImage: This node takes in processed latents from the TextToLatents node, and the models VAE from the Model Loader node which is responsible for decoding latents back into the image space, hence the name LatentsTo**Image**. This node is the last stop, and once the image is decoded, it is saved to the gallery.
### Basic image-to-image Node Graph
![nodesi2i](../assets/nodes/nodesi2i.png)
- Model Loader: Choose a model from the dropdown.
- Prompt (Compel): Two prompt nodes. One positive (dog), one negative (dog). Same CLIP inputs from the Model Loader node as before.
- ImageToLatents: Upload a source image directly in the node window, via drag'n'drop from the gallery, or passed in as input. The ImageToLatents node inputs the VAE from the Model Loader node to decode the chosen image from image space into latent space, hence the name ImageTo**Latents**. It outputs latents for use in the next LatentsToLatents node. It also outputs the source image's width and height for use in the next Noise node if the final image is to be the same dimensions as the source image.
- Noise: A noise tensor is created with the width and height of the source image, and connected to the next LatentsToLatents node. Notice the width and height fields are overridden by the input from the ImageToLatents width and height outputs.
- LatentsToLatents: The inputs and options are nearly identical to TextToLatents, except that LatentsToLatents also takes latents as an input. Considering our source image is already converted to latents in the last ImageToLatents node, and text + noise are no longer the only inputs to process, we use the LatentsToLatents node.
- LatentsToImage: Like previously, the LatentsToImage node will use the VAE from the Model Loader as input to decode the latents from LatentsToLatents into image space, and save it to the gallery.
### Basic ControlNet Node Graph
![nodescontrol](../assets/nodes/nodescontrol.png)
- Model Loader
- Prompt (Compel)
- Noise: Width and height of the CannyImageProcessor ControlNet image is passed in to set the dimensions of the noise passed to TextToLatents.
- CannyImageProcessor: The CannyImageProcessor node is used to process the source image being used as a ControlNet. Each ControlNet processor node applies control in different ways, and has some different options to configure. Width and height are passed to noise, as mentioned. The processed ControlNet image is output to the ControlNet node.
- ControlNet: Select the type of control model. In this case, canny is chosen as the CannyImageProcessor was used to generate the ControlNet image. Configure the control node options, and pass the control output to TextToLatents.
- TextToLatents: Similar to the basic text-to-image example, except ControlNet is passed to the control input edge point.
- LatentsToImage

View File

@ -4,80 +4,6 @@ title: Prompting-Features
# :octicons-command-palette-24: Prompting-Features # :octicons-command-palette-24: Prompting-Features
## **Negative and Unconditioned Prompts**
Any words between a pair of square brackets will instruct Stable
Diffusion to attempt to ban the concept from the generated image. The
same effect is achieved by placing words in the "Negative Prompts"
textbox in the Web UI.
```text
this is a test prompt [not really] to make you understand [cool] how this works.
```
In the above statement, the words 'not really cool` will be ignored by Stable
Diffusion.
Here's a prompt that depicts what it does.
original prompt:
`#!bash "A fantastical translucent pony made of water and foam, ethereal, radiant, hyperalism, scottish folklore, digital painting, artstation, concept art, smooth, 8 k frostbite 3 engine, ultra detailed, art by artgerm and greg rutkowski and magali villeneuve"`
`#!bash parameters: steps=20, dimensions=512x768, CFG=7.5, Scheduler=k_euler_a, seed=1654590180`
<figure markdown>
![step1](../assets/negative_prompt_walkthru/step1.png)
</figure>
That image has a woman, so if we want the horse without a rider, we can
influence the image not to have a woman by putting [woman] in the prompt, like
this:
`#!bash "A fantastical translucent poney made of water and foam, ethereal, radiant, hyperalism, scottish folklore, digital painting, artstation, concept art, smooth, 8 k frostbite 3 engine, ultra detailed, art by artgerm and greg rutkowski and magali villeneuve [woman]"`
(same parameters as above)
<figure markdown>
![step2](../assets/negative_prompt_walkthru/step2.png)
</figure>
That's nice - but say we also don't want the image to be quite so blue. We can
add "blue" to the list of negative prompts, so it's now [woman blue]:
`#!bash "A fantastical translucent poney made of water and foam, ethereal, radiant, hyperalism, scottish folklore, digital painting, artstation, concept art, smooth, 8 k frostbite 3 engine, ultra detailed, art by artgerm and greg rutkowski and magali villeneuve [woman blue]"`
(same parameters as above)
<figure markdown>
![step3](../assets/negative_prompt_walkthru/step3.png)
</figure>
Getting close - but there's no sense in having a saddle when our horse doesn't
have a rider, so we'll add one more negative prompt: [woman blue saddle].
`#!bash "A fantastical translucent poney made of water and foam, ethereal, radiant, hyperalism, scottish folklore, digital painting, artstation, concept art, smooth, 8 k frostbite 3 engine, ultra detailed, art by artgerm and greg rutkowski and magali villeneuve [woman blue saddle]"`
(same parameters as above)
<figure markdown>
![step4](../assets/negative_prompt_walkthru/step4.png)
</figure>
!!! notes "Notes about this feature:"
* The only requirement for words to be ignored is that they are in between a pair of square brackets.
* You can provide multiple words within the same bracket.
* You can provide multiple brackets with multiple words in different places of your prompt. That works just fine.
* To improve typical anatomy problems, you can add negative prompts like `[bad anatomy, extra legs, extra arms, extra fingers, poorly drawn hands, poorly drawn feet, disfigured, out of frame, tiling, bad art, deformed, mutated]`.
---
## **Prompt Syntax Features** ## **Prompt Syntax Features**
The InvokeAI prompting language has the following features: The InvokeAI prompting language has the following features:
@ -102,9 +28,6 @@ The following syntax is recognised:
`a tall thin man (picking (apricots)1.3)1.1`. (`+` is equivalent to 1.1, `++` `a tall thin man (picking (apricots)1.3)1.1`. (`+` is equivalent to 1.1, `++`
is pow(1.1,2), `+++` is pow(1.1,3), etc; `-` means 0.9, `--` means pow(0.9,2), is pow(1.1,2), `+++` is pow(1.1,3), etc; `-` means 0.9, `--` means pow(0.9,2),
etc.) etc.)
- attention also applies to `[unconditioning]` so
`a tall thin man picking apricots [(ladder)0.01]` will _very gently_ nudge SD
away from trying to draw the man on a ladder
You can use this to increase or decrease the amount of something. Starting from You can use this to increase or decrease the amount of something. Starting from
this prompt of `a man picking apricots from a tree`, let's see what happens if this prompt of `a man picking apricots from a tree`, let's see what happens if
@ -150,7 +73,7 @@ Or, alternatively, with more man:
| ---------------------------------------------- | ---------------------------------------------- | ---------------------------------------------- | ---------------------------------------------- | | ---------------------------------------------- | ---------------------------------------------- | ---------------------------------------------- | ---------------------------------------------- |
| ![](../assets/prompt_syntax/mountain-man1.png) | ![](../assets/prompt_syntax/mountain-man2.png) | ![](../assets/prompt_syntax/mountain-man3.png) | ![](../assets/prompt_syntax/mountain-man4.png) | | ![](../assets/prompt_syntax/mountain-man1.png) | ![](../assets/prompt_syntax/mountain-man2.png) | ![](../assets/prompt_syntax/mountain-man3.png) | ![](../assets/prompt_syntax/mountain-man4.png) |
### Blending between prompts ### Prompt Blending
- `("a tall thin man picking apricots", "a tall thin man picking pears").blend(1,1)` - `("a tall thin man picking apricots", "a tall thin man picking pears").blend(1,1)`
- The existing prompt blending using `:<weight>` will continue to be supported - - The existing prompt blending using `:<weight>` will continue to be supported -
@ -168,6 +91,24 @@ Or, alternatively, with more man:
See the section below on "Prompt Blending" for more information about how this See the section below on "Prompt Blending" for more information about how this
works. works.
### Prompt Conjunction
Join multiple clauses together to create a conjoined prompt. Each clause will be passed to CLIP separately.
For example, the prompt:
```bash
"A mystical valley surround by towering granite cliffs, watercolor, warm"
```
Can be used with .and():
```bash
("A mystical valley", "surround by towering granite cliffs", "watercolor", "warm").and()
```
Each will give you different results - try them out and see what you prefer!
### Cross-Attention Control ('prompt2prompt') ### Cross-Attention Control ('prompt2prompt')
Sometimes an image you generate is almost right, and you just want to change one Sometimes an image you generate is almost right, and you just want to change one
@ -190,7 +131,7 @@ For example, consider the prompt `a cat.swap(dog) playing with a ball in the for
- For multiple word swaps, use parentheses: `a (fluffy cat).swap(barking dog) playing with a ball in the forest`. - For multiple word swaps, use parentheses: `a (fluffy cat).swap(barking dog) playing with a ball in the forest`.
- To swap a comma, use quotes: `a ("fluffy, grey cat").swap("big, barking dog") playing with a ball in the forest`. - To swap a comma, use quotes: `a ("fluffy, grey cat").swap("big, barking dog") playing with a ball in the forest`.
- Supports options `t_start` and `t_end` (each 0-1) loosely corresponding to bloc97's `prompt_edit_tokens_start/_end` but with the math swapped to make it easier to - Supports options `t_start` and `t_end` (each 0-1) loosely corresponding to (bloc97's)[(https://github.com/bloc97/CrossAttentionControl)] `prompt_edit_tokens_start/_end` but with the math swapped to make it easier to
intuitively understand. `t_start` and `t_end` are used to control on which steps cross-attention control should run. With the default values `t_start=0` and `t_end=1`, cross-attention control is active on every step of image generation. Other values can be used to turn cross-attention control off for part of the image generation process. intuitively understand. `t_start` and `t_end` are used to control on which steps cross-attention control should run. With the default values `t_start=0` and `t_end=1`, cross-attention control is active on every step of image generation. Other values can be used to turn cross-attention control off for part of the image generation process.
- For example, if doing a diffusion with 10 steps for the prompt is `a cat.swap(dog, t_start=0.3, t_end=1.0) playing with a ball in the forest`, the first 3 steps will be run as `a cat playing with a ball in the forest`, while the last 7 steps will run as `a dog playing with a ball in the forest`, but the pixels that represent `dog` will be locked to the pixels that would have represented `cat` if the `cat` prompt had been used instead. - For example, if doing a diffusion with 10 steps for the prompt is `a cat.swap(dog, t_start=0.3, t_end=1.0) playing with a ball in the forest`, the first 3 steps will be run as `a cat playing with a ball in the forest`, while the last 7 steps will run as `a dog playing with a ball in the forest`, but the pixels that represent `dog` will be locked to the pixels that would have represented `cat` if the `cat` prompt had been used instead.
- Conversely, for `a cat.swap(dog, t_start=0, t_end=0.7) playing with a ball in the forest`, the first 7 steps will run as `a dog playing with a ball in the forest` with the pixels that represent `dog` locked to the same pixels that would have represented `cat` if the `cat` prompt was being used instead. The final 3 steps will just run `a cat playing with a ball in the forest`. - Conversely, for `a cat.swap(dog, t_start=0, t_end=0.7) playing with a ball in the forest`, the first 7 steps will run as `a dog playing with a ball in the forest` with the pixels that represent `dog` locked to the same pixels that would have represented `cat` if the `cat` prompt was being used instead. The final 3 steps will just run `a cat playing with a ball in the forest`.
@ -201,7 +142,7 @@ Prompt2prompt `.swap()` is not compatible with xformers, which will be temporari
The `prompt2prompt` code is based off The `prompt2prompt` code is based off
[bloc97's colab](https://github.com/bloc97/CrossAttentionControl). [bloc97's colab](https://github.com/bloc97/CrossAttentionControl).
### Escaping parantheses () and speech marks "" ### Escaping parentheses () and speech marks ""
If the model you are using has parentheses () or speech marks "" as part of its If the model you are using has parentheses () or speech marks "" as part of its
syntax, you will need to "escape" these using a backslash, so that`(my_keyword)` syntax, you will need to "escape" these using a backslash, so that`(my_keyword)`
@ -212,23 +153,16 @@ the parentheses as part of the prompt syntax and it will get confused.
## **Prompt Blending** ## **Prompt Blending**
You may blend together different sections of the prompt to explore the AI's You may blend together prompts to explore the AI's
latent semantic space and generate interesting (and often surprising!) latent semantic space and generate interesting (and often surprising!)
variations. The syntax is: variations. The syntax is:
```bash ```bash
blue sphere:0.25 red cube:0.75 hybrid ("prompt #1", "prompt #2").blend(0.25, 0.75)
``` ```
This will tell the sampler to blend 25% of the concept of a blue sphere with 75% This will tell the sampler to blend 25% of the concept of prompt #1 with 75%
of the concept of a red cube. The blend weights can use any combination of of the concept of prompt #2. It is recommended to keep the sum of the weights to around 1.0, but interesting things might happen if you go outside of this range.
integers and floating point numbers, and they do not need to add up to 1.
Everything to the left of the `:XX` up to the previous `:XX` is used for
merging, so the overall effect is:
```bash
0.25 * "blue sphere" + 0.75 * "white duck" + hybrid
```
Because you are exploring the "mind" of the AI, the AI's way of mixing two Because you are exploring the "mind" of the AI, the AI's way of mixing two
concepts may not match yours, leading to surprising effects. To illustrate, here concepts may not match yours, leading to surprising effects. To illustrate, here
@ -236,13 +170,14 @@ are three images generated using various combinations of blend weights. As
usual, unless you fix the seed, the prompts will give you different results each usual, unless you fix the seed, the prompts will give you different results each
time you run them. time you run them.
<figure markdown> Let's examine how this affects image generation results:
### "blue sphere, red cube, hybrid"
</figure> ```bash
"blue sphere, red cube, hybrid"
```
This example doesn't use melding at all and represents the default way of mixing This example doesn't use blending at all and represents the default way of mixing
concepts. concepts.
<figure markdown> <figure markdown>
@ -251,55 +186,47 @@ concepts.
</figure> </figure>
It's interesting to see how the AI expressed the concept of "cube" as the four It's interesting to see how the AI expressed the concept of "cube" within the sphere. If you look closely, there is depth there, so the enclosing frame is actually a cube.
quadrants of the enclosing frame. If you look closely, there is depth there, so
the enclosing frame is actually a cube.
<figure markdown> <figure markdown>
### "blue sphere:0.25 red cube:0.75 hybrid" ```bash
("blue sphere", "red cube").blend(0.25, 0.75)
```
![blue-sphere-25-red-cube-75](../assets/prompt-blending/blue-sphere-0.25-red-cube-0.75-hybrid.png) ![blue-sphere-25-red-cube-75](../assets/prompt-blending/blue-sphere-0.25-red-cube-0.75-hybrid.png)
</figure> </figure>
Now that's interesting. We get neither a blue sphere nor a red cube, but a red Now that's interesting. We get an image with a resemblance of a red cube, with a hint of blue shadows which represents a melding of concepts within the AI's "latent space" of semantic representations.
sphere embedded in a brick wall, which represents a melding of concepts within
the AI's "latent space" of semantic representations. Where is Ludwig
Wittgenstein when you need him?
<figure markdown> <figure markdown>
### "blue sphere:0.75 red cube:0.25 hybrid" ```bash
("blue sphere", "red cube").blend(0.75, 0.25)
```
![blue-sphere-75-red-cube-25](../assets/prompt-blending/blue-sphere-0.75-red-cube-0.25-hybrid.png) ![blue-sphere-75-red-cube-25](../assets/prompt-blending/blue-sphere-0.75-red-cube-0.25-hybrid.png)
</figure> </figure>
Definitely more blue-spherey. The cube is gone entirely, but it's really cool Definitely more blue-spherey.
abstract art.
<figure markdown> <figure markdown>
### "blue sphere:0.5 red cube:0.5 hybrid" ```bash
("blue sphere", "red cube").blend(0.5, 0.5)
```
</figure>
<figure markdown>
![blue-sphere-5-red-cube-5-hybrid](../assets/prompt-blending/blue-sphere-0.5-red-cube-0.5-hybrid.png) ![blue-sphere-5-red-cube-5-hybrid](../assets/prompt-blending/blue-sphere-0.5-red-cube-0.5-hybrid.png)
</figure> </figure>
Whoa...! I see blue and red, but no spheres or cubes. Is the word "hybrid"
summoning up the concept of some sort of scifi creature? Let's find out.
<figure markdown> Whoa...! I see blue and red, and if I squint, spheres and cubes.
### "blue sphere:0.5 red cube:0.5"
![blue-sphere-5-red-cube-5](../assets/prompt-blending/blue-sphere-0.5-red-cube-0.5.png)
</figure>
Indeed, removing the word "hybrid" produces an image that is more like what we'd
expect.
## Dynamic Prompts ## Dynamic Prompts

View File

@ -30,10 +30,6 @@ image output.
### * [Image-to-Image Guide](IMG2IMG.md) ### * [Image-to-Image Guide](IMG2IMG.md)
Use a seed image to build new creations in the CLI. Use a seed image to build new creations in the CLI.
### * [Generating Variations](VARIATIONS.md)
Have an image you like and want to generate many more like it? Variations
are the ticket.
## Model Management ## Model Management
### * [Model Installation](../installation/050_INSTALLING_MODELS.md) ### * [Model Installation](../installation/050_INSTALLING_MODELS.md)

27
docs/help/diffusion.md Normal file
View File

@ -0,0 +1,27 @@
Taking the time to understand the diffusion process will help you to understand how to more effectively use InvokeAI.
There are two main ways Stable Diffusion works - with images, and latents.
Image space represents images in pixel form that you look at. Latent space represents compressed inputs. Its in latent space that Stable Diffusion processes images. A VAE (Variational Auto Encoder) is responsible for compressing and encoding inputs into latent space, as well as decoding outputs back into image space.
To fully understand the diffusion process, we need to understand a few more terms: UNet, CLIP, and conditioning.
A U-Net is a model trained on a large number of latent images with with known amounts of random noise added. This means that the U-Net can be given a slightly noisy image and it will predict the pattern of noise needed to subtract from the image in order to recover the original.
CLIP is a model that tokenizes and encodes text into conditioning. This conditioning guides the model during the denoising steps to produce a new image.
The U-Net and CLIP work together during the image generation process at each denoising step, with the U-Net removing noise in such a way that the result is similar to images in the U-Nets training set, while CLIP guides the U-Net towards creating images that are most similar to the prompt.
When you generate an image using text-to-image, multiple steps occur in latent space:
1. Random noise is generated at the chosen height and width. The noises characteristics are dictated by seed. This noise tensor is passed into latent space. Well call this noise A.
2. Using a models U-Net, a noise predictor examines noise A, and the words tokenized by CLIP from your prompt (conditioning). It generates its own noise tensor to predict what the final image might look like in latent space. Well call this noise B.
3. Noise B is subtracted from noise A in an attempt to create a latent image consistent with the prompt. This step is repeated for the number of sampler steps chosen.
4. The VAE decodes the final latent image from latent space into image space.
Image-to-image is a similar process, with only step 1 being different:
1. The input image is encoded from image space into latent space by the VAE. Noise is then added to the input latent image. Denoising Strength dictates how may noise steps are added, and the amount of noise added at each step. A Denoising Strength of 0 means there are 0 steps and no noise added, resulting in an unchanged image, while a Denoising Strength of 1 results in the image being completely replaced with noise and a full set of denoising steps are performance. The process is then the same as steps 2-4 in the text-to-image process.
Furthermore, a model provides the CLIP prompt tokenizer, the VAE, and a U-Net (where noise prediction occurs given a prompt and initial noise tensor).
A noise scheduler (eg. DPM++ 2M Karras) schedules the subtraction of noise from the latent image across the sampler steps chosen (step 3 above). Less noise is usually subtracted at higher sampler steps.

View File

@ -49,9 +49,9 @@ title: Home
[![github stars badge]][github stars link] [![github stars badge]][github stars link]
[![github forks badge]][github forks link] [![github forks badge]][github forks link]
[![CI checks on main badge]][ci checks on main link] <!-- [![CI checks on main badge]][ci checks on main link]
[![CI checks on dev badge]][ci checks on dev link] [![CI checks on dev badge]][ci checks on dev link]
<!-- [![latest commit to dev badge]][latest commit to dev link] --> [![latest commit to dev badge]][latest commit to dev link] -->
[![github open issues badge]][github open issues link] [![github open issues badge]][github open issues link]
[![github open prs badge]][github open prs link] [![github open prs badge]][github open prs link]

View File

@ -8,9 +8,9 @@ title: Installing Manually
</figure> </figure>
!!! warning "This is for advanced Users" !!! warning "This is for Advanced Users"
**python experience is mandatory** **Python experience is mandatory**
## Introduction ## Introduction

View File

@ -4,9 +4,9 @@ title: Installing with Docker
# :fontawesome-brands-docker: Docker # :fontawesome-brands-docker: Docker
!!! warning "For end users" !!! warning "For most users"
We highly recommend to Install InvokeAI locally using [these instructions](index.md) We highly recommend to Install InvokeAI locally using [these instructions](INSTALLATION.md)
!!! tip "For developers" !!! tip "For developers"

View File

@ -0,0 +1,7 @@
document$.subscribe(function() {
var tables = document.querySelectorAll("article table:not([class])")
tables.forEach(function(table) {
new Tablesort(table)
})
})

68
docs/nodes/NODES.md Normal file
View File

@ -0,0 +1,68 @@
# Using the Node Editor
The nodes editor is a blank canvas allowing for the use of individual functions and image transformations to control the image generation workflow. Nodes take in inputs on the left side of the node, and return an output on the right side of the node. A node graph is composed of multiple nodes that are connected together to create a workflow. Nodes' inputs and outputs are connected by dragging connectors from node to node. Inputs and outputs are color coded for ease of use.
To better understand how nodes are used, think of how an electric power bar works. It takes in one input (electricity from a wall outlet) and passes it to multiple devices through multiple outputs. Similarly, a node could have multiple inputs and outputs functioning at the same (or different) time, but all node outputs pass information onward like a power bar passes electricity. Not all outputs are compatible with all inputs, however - Each node has different constraints on how it is expecting to input/output information. In general, node outputs are colour-coded to match compatible inputs of other nodes.
If you're not familiar with Diffusion, take a look at our [Diffusion Overview.](../help/diffusion.md) Understanding how diffusion works will enable you to more easily use the Nodes Editor and build workflows to suit your needs.
## Important Concepts
There are several node grouping concepts that can be examined with a narrow focus. These (and other) groupings can be pieced together to make up functional graph setups, and are important to understanding how groups of nodes work together as part of a whole. Note that the screenshots below aren't examples of complete functioning node graphs (see Examples).
### Noise
An initial noise tensor is necessary for the latent diffusion process. As a result, the Denoising node requires a noise node input.
![groupsnoise](../assets/nodes/groupsnoise.png)
### Text Prompt Conditioning
Conditioning is necessary for the latent diffusion process, whether empty or not. As a result, the Denoising node requires positive and negative conditioning inputs. Conditioning is reliant on a CLIP text encoder provided by the Model Loader node.
![groupsconditioning](../assets/nodes/groupsconditioning.png)
### Image to Latents & VAE
The ImageToLatents node takes in a pixel image and a VAE and outputs a latents. The LatentsToImage node does the opposite, taking in a latents and a VAE and outpus a pixel image.
![groupsimgvae](../assets/nodes/groupsimgvae.png)
### Defined & Random Seeds
It is common to want to use both the same seed (for continuity) and random seeds (for variety). To define a seed, simply enter it into the 'Seed' field on a noise node. Conversely, the RandomInt node generates a random integer between 'Low' and 'High', and can be used as input to the 'Seed' edge point on a noise node to randomize your seed.
![groupsrandseed](../assets/nodes/groupsrandseed.png)
### ControlNet
The ControlNet node outputs a Control, which can be provided as input to non-image *ToLatents nodes. Depending on the type of ControlNet desired, ControlNet nodes usually require an image processor node, such as a Canny Processor or Depth Processor, which prepares an input image for use with ControlNet.
![groupscontrol](../assets/nodes/groupscontrol.png)
### LoRA
The Lora Loader node lets you load a LoRA and pass it as output.A LoRA provides fine-tunes to the UNet and text encoder weights that augment the base models image and text vocabularies.
![groupslora](../assets/nodes/groupslora.png)
### Scaling
Use the ImageScale, ScaleLatents, and Upscale nodes to upscale images and/or latent images. Upscaling is the process of enlarging an image and adding more detail. The chosen method differs across contexts. However, be aware that latents are already noisy and compressed at their original resolution; scaling an image could produce more detailed results.
![groupsallscale](../assets/nodes/groupsallscale.png)
### Iteration + Multiple Images as Input
Iteration is a common concept in any processing, and means to repeat a process with given input. In nodes, you're able to use the Iterate node to iterate through collections usually gathered by the Collect node. The Iterate node has many potential uses, from processing a collection of images one after another, to varying seeds across multiple image generations and more. This screenshot demonstrates how to collect several images and use them in an image generation workflow.
![groupsiterate](../assets/nodes/groupsiterate.png)
### Multiple Image Generation + Random Seeds
Multiple image generation in the node editor is done using the RandomRange node. In this case, the 'Size' field represents the number of images to generate. As RandomRange produces a collection of integers, we need to add the Iterate node to iterate through the collection.
To control seeds across generations takes some care. The first row in the screenshot will generate multiple images with different seeds, but using the same RandomRange parameters across invocations will result in the same group of random seeds being used across the images, producing repeatable results. In the second row, adding the RandomInt node as input to RandomRange's 'Seed' edge point will ensure that seeds are varied across all images across invocations, producing varied results.
![groupsmultigenseeding](../assets/nodes/groupsmultigenseeding.png)

View File

@ -0,0 +1,80 @@
# ComfyUI to InvokeAI
If you're coming to InvokeAI from ComfyUI, welcome! You'll find things are similar but different - the good news is that you already know how things should work, and it's just a matter of wiring them up!
Some things to note:
- InvokeAI's nodes tend to be more granular than default nodes in Comfy. This means each node in Invoke will do a specific task and you might need to use multiple nodes to achieve the same result. The added granularity improves the control you have have over your workflows.
- InvokeAI's backend and ComfyUI's backend are very different which means Comfy workflows are not able to be imported into InvokeAI. However, we have created a [list of popular workflows](exampleWorkflows.md) for you to get started with Nodes in InvokeAI!
## Node Equivalents:
| Comfy UI Category | ComfyUI Node | Invoke Equivalent |
|:---------------------------------- |:---------------------------------- | :----------------------------------|
| Sampling |KSampler |Denoise Latents|
| Sampling |Ksampler Advanced|Denoise Latents |
| Loaders |Load Checkpoint | Main Model Loader _or_ SDXL Main Model Loader|
| Loaders |Load VAE | VAE Loader |
| Loaders |Load Lora | LoRA Loader _or_ SDXL Lora Loader|
| Loaders |Load ControlNet Model | ControlNet|
| Loaders |Load ControlNet Model (diff) | ControlNet|
| Loaders |Load Style Model | Reference Only ControlNet will be coming in a future version of InvokeAI|
| Loaders |unCLIPCheckpointLoader | N/A |
| Loaders |GLIGENLoader | N/A |
| Loaders |Hypernetwork Loader | N/A |
| Loaders |Load Upscale Model | Occurs within "Upscale (RealESRGAN)"|
|Conditioning |CLIP Text Encode (Prompt) | Compel (Prompt) or SDXL Compel (Prompt) |
|Conditioning |CLIP Set Last Layer | CLIP Skip|
|Conditioning |Conditioning (Average) | Use the .blend() feature of prompts |
|Conditioning |Conditioning (Combine) | N/A |
|Conditioning |Conditioning (Concat) | See the Prompt Tools Community Node|
|Conditioning |Conditioning (Set Area) | N/A |
|Conditioning |Conditioning (Set Mask) | Mask Edge |
|Conditioning |CLIP Vision Encode | N/A |
|Conditioning |unCLIPConditioning | N/A |
|Conditioning |Apply ControlNet | ControlNet |
|Conditioning |Apply ControlNet (Advanced) | ControlNet |
|Latent |VAE Decode | Latents to Image|
|Latent |VAE Encode | Image to Latents |
|Latent |Empty Latent Image | Noise |
|Latent |Upscale Latent |Resize Latents |
|Latent |Upscale Latent By |Scale Latents |
|Latent |Latent Composite | Blend Latents |
|Latent |LatentCompositeMasked | N/A |
|Image |Save Image | Image |
|Image |Preview Image |Current |
|Image |Load Image | Image|
|Image |Empty Image| Blank Image |
|Image |Invert Image | Invert Lerp Image |
|Image |Batch Images | Link "Image" nodes into an "Image Collection" node |
|Image |Pad Image for Outpainting | Outpainting is easily accomplished in the Unified Canvas |
|Image |ImageCompositeMasked | Paste Image |
|Image | Upscale Image | Resize Image |
|Image | Upscale Image By | Upscale Image |
|Image | Upscale Image (using Model) | Upscale Image |
|Image | ImageBlur | Blur Image |
|Image | ImageQuantize | N/A |
|Image | ImageSharpen | N/A |
|Image | Canny | Canny Processor |
|Mask |Load Image (as Mask) | Image |
|Mask |Convert Mask to Image | Image|
|Mask |Convert Image to Mask | Image |
|Mask |SolidMask | N/A |
|Mask |InvertMask |Invert Lerp Image |
|Mask |CropMask | Crop Image |
|Mask |MaskComposite | Combine Mask |
|Mask |FeatherMask | Blur Image |
|Advanced | Load CLIP | Main Model Loader _or_ SDXL Main Model Loader|
|Advanced | UNETLoader | Main Model Loader _or_ SDXL Main Model Loader|
|Advanced | DualCLIPLoader | Main Model Loader _or_ SDXL Main Model Loader|
|Advanced | Load Checkpoint | Main Model Loader _or_ SDXL Main Model Loader |
|Advanced | ConditioningZeroOut | N/A |
|Advanced | ConditioningSetTimestepRange | N/A |
|Advanced | CLIPTextEncodeSDXLRefiner | Compel (Prompt) or SDXL Compel (Prompt) |
|Advanced | CLIPTextEncodeSDXL |Compel (Prompt) or SDXL Compel (Prompt) |
|Advanced | ModelMergeSimple | Model Merging is available in the Model Manager |
|Advanced | ModelMergeBlocks | Model Merging is available in the Model Manager|
|Advanced | CheckpointSave | Model saving is available in the Model Manager|
|Advanced | CLIPMergeSimple | N/A |

View File

@ -2,17 +2,13 @@
These are nodes that have been developed by the community, for the community. If you're not sure what a node is, you can learn more about nodes [here](overview.md). These are nodes that have been developed by the community, for the community. If you're not sure what a node is, you can learn more about nodes [here](overview.md).
If you'd like to submit a node for the community, please refer to the [node creation overview](./overview.md#contributing-nodes). If you'd like to submit a node for the community, please refer to the [node creation overview](contributingNodes.md).
To download a node, simply download the `.py` node file from the link and add it to the `invokeai/app/invocations/` folder in your Invoke AI install location. Along with the node, an example node graph should be provided to help you get started with the node. To download a node, simply download the `.py` node file from the link and add it to the `invokeai/app/invocations` folder in your Invoke AI install location. Along with the node, an example node graph should be provided to help you get started with the node.
To use a community node graph, download the the `.json` node graph file and load it into Invoke AI via the **Load Nodes** button on the Node Editor. To use a community node graph, download the the `.json` node graph file and load it into Invoke AI via the **Load Nodes** button on the Node Editor.
## Disclaimer ## Community Nodes
The nodes linked below have been developed and contributed by members of the Invoke AI community. While we strive to ensure the quality and safety of these contributions, we do not guarantee the reliability or security of the nodes. If you have issues or concerns with any of the nodes below, please raise it on GitHub or in the Discord.
## List of Nodes
### FaceTools ### FaceTools
@ -34,6 +30,33 @@ The nodes linked below have been developed and contributed by members of the Inv
**Node Link:** https://github.com/JPPhoto/ideal-size-node **Node Link:** https://github.com/JPPhoto/ideal-size-node
<hr>
### Retroize
**Description:** Retroize is a collection of nodes for InvokeAI to "Retroize" images. Any image can be given a fresh coat of retro paint with these nodes, either from your gallery or from within the graph itself. It includes nodes to pixelize, quantize, palettize, and ditherize images; as well as to retrieve palettes from existing images.
**Node Link:** https://github.com/Ar7ific1al/invokeai-retroizeinode/
**Retroize Output Examples**
![image](https://github.com/Ar7ific1al/InvokeAI_nodes_retroize/assets/2306586/de8b4fa6-324c-4c2d-b36c-297600c73974)
--------------------------------
### GPT2RandomPromptMaker
**Description:** A node for InvokeAI utilizes the GPT-2 language model to generate random prompts based on a provided seed and context.
**Node Link:** https://github.com/mickr777/GPT2RandomPromptMaker
**Output Examples**
Generated Prompt: An enchanted weapon will be usable by any character regardless of their alignment.
![9acf5aef-7254-40dd-95b3-8eac431dfab0 (1)](https://github.com/mickr777/InvokeAI/assets/115216705/8496ba09-bcdd-4ff7-8076-ff213b6a1e4c)
-------------------------------- --------------------------------
### Example Node Template ### Example Node Template
@ -47,7 +70,12 @@ The nodes linked below have been developed and contributed by members of the Inv
![Example Image](https://invoke-ai.github.io/InvokeAI/assets/invoke_ai_banner.png){: style="height:115px;width:240px"} ![Example Image](https://invoke-ai.github.io/InvokeAI/assets/invoke_ai_banner.png){: style="height:115px;width:240px"}
## Disclaimer
The nodes linked have been developed and contributed by members of the Invoke AI community. While we strive to ensure the quality and safety of these contributions, we do not guarantee the reliability or security of the nodes. If you have issues or concerns with any of the nodes below, please raise it on GitHub or in the Discord.
## Help ## Help
If you run into any issues with a node, please post in the [InvokeAI Discord](https://discord.gg/ZmtBAhwWhy). If you run into any issues with a node, please post in the [InvokeAI Discord](https://discord.gg/ZmtBAhwWhy).

View File

@ -0,0 +1,27 @@
# Contributing Nodes
To learn about the specifics of creating a new node, please visit our [Node creation documentation](../contributing/INVOCATIONS.md).
Once youve created a node and confirmed that it behaves as expected locally, follow these steps:
- Make sure the node is contained in a new Python (.py) file
- Submit a pull request with a link to your node in GitHub against the `nodes` branch to add the node to the [Community Nodes](Community Nodes) list
- Make sure you are following the template below and have provided all relevant details about the node and what it does.
- A maintainer will review the pull request and node. If the node is aligned with the direction of the project, you might be asked for permission to include it in the core project.
### Community Node Template
```markdown
--------------------------------
### Super Cool Node Template
**Description:** This node allows you to do super cool things with InvokeAI.
**Node Link:** https://github.com/invoke-ai/InvokeAI/fake_node.py
**Example Node Graph:** https://github.com/invoke-ai/InvokeAI/fake_node_graph.json
**Output Examples**
![InvokeAI](https://invoke-ai.github.io/InvokeAI/assets/invoke_ai_banner.png)
```

View File

@ -0,0 +1,97 @@
# List of Default Nodes
The table below contains a list of the default nodes shipped with InvokeAI and their descriptions.
| Node <img width=160 align="right"> | Function |
|: ---------------------------------- | :--------------------------------------------------------------------------------------|
|Add Integers | Adds two numbers|
|Boolean Primitive Collection | A collection of boolean primitive values|
|Boolean Primitive | A boolean primitive value|
|Canny Processor | Canny edge detection for ControlNet|
|CLIP Skip | Skip layers in clip text_encoder model.|
|Collect | Collects values into a collection|
|Color Correct | Shifts the colors of a target image to match the reference image, optionally using a mask to only color-correct certain regions of the target image.|
|Color Primitive | A color primitive value|
|Compel Prompt | Parse prompt using compel package to conditioning.|
|Conditioning Primitive Collection | A collection of conditioning tensor primitive values|
|Conditioning Primitive | A conditioning tensor primitive value|
|Content Shuffle Processor | Applies content shuffle processing to image|
|ControlNet | Collects ControlNet info to pass to other nodes|
|OpenCV Inpaint | Simple inpaint using opencv.|
|Denoise Latents | Denoises noisy latents to decodable images|
|Divide Integers | Divides two numbers|
|Dynamic Prompt | Parses a prompt using adieyal/dynamicprompts' random or combinatorial generator|
|Upscale (RealESRGAN) | Upscales an image using RealESRGAN.|
|Float Primitive Collection | A collection of float primitive values|
|Float Primitive | A float primitive value|
|Float Range | Creates a range|
|HED (softedge) Processor | Applies HED edge detection to image|
|Blur Image | Blurs an image|
|Extract Image Channel | Gets a channel from an image.|
|Image Primitive Collection | A collection of image primitive values|
|Convert Image Mode | Converts an image to a different mode.|
|Crop Image | Crops an image to a specified box. The box can be outside of the image.|
|Image Hue Adjustment | Adjusts the Hue of an image.|
|Inverse Lerp Image | Inverse linear interpolation of all pixels of an image|
|Image Primitive | An image primitive value|
|Lerp Image | Linear interpolation of all pixels of an image|
|Image Luminosity Adjustment | Adjusts the Luminosity (Value) of an image.|
|Multiply Images | Multiplies two images together using `PIL.ImageChops.multiply()`.|
|Blur NSFW Image | Add blur to NSFW-flagged images|
|Paste Image | Pastes an image into another image.|
|ImageProcessor | Base class for invocations that preprocess images for ControlNet|
|Resize Image | Resizes an image to specific dimensions|
|Image Saturation Adjustment | Adjusts the Saturation of an image.|
|Scale Image | Scales an image by a factor|
|Image to Latents | Encodes an image into latents.|
|Add Invisible Watermark | Add an invisible watermark to an image|
|Solid Color Infill | Infills transparent areas of an image with a solid color|
|PatchMatch Infill | Infills transparent areas of an image using the PatchMatch algorithm|
|Tile Infill | Infills transparent areas of an image with tiles of the image|
|Integer Primitive Collection | A collection of integer primitive values|
|Integer Primitive | An integer primitive value|
|Iterate | Iterates over a list of items|
|Latents Primitive Collection | A collection of latents tensor primitive values|
|Latents Primitive | A latents tensor primitive value|
|Latents to Image | Generates an image from latents.|
|Leres (Depth) Processor | Applies leres processing to image|
|Lineart Anime Processor | Applies line art anime processing to image|
|Lineart Processor | Applies line art processing to image|
|LoRA Loader | Apply selected lora to unet and text_encoder.|
|Main Model Loader | Loads a main model, outputting its submodels.|
|Combine Mask | Combine two masks together by multiplying them using `PIL.ImageChops.multiply()`.|
|Mask Edge | Applies an edge mask to an image|
|Mask from Alpha | Extracts the alpha channel of an image as a mask.|
|Mediapipe Face Processor | Applies mediapipe face processing to image|
|Midas (Depth) Processor | Applies Midas depth processing to image|
|MLSD Processor | Applies MLSD processing to image|
|Multiply Integers | Multiplies two numbers|
|Noise | Generates latent noise.|
|Normal BAE Processor | Applies NormalBae processing to image|
|ONNX Latents to Image | Generates an image from latents.|
|ONNX Prompt (Raw) | A node to process inputs and produce outputs. May use dependency injection in __init__ to receive providers.|
|ONNX Text to Latents | Generates latents from conditionings.|
|ONNX Model Loader | Loads a main model, outputting its submodels.|
|Openpose Processor | Applies Openpose processing to image|
|PIDI Processor | Applies PIDI processing to image|
|Prompts from File | Loads prompts from a text file|
|Random Integer | Outputs a single random integer.|
|Random Range | Creates a collection of random numbers|
|Integer Range | Creates a range of numbers from start to stop with step|
|Integer Range of Size | Creates a range from start to start + size with step|
|Resize Latents | Resizes latents to explicit width/height (in pixels). Provided dimensions are floor-divided by 8.|
|SDXL Compel Prompt | Parse prompt using compel package to conditioning.|
|SDXL LoRA Loader | Apply selected lora to unet and text_encoder.|
|SDXL Main Model Loader | Loads an sdxl base model, outputting its submodels.|
|SDXL Refiner Compel Prompt | Parse prompt using compel package to conditioning.|
|SDXL Refiner Model Loader | Loads an sdxl refiner model, outputting its submodels.|
|Scale Latents | Scales latents by a given factor.|
|Segment Anything Processor | Applies segment anything processing to image|
|Show Image | Displays a provided image, and passes it forward in the pipeline.|
|Step Param Easing | Experimental per-step parameter easing for denoising steps|
|String Primitive Collection | A collection of string primitive values|
|String Primitive | A string primitive value|
|Subtract Integers | Subtracts two numbers|
|Tile Resample Processor | Tile resampler processor|
|VAE Loader | Loads a VAE model, outputting a VaeLoaderOutput|
|Zoe (Depth) Processor | Applies Zoe depth processing to image|

View File

@ -0,0 +1,15 @@
# Example Workflows
TODO: Will update once uploading workflows is available.
## Text2Image
## Image2Image
## ControlNet
## Upscaling
## Inpainting / Outpainting
## LoRAs

View File

@ -1,42 +1,26 @@
# Nodes # Nodes
## What are Nodes? ## What are Nodes?
An Node is simply a single operation that takes in some inputs and gives An Node is simply a single operation that takes in inputs and returns
out some outputs. We can then chain multiple nodes together to create more out outputs. Multiple nodes can be linked together to create more
complex functionality. All InvokeAI features are added through nodes. complex functionality. All InvokeAI features are added through nodes.
This means nodes can be used to easily extend the image generation capabilities of InvokeAI, and allow you build workflows to suit your needs. ### Anatomy of a Node
You can read more about nodes and the node editor [here](../features/NODES.md). Individual nodes are made up of the following:
- Inputs: Edge points on the left side of the node window where you connect outputs from other nodes.
- Outputs: Edge points on the right side of the node window where you connect to inputs on other nodes.
- Options: Various options which are either manually configured, or overridden by connecting an output from another node to the input.
## Downloading Nodes With nodes, you can can easily extend the image generation capabilities of InvokeAI, and allow you build workflows that suit your needs.
To download a new node, visit our list of [Community Nodes](communityNodes.md). These are nodes that have been created by the community, for the community.
You can read more about nodes and the node editor [here](../nodes/NODES.md).
To get started with nodes, take a look at some of our examples for [common workflows](../nodes/exampleWorkflows.md)
## Downloading New Nodes
To download a new node, visit our list of [Community Nodes](../nodes/communityNodes.md). These are nodes that have been created by the community, for the community.
## Contributing Nodes
To learn about creating a new node, please visit our [Node creation documenation](../contributing/INVOCATIONS.md).
Once youve created a node and confirmed that it behaves as expected locally, follow these steps:
* Make sure the node is contained in a new Python (.py) file
* Submit a pull request with a link to your node in GitHub against the `nodes` branch to add the node to the [Community Nodes](Community Nodes) list
* Make sure you are following the template below and have provided all relevant details about the node and what it does.
* A maintainer will review the pull request and node. If the node is aligned with the direction of the project, you might be asked for permission to include it in the core project.
### Community Node Template
```markdown
--------------------------------
### Super Cool Node Template
**Description:** This node allows you to do super cool things with InvokeAI.
**Node Link:** https://github.com/invoke-ai/InvokeAI/fake_node.py
**Example Node Graph:** https://github.com/invoke-ai/InvokeAI/fake_node_graph.json
**Output Examples**
![InvokeAI](https://invoke-ai.github.io/InvokeAI/assets/invoke_ai_banner.png)
```

View File

@ -55,7 +55,7 @@ async def get_version() -> AppVersion:
@app_router.get("/config", operation_id="get_config", status_code=200, response_model=AppConfig) @app_router.get("/config", operation_id="get_config", status_code=200, response_model=AppConfig)
async def get_config() -> AppConfig: async def get_config() -> AppConfig:
infill_methods = ["tile"] infill_methods = ["tile", "lama"]
if PatchMatch.patchmatch_available(): if PatchMatch.patchmatch_available():
infill_methods.append("patchmatch") infill_methods.append("patchmatch")

View File

@ -1,11 +1,11 @@
# Copyright (c) 2022-2023 Kyle Schouviller (https://github.com/kyle0654) and the InvokeAI Team # Copyright (c) 2022-2023 Kyle Schouviller (https://github.com/kyle0654) and the InvokeAI Team
import asyncio import asyncio
from inspect import signature
import logging import logging
import uvicorn
import socket import socket
from inspect import signature
from pathlib import Path
import uvicorn
from fastapi import FastAPI from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware from fastapi.middleware.cors import CORSMiddleware
from fastapi.openapi.docs import get_redoc_html, get_swagger_ui_html from fastapi.openapi.docs import get_redoc_html, get_swagger_ui_html
@ -13,7 +13,6 @@ from fastapi.openapi.utils import get_openapi
from fastapi.staticfiles import StaticFiles from fastapi.staticfiles import StaticFiles
from fastapi_events.handlers.local import local_handler from fastapi_events.handlers.local import local_handler
from fastapi_events.middleware import EventHandlerASGIMiddleware from fastapi_events.middleware import EventHandlerASGIMiddleware
from pathlib import Path
from pydantic.schema import schema from pydantic.schema import schema
from .services.config import InvokeAIAppConfig from .services.config import InvokeAIAppConfig
@ -30,9 +29,12 @@ from .api.sockets import SocketIO
from .invocations.baseinvocation import BaseInvocation, _InputField, _OutputField, UIConfigBase from .invocations.baseinvocation import BaseInvocation, _InputField, _OutputField, UIConfigBase
import torch import torch
# noinspection PyUnresolvedReferences
import invokeai.backend.util.hotfixes # noqa: F401 (monkeypatching on import) import invokeai.backend.util.hotfixes # noqa: F401 (monkeypatching on import)
if torch.backends.mps.is_available(): if torch.backends.mps.is_available():
# noinspection PyUnresolvedReferences
import invokeai.backend.util.mps_fixes # noqa: F401 (monkeypatching on import) import invokeai.backend.util.mps_fixes # noqa: F401 (monkeypatching on import)
@ -40,7 +42,6 @@ app_config = InvokeAIAppConfig.get_config()
app_config.parse_args() app_config.parse_args()
logger = InvokeAILogger.getLogger(config=app_config) logger = InvokeAILogger.getLogger(config=app_config)
# fix for windows mimetypes registry entries being borked # fix for windows mimetypes registry entries being borked
# see https://github.com/invoke-ai/InvokeAI/discussions/3684#discussioncomment-6391352 # see https://github.com/invoke-ai/InvokeAI/discussions/3684#discussioncomment-6391352
mimetypes.add_type("application/javascript", ".js") mimetypes.add_type("application/javascript", ".js")
@ -122,6 +123,7 @@ def custom_openapi():
output_schemas = schema(output_types, ref_prefix="#/components/schemas/") output_schemas = schema(output_types, ref_prefix="#/components/schemas/")
for schema_key, output_schema in output_schemas["definitions"].items(): for schema_key, output_schema in output_schemas["definitions"].items():
output_schema["class"] = "output"
openapi_schema["components"]["schemas"][schema_key] = output_schema openapi_schema["components"]["schemas"][schema_key] = output_schema
# TODO: note that we assume the schema_key here is the TYPE.__name__ # TODO: note that we assume the schema_key here is the TYPE.__name__
@ -130,8 +132,8 @@ def custom_openapi():
# Add Node Editor UI helper schemas # Add Node Editor UI helper schemas
ui_config_schemas = schema([UIConfigBase, _InputField, _OutputField], ref_prefix="#/components/schemas/") ui_config_schemas = schema([UIConfigBase, _InputField, _OutputField], ref_prefix="#/components/schemas/")
for schema_key, output_schema in ui_config_schemas["definitions"].items(): for schema_key, ui_config_schema in ui_config_schemas["definitions"].items():
openapi_schema["components"]["schemas"][schema_key] = output_schema openapi_schema["components"]["schemas"][schema_key] = ui_config_schema
# Add a reference to the output type to additionalProperties of the invoker schema # Add a reference to the output type to additionalProperties of the invoker schema
for invoker in all_invocations: for invoker in all_invocations:
@ -140,8 +142,8 @@ def custom_openapi():
output_type_title = output_type_titles[output_type.__name__] output_type_title = output_type_titles[output_type.__name__]
invoker_schema = openapi_schema["components"]["schemas"][invoker_name] invoker_schema = openapi_schema["components"]["schemas"][invoker_name]
outputs_ref = {"$ref": f"#/components/schemas/{output_type_title}"} outputs_ref = {"$ref": f"#/components/schemas/{output_type_title}"}
invoker_schema["output"] = outputs_ref invoker_schema["output"] = outputs_ref
invoker_schema["class"] = "invocation"
from invokeai.backend.model_management.models import get_model_config_enums from invokeai.backend.model_management.models import get_model_config_enums
@ -207,6 +209,17 @@ def invoke_api():
check_invokeai_root(app_config) # note, may exit with an exception if root not set up check_invokeai_root(app_config) # note, may exit with an exception if root not set up
if app_config.dev_reload:
try:
import jurigged
except ImportError as e:
logger.error(
'Can\'t start `--dev_reload` because jurigged is not found; `pip install -e ".[dev]"` to include development dependencies.',
exc_info=e,
)
else:
jurigged.watch(logger=InvokeAILogger.getLogger(name="jurigged").info)
port = find_port(app_config.port) port = find_port(app_config.port)
if port != app_config.port: if port != app_config.port:
logger.warn(f"Port {app_config.port} in use, using port {port}") logger.warn(f"Port {app_config.port} in use, using port {port}")

View File

@ -71,6 +71,9 @@ class FieldDescriptions:
safe_mode = "Whether or not to use safe mode" safe_mode = "Whether or not to use safe mode"
scribble_mode = "Whether or not to use scribble mode" scribble_mode = "Whether or not to use scribble mode"
scale_factor = "The factor by which to scale" scale_factor = "The factor by which to scale"
blend_alpha = (
"Blending factor. 0.0 = use input A only, 1.0 = use input B only, 0.5 = 50% mix of input A and input B."
)
num_1 = "The first number" num_1 = "The first number"
num_2 = "The second number" num_2 = "The second number"
mask = "The mask to use for the operation" mask = "The mask to use for the operation"
@ -140,6 +143,7 @@ class UIType(str, Enum):
# region Misc # region Misc
FilePath = "FilePath" FilePath = "FilePath"
Enum = "enum" Enum = "enum"
Scheduler = "Scheduler"
# endregion # endregion
@ -166,6 +170,7 @@ class _InputField(BaseModel):
ui_hidden: bool ui_hidden: bool
ui_type: Optional[UIType] ui_type: Optional[UIType]
ui_component: Optional[UIComponent] ui_component: Optional[UIComponent]
ui_order: Optional[int]
class _OutputField(BaseModel): class _OutputField(BaseModel):
@ -178,6 +183,7 @@ class _OutputField(BaseModel):
ui_hidden: bool ui_hidden: bool
ui_type: Optional[UIType] ui_type: Optional[UIType]
ui_order: Optional[int]
def InputField( def InputField(
@ -211,6 +217,7 @@ def InputField(
ui_type: Optional[UIType] = None, ui_type: Optional[UIType] = None,
ui_component: Optional[UIComponent] = None, ui_component: Optional[UIComponent] = None,
ui_hidden: bool = False, ui_hidden: bool = False,
ui_order: Optional[int] = None,
**kwargs: Any, **kwargs: Any,
) -> Any: ) -> Any:
""" """
@ -269,6 +276,7 @@ def InputField(
ui_type=ui_type, ui_type=ui_type,
ui_component=ui_component, ui_component=ui_component,
ui_hidden=ui_hidden, ui_hidden=ui_hidden,
ui_order=ui_order,
**kwargs, **kwargs,
) )
@ -302,6 +310,7 @@ def OutputField(
repr: bool = True, repr: bool = True,
ui_type: Optional[UIType] = None, ui_type: Optional[UIType] = None,
ui_hidden: bool = False, ui_hidden: bool = False,
ui_order: Optional[int] = None,
**kwargs: Any, **kwargs: Any,
) -> Any: ) -> Any:
""" """
@ -348,6 +357,7 @@ def OutputField(
repr=repr, repr=repr,
ui_type=ui_type, ui_type=ui_type,
ui_hidden=ui_hidden, ui_hidden=ui_hidden,
ui_order=ui_order,
**kwargs, **kwargs,
) )
@ -376,7 +386,7 @@ class BaseInvocationOutput(BaseModel):
"""Base class for all invocation outputs""" """Base class for all invocation outputs"""
# All outputs must include a type name like this: # All outputs must include a type name like this:
# type: Literal['your_output_name'] # type: Literal['your_output_name'] # noqa f821
@classmethod @classmethod
def get_all_subclasses_tuple(cls): def get_all_subclasses_tuple(cls):
@ -389,6 +399,13 @@ class BaseInvocationOutput(BaseModel):
toprocess.extend(next_subclasses) toprocess.extend(next_subclasses)
return tuple(subclasses) return tuple(subclasses)
class Config:
@staticmethod
def schema_extra(schema: dict[str, Any], model_class: Type[BaseModel]) -> None:
if "required" not in schema or not isinstance(schema["required"], list):
schema["required"] = list()
schema["required"].extend(["type"])
class RequiredConnectionException(Exception): class RequiredConnectionException(Exception):
"""Raised when an field which requires a connection did not receive a value.""" """Raised when an field which requires a connection did not receive a value."""
@ -410,7 +427,7 @@ class BaseInvocation(ABC, BaseModel):
""" """
# All invocations must include a type name like this: # All invocations must include a type name like this:
# type: Literal['your_output_name'] # type: Literal['your_output_name'] # noqa f821
@classmethod @classmethod
def get_all_subclasses(cls): def get_all_subclasses(cls):
@ -449,6 +466,9 @@ class BaseInvocation(ABC, BaseModel):
schema["title"] = uiconfig.title schema["title"] = uiconfig.title
if uiconfig and hasattr(uiconfig, "tags"): if uiconfig and hasattr(uiconfig, "tags"):
schema["tags"] = uiconfig.tags schema["tags"] = uiconfig.tags
if "required" not in schema or not isinstance(schema["required"], list):
schema["required"] = list()
schema["required"].extend(["type", "id"])
@abstractmethod @abstractmethod
def invoke(self, context: InvocationContext) -> BaseInvocationOutput: def invoke(self, context: InvocationContext) -> BaseInvocationOutput:
@ -485,7 +505,7 @@ class BaseInvocation(ABC, BaseModel):
raise MissingInputException(self.__fields__["type"].default, field_name) raise MissingInputException(self.__fields__["type"].default, field_name)
return self.invoke(context) return self.invoke(context)
id: str = InputField(description="The id of this node. Must be unique among all nodes.") id: str = Field(description="The id of this node. Must be unique among all nodes.")
is_intermediate: bool = InputField( is_intermediate: bool = InputField(
default=False, description="Whether or not this node is an intermediate node.", input=Input.Direct default=False, description="Whether or not this node is an intermediate node.", input=Input.Direct
) )

View File

@ -233,7 +233,7 @@ class SDXLPromptInvocationBase:
dtype_for_device_getter=torch_dtype, dtype_for_device_getter=torch_dtype,
truncate_long_prompts=True, # TODO: truncate_long_prompts=True, # TODO:
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, # TODO: clip skip returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, # TODO: clip skip
requires_pooled=True, requires_pooled=get_pooled,
) )
conjunction = Compel.parse_prompt_string(prompt) conjunction = Compel.parse_prompt_string(prompt)

View File

@ -8,7 +8,7 @@ import numpy
from PIL import Image, ImageChops, ImageFilter, ImageOps from PIL import Image, ImageChops, ImageFilter, ImageOps
from invokeai.app.invocations.metadata import CoreMetadata from invokeai.app.invocations.metadata import CoreMetadata
from invokeai.app.invocations.primitives import ImageField, ImageOutput from invokeai.app.invocations.primitives import ColorField, ImageField, ImageOutput
from invokeai.backend.image_util.invisible_watermark import InvisibleWatermark from invokeai.backend.image_util.invisible_watermark import InvisibleWatermark
from invokeai.backend.image_util.safety_checker import SafetyChecker from invokeai.backend.image_util.safety_checker import SafetyChecker
@ -41,6 +41,39 @@ class ShowImageInvocation(BaseInvocation):
) )
@title("Blank Image")
@tags("image")
class BlankImageInvocation(BaseInvocation):
"""Creates a blank image and forwards it to the pipeline"""
# Metadata
type: Literal["blank_image"] = "blank_image"
# Inputs
width: int = InputField(default=512, description="The width of the image")
height: int = InputField(default=512, description="The height of the image")
mode: Literal["RGB", "RGBA"] = InputField(default="RGB", description="The mode of the image")
color: ColorField = InputField(default=ColorField(r=0, g=0, b=0, a=255), description="The color of the image")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = Image.new(mode=self.mode, size=(self.width, self.height), color=self.color.tuple())
image_dto = context.services.images.create(
image=image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
@title("Crop Image") @title("Crop Image")
@tags("image", "crop") @tags("image", "crop")
class ImageCropInvocation(BaseInvocation): class ImageCropInvocation(BaseInvocation):

View File

@ -1,23 +1,25 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) and the InvokeAI Team # Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) and the InvokeAI Team
import math
from typing import Literal, Optional, get_args from typing import Literal, Optional, get_args
import numpy as np import numpy as np
import math
from PIL import Image, ImageOps from PIL import Image, ImageOps
from invokeai.app.invocations.primitives import ImageField, ImageOutput, ColorField
from invokeai.app.invocations.primitives import ColorField, ImageField, ImageOutput
from invokeai.app.util.misc import SEED_MAX, get_random_seed from invokeai.app.util.misc import SEED_MAX, get_random_seed
from invokeai.backend.image_util.lama import LaMA
from invokeai.backend.image_util.patchmatch import PatchMatch from invokeai.backend.image_util.patchmatch import PatchMatch
from ..models.image import ImageCategory, ResourceOrigin from ..models.image import ImageCategory, ResourceOrigin
from .baseinvocation import BaseInvocation, InputField, InvocationContext, title, tags from .baseinvocation import BaseInvocation, InputField, InvocationContext, tags, title
def infill_methods() -> list[str]: def infill_methods() -> list[str]:
methods = [ methods = [
"tile", "tile",
"solid", "solid",
"lama",
] ]
if PatchMatch.patchmatch_available(): if PatchMatch.patchmatch_available():
methods.insert(0, "patchmatch") methods.insert(0, "patchmatch")
@ -28,6 +30,11 @@ INFILL_METHODS = Literal[tuple(infill_methods())]
DEFAULT_INFILL_METHOD = "patchmatch" if "patchmatch" in get_args(INFILL_METHODS) else "tile" DEFAULT_INFILL_METHOD = "patchmatch" if "patchmatch" in get_args(INFILL_METHODS) else "tile"
def infill_lama(im: Image.Image) -> Image.Image:
lama = LaMA()
return lama(im)
def infill_patchmatch(im: Image.Image) -> Image.Image: def infill_patchmatch(im: Image.Image) -> Image.Image:
if im.mode != "RGBA": if im.mode != "RGBA":
return im return im
@ -90,7 +97,7 @@ def tile_fill_missing(im: Image.Image, tile_size: int = 16, seed: Optional[int]
return im return im
# Find all invalid tiles and replace with a random valid tile # Find all invalid tiles and replace with a random valid tile
replace_count = (tiles_mask is False).sum() replace_count = (tiles_mask == False).sum() # noqa: E712
rng = np.random.default_rng(seed=seed) rng = np.random.default_rng(seed=seed)
tiles_all[np.logical_not(tiles_mask)] = filtered_tiles[rng.choice(filtered_tiles.shape[0], replace_count), :, :, :] tiles_all[np.logical_not(tiles_mask)] = filtered_tiles[rng.choice(filtered_tiles.shape[0], replace_count), :, :, :]
@ -218,3 +225,34 @@ class InfillPatchMatchInvocation(BaseInvocation):
width=image_dto.width, width=image_dto.width,
height=image_dto.height, height=image_dto.height,
) )
@title("LaMa Infill")
@tags("image", "inpaint")
class LaMaInfillInvocation(BaseInvocation):
"""Infills transparent areas of an image using the LaMa model"""
type: Literal["infill_lama"] = "infill_lama"
# Inputs
image: ImageField = InputField(description="The image to infill")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
infilled = infill_lama(image.copy())
image_dto = context.services.images.create(
image=infilled,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)

View File

@ -5,6 +5,7 @@ from functools import singledispatchmethod
from typing import List, Literal, Optional, Union from typing import List, Literal, Optional, Union
import einops import einops
import numpy as np
import torch import torch
import torchvision.transforms as T import torchvision.transforms as T
from diffusers import AutoencoderKL, AutoencoderTiny from diffusers import AutoencoderKL, AutoencoderTiny
@ -108,24 +109,28 @@ class DenoiseLatentsInvocation(BaseInvocation):
# Inputs # Inputs
positive_conditioning: ConditioningField = InputField( positive_conditioning: ConditioningField = InputField(
description=FieldDescriptions.positive_cond, input=Input.Connection description=FieldDescriptions.positive_cond, input=Input.Connection, ui_order=0
) )
negative_conditioning: ConditioningField = InputField( negative_conditioning: ConditioningField = InputField(
description=FieldDescriptions.negative_cond, input=Input.Connection description=FieldDescriptions.negative_cond, input=Input.Connection, ui_order=1
) )
noise: Optional[LatentsField] = InputField(description=FieldDescriptions.noise, input=Input.Connection) noise: Optional[LatentsField] = InputField(description=FieldDescriptions.noise, input=Input.Connection, ui_order=3)
steps: int = InputField(default=10, gt=0, description=FieldDescriptions.steps) steps: int = InputField(default=10, gt=0, description=FieldDescriptions.steps)
cfg_scale: Union[float, List[float]] = InputField( cfg_scale: Union[float, List[float]] = InputField(
default=7.5, ge=1, description=FieldDescriptions.cfg_scale, ui_type=UIType.Float default=7.5, ge=1, description=FieldDescriptions.cfg_scale, ui_type=UIType.Float, title="CFG Scale"
) )
denoising_start: float = InputField(default=0.0, ge=0, le=1, description=FieldDescriptions.denoising_start) denoising_start: float = InputField(default=0.0, ge=0, le=1, description=FieldDescriptions.denoising_start)
denoising_end: float = InputField(default=1.0, ge=0, le=1, description=FieldDescriptions.denoising_end) denoising_end: float = InputField(default=1.0, ge=0, le=1, description=FieldDescriptions.denoising_end)
scheduler: SAMPLER_NAME_VALUES = InputField(default="euler", description=FieldDescriptions.scheduler) scheduler: SAMPLER_NAME_VALUES = InputField(
unet: UNetField = InputField(description=FieldDescriptions.unet, input=Input.Connection) default="euler", description=FieldDescriptions.scheduler, ui_type=UIType.Scheduler
control: Union[ControlField, list[ControlField]] = InputField( )
default=None, description=FieldDescriptions.control, input=Input.Connection unet: UNetField = InputField(description=FieldDescriptions.unet, input=Input.Connection, title="UNet", ui_order=2)
control: Union[ControlField, list[ControlField]] = InputField(
default=None, description=FieldDescriptions.control, input=Input.Connection, ui_order=5
)
latents: Optional[LatentsField] = InputField(
description=FieldDescriptions.latents, input=Input.Connection, ui_order=4
) )
latents: Optional[LatentsField] = InputField(description=FieldDescriptions.latents, input=Input.Connection)
mask: Optional[ImageField] = InputField( mask: Optional[ImageField] = InputField(
default=None, default=None,
description=FieldDescriptions.mask, description=FieldDescriptions.mask,
@ -455,7 +460,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
@title("Latents to Image") @title("Latents to Image")
@tags("latents", "image", "vae") @tags("latents", "image", "vae", "l2i")
class LatentsToImageInvocation(BaseInvocation): class LatentsToImageInvocation(BaseInvocation):
"""Generates an image from latents.""" """Generates an image from latents."""
@ -652,7 +657,7 @@ class ScaleLatentsInvocation(BaseInvocation):
@title("Image to Latents") @title("Image to Latents")
@tags("latents", "image", "vae") @tags("latents", "image", "vae", "i2l")
class ImageToLatentsInvocation(BaseInvocation): class ImageToLatentsInvocation(BaseInvocation):
"""Encodes an image into latents.""" """Encodes an image into latents."""
@ -749,3 +754,81 @@ class ImageToLatentsInvocation(BaseInvocation):
@_encode_to_tensor.register @_encode_to_tensor.register
def _(self, vae: AutoencoderTiny, image_tensor: torch.FloatTensor) -> torch.FloatTensor: def _(self, vae: AutoencoderTiny, image_tensor: torch.FloatTensor) -> torch.FloatTensor:
return vae.encode(image_tensor).latents return vae.encode(image_tensor).latents
@title("Blend Latents")
@tags("latents", "blend")
class BlendLatentsInvocation(BaseInvocation):
"""Blend two latents using a given alpha. Latents must have same size."""
type: Literal["lblend"] = "lblend"
# Inputs
latents_a: LatentsField = InputField(
description=FieldDescriptions.latents,
input=Input.Connection,
)
latents_b: LatentsField = InputField(
description=FieldDescriptions.latents,
input=Input.Connection,
)
alpha: float = InputField(default=0.5, description=FieldDescriptions.blend_alpha)
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents_a = context.services.latents.get(self.latents_a.latents_name)
latents_b = context.services.latents.get(self.latents_b.latents_name)
if latents_a.shape != latents_b.shape:
raise "Latents to blend must be the same size."
# TODO:
device = choose_torch_device()
def slerp(t, v0, v1, DOT_THRESHOLD=0.9995):
"""
Spherical linear interpolation
Args:
t (float/np.ndarray): Float value between 0.0 and 1.0
v0 (np.ndarray): Starting vector
v1 (np.ndarray): Final vector
DOT_THRESHOLD (float): Threshold for considering the two vectors as
colineal. Not recommended to alter this.
Returns:
v2 (np.ndarray): Interpolation vector between v0 and v1
"""
inputs_are_torch = False
if not isinstance(v0, np.ndarray):
inputs_are_torch = True
v0 = v0.detach().cpu().numpy()
if not isinstance(v1, np.ndarray):
inputs_are_torch = True
v1 = v1.detach().cpu().numpy()
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
if np.abs(dot) > DOT_THRESHOLD:
v2 = (1 - t) * v0 + t * v1
else:
theta_0 = np.arccos(dot)
sin_theta_0 = np.sin(theta_0)
theta_t = theta_0 * t
sin_theta_t = np.sin(theta_t)
s0 = np.sin(theta_0 - theta_t) / sin_theta_0
s1 = sin_theta_t / sin_theta_0
v2 = s0 * v0 + s1 * v1
if inputs_are_torch:
v2 = torch.from_numpy(v2).to(device)
return v2
# blend
blended_latents = slerp(self.alpha, latents_a, latents_b)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
blended_latents = blended_latents.to("cpu")
torch.cuda.empty_cache()
name = f"{context.graph_execution_state_id}__{self.id}"
# context.services.latents.set(name, resized_latents)
context.services.latents.save(name, blended_latents)
return build_latents_output(latents_name=name, latents=blended_latents)

View File

@ -21,7 +21,7 @@ class AddInvocation(BaseInvocation):
b: int = InputField(default=0, description=FieldDescriptions.num_2) b: int = InputField(default=0, description=FieldDescriptions.num_2)
def invoke(self, context: InvocationContext) -> IntegerOutput: def invoke(self, context: InvocationContext) -> IntegerOutput:
return IntegerOutput(a=self.a + self.b) return IntegerOutput(value=self.a + self.b)
@title("Subtract Integers") @title("Subtract Integers")
@ -36,7 +36,7 @@ class SubtractInvocation(BaseInvocation):
b: int = InputField(default=0, description=FieldDescriptions.num_2) b: int = InputField(default=0, description=FieldDescriptions.num_2)
def invoke(self, context: InvocationContext) -> IntegerOutput: def invoke(self, context: InvocationContext) -> IntegerOutput:
return IntegerOutput(a=self.a - self.b) return IntegerOutput(value=self.a - self.b)
@title("Multiply Integers") @title("Multiply Integers")
@ -51,7 +51,7 @@ class MultiplyInvocation(BaseInvocation):
b: int = InputField(default=0, description=FieldDescriptions.num_2) b: int = InputField(default=0, description=FieldDescriptions.num_2)
def invoke(self, context: InvocationContext) -> IntegerOutput: def invoke(self, context: InvocationContext) -> IntegerOutput:
return IntegerOutput(a=self.a * self.b) return IntegerOutput(value=self.a * self.b)
@title("Divide Integers") @title("Divide Integers")
@ -66,7 +66,7 @@ class DivideInvocation(BaseInvocation):
b: int = InputField(default=0, description=FieldDescriptions.num_2) b: int = InputField(default=0, description=FieldDescriptions.num_2)
def invoke(self, context: InvocationContext) -> IntegerOutput: def invoke(self, context: InvocationContext) -> IntegerOutput:
return IntegerOutput(a=int(self.a / self.b)) return IntegerOutput(value=int(self.a / self.b))
@title("Random Integer") @title("Random Integer")
@ -81,4 +81,4 @@ class RandomIntInvocation(BaseInvocation):
high: int = InputField(default=np.iinfo(np.int32).max, description="The exclusive high value") high: int = InputField(default=np.iinfo(np.int32).max, description="The exclusive high value")
def invoke(self, context: InvocationContext) -> IntegerOutput: def invoke(self, context: InvocationContext) -> IntegerOutput:
return IntegerOutput(a=np.random.randint(self.low, self.high)) return IntegerOutput(value=np.random.randint(self.low, self.high))

View File

@ -32,6 +32,7 @@ class CoreMetadata(BaseModelExcludeNull):
generation_mode: str = Field( generation_mode: str = Field(
description="The generation mode that output this image", description="The generation mode that output this image",
) )
created_by: Optional[str] = Field(description="The name of the creator of the image")
positive_prompt: str = Field(description="The positive prompt parameter") positive_prompt: str = Field(description="The positive prompt parameter")
negative_prompt: str = Field(description="The negative prompt parameter") negative_prompt: str = Field(description="The negative prompt parameter")
width: int = Field(description="The width parameter") width: int = Field(description="The width parameter")

View File

@ -72,7 +72,7 @@ class LoRAModelField(BaseModel):
base_model: BaseModelType = Field(description="Base model") base_model: BaseModelType = Field(description="Base model")
@title("Main Model Loader") @title("Main Model")
@tags("model") @tags("model")
class MainModelLoaderInvocation(BaseInvocation): class MainModelLoaderInvocation(BaseInvocation):
"""Loads a main model, outputting its submodels.""" """Loads a main model, outputting its submodels."""
@ -179,7 +179,7 @@ class LoraLoaderOutput(BaseInvocationOutput):
# fmt: on # fmt: on
@title("LoRA Loader") @title("LoRA")
@tags("lora", "model") @tags("lora", "model")
class LoraLoaderInvocation(BaseInvocation): class LoraLoaderInvocation(BaseInvocation):
"""Apply selected lora to unet and text_encoder.""" """Apply selected lora to unet and text_encoder."""
@ -257,7 +257,7 @@ class SDXLLoraLoaderOutput(BaseInvocationOutput):
# fmt: on # fmt: on
@title("SDXL LoRA Loader") @title("SDXL LoRA")
@tags("sdxl", "lora", "model") @tags("sdxl", "lora", "model")
class SDXLLoraLoaderInvocation(BaseInvocation): class SDXLLoraLoaderInvocation(BaseInvocation):
"""Apply selected lora to unet and text_encoder.""" """Apply selected lora to unet and text_encoder."""
@ -356,7 +356,7 @@ class VaeLoaderOutput(BaseInvocationOutput):
vae: VaeField = OutputField(description=FieldDescriptions.vae, title="VAE") vae: VaeField = OutputField(description=FieldDescriptions.vae, title="VAE")
@title("VAE Loader") @title("VAE")
@tags("vae", "model") @tags("vae", "model")
class VaeLoaderInvocation(BaseInvocation): class VaeLoaderInvocation(BaseInvocation):
"""Loads a VAE model, outputting a VaeLoaderOutput""" """Loads a VAE model, outputting a VaeLoaderOutput"""

View File

@ -169,7 +169,7 @@ class ONNXTextToLatentsInvocation(BaseInvocation):
ui_type=UIType.Float, ui_type=UIType.Float,
) )
scheduler: SAMPLER_NAME_VALUES = InputField( scheduler: SAMPLER_NAME_VALUES = InputField(
default="euler", description=FieldDescriptions.scheduler, input=Input.Direct default="euler", description=FieldDescriptions.scheduler, input=Input.Direct, ui_type=UIType.Scheduler
) )
precision: PRECISION_VALUES = InputField(default="tensor(float16)", description=FieldDescriptions.precision) precision: PRECISION_VALUES = InputField(default="tensor(float16)", description=FieldDescriptions.precision)
unet: UNetField = InputField( unet: UNetField = InputField(
@ -406,7 +406,7 @@ class OnnxModelField(BaseModel):
model_type: ModelType = Field(description="Model Type") model_type: ModelType = Field(description="Model Type")
@title("ONNX Model Loader") @title("ONNX Main Model")
@tags("onnx", "model") @tags("onnx", "model")
class OnnxModelLoaderInvocation(BaseInvocation): class OnnxModelLoaderInvocation(BaseInvocation):
"""Loads a main model, outputting its submodels.""" """Loads a main model, outputting its submodels."""

View File

@ -2,8 +2,8 @@
from typing import Literal, Optional, Tuple from typing import Literal, Optional, Tuple
from pydantic import BaseModel, Field
import torch import torch
from pydantic import BaseModel, Field
from .baseinvocation import ( from .baseinvocation import (
BaseInvocation, BaseInvocation,
@ -33,7 +33,7 @@ class BooleanOutput(BaseInvocationOutput):
"""Base class for nodes that output a single boolean""" """Base class for nodes that output a single boolean"""
type: Literal["boolean_output"] = "boolean_output" type: Literal["boolean_output"] = "boolean_output"
a: bool = OutputField(description="The output boolean") value: bool = OutputField(description="The output boolean")
class BooleanCollectionOutput(BaseInvocationOutput): class BooleanCollectionOutput(BaseInvocationOutput):
@ -42,9 +42,7 @@ class BooleanCollectionOutput(BaseInvocationOutput):
type: Literal["boolean_collection_output"] = "boolean_collection_output" type: Literal["boolean_collection_output"] = "boolean_collection_output"
# Outputs # Outputs
collection: list[bool] = OutputField( collection: list[bool] = OutputField(description="The output boolean collection", ui_type=UIType.BooleanCollection)
default_factory=list, description="The output boolean collection", ui_type=UIType.BooleanCollection
)
@title("Boolean Primitive") @title("Boolean Primitive")
@ -55,10 +53,10 @@ class BooleanInvocation(BaseInvocation):
type: Literal["boolean"] = "boolean" type: Literal["boolean"] = "boolean"
# Inputs # Inputs
a: bool = InputField(default=False, description="The boolean value") value: bool = InputField(default=False, description="The boolean value")
def invoke(self, context: InvocationContext) -> BooleanOutput: def invoke(self, context: InvocationContext) -> BooleanOutput:
return BooleanOutput(a=self.a) return BooleanOutput(value=self.value)
@title("Boolean Primitive Collection") @title("Boolean Primitive Collection")
@ -70,7 +68,7 @@ class BooleanCollectionInvocation(BaseInvocation):
# Inputs # Inputs
collection: list[bool] = InputField( collection: list[bool] = InputField(
default=False, description="The collection of boolean values", ui_type=UIType.BooleanCollection default_factory=list, description="The collection of boolean values", ui_type=UIType.BooleanCollection
) )
def invoke(self, context: InvocationContext) -> BooleanCollectionOutput: def invoke(self, context: InvocationContext) -> BooleanCollectionOutput:
@ -86,7 +84,7 @@ class IntegerOutput(BaseInvocationOutput):
"""Base class for nodes that output a single integer""" """Base class for nodes that output a single integer"""
type: Literal["integer_output"] = "integer_output" type: Literal["integer_output"] = "integer_output"
a: int = OutputField(description="The output integer") value: int = OutputField(description="The output integer")
class IntegerCollectionOutput(BaseInvocationOutput): class IntegerCollectionOutput(BaseInvocationOutput):
@ -95,9 +93,7 @@ class IntegerCollectionOutput(BaseInvocationOutput):
type: Literal["integer_collection_output"] = "integer_collection_output" type: Literal["integer_collection_output"] = "integer_collection_output"
# Outputs # Outputs
collection: list[int] = OutputField( collection: list[int] = OutputField(description="The int collection", ui_type=UIType.IntegerCollection)
default_factory=list, description="The int collection", ui_type=UIType.IntegerCollection
)
@title("Integer Primitive") @title("Integer Primitive")
@ -108,10 +104,10 @@ class IntegerInvocation(BaseInvocation):
type: Literal["integer"] = "integer" type: Literal["integer"] = "integer"
# Inputs # Inputs
a: int = InputField(default=0, description="The integer value") value: int = InputField(default=0, description="The integer value")
def invoke(self, context: InvocationContext) -> IntegerOutput: def invoke(self, context: InvocationContext) -> IntegerOutput:
return IntegerOutput(a=self.a) return IntegerOutput(value=self.value)
@title("Integer Primitive Collection") @title("Integer Primitive Collection")
@ -139,7 +135,7 @@ class FloatOutput(BaseInvocationOutput):
"""Base class for nodes that output a single float""" """Base class for nodes that output a single float"""
type: Literal["float_output"] = "float_output" type: Literal["float_output"] = "float_output"
a: float = OutputField(description="The output float") value: float = OutputField(description="The output float")
class FloatCollectionOutput(BaseInvocationOutput): class FloatCollectionOutput(BaseInvocationOutput):
@ -148,9 +144,7 @@ class FloatCollectionOutput(BaseInvocationOutput):
type: Literal["float_collection_output"] = "float_collection_output" type: Literal["float_collection_output"] = "float_collection_output"
# Outputs # Outputs
collection: list[float] = OutputField( collection: list[float] = OutputField(description="The float collection", ui_type=UIType.FloatCollection)
default_factory=list, description="The float collection", ui_type=UIType.FloatCollection
)
@title("Float Primitive") @title("Float Primitive")
@ -161,10 +155,10 @@ class FloatInvocation(BaseInvocation):
type: Literal["float"] = "float" type: Literal["float"] = "float"
# Inputs # Inputs
param: float = InputField(default=0.0, description="The float value") value: float = InputField(default=0.0, description="The float value")
def invoke(self, context: InvocationContext) -> FloatOutput: def invoke(self, context: InvocationContext) -> FloatOutput:
return FloatOutput(a=self.param) return FloatOutput(value=self.value)
@title("Float Primitive Collection") @title("Float Primitive Collection")
@ -176,7 +170,7 @@ class FloatCollectionInvocation(BaseInvocation):
# Inputs # Inputs
collection: list[float] = InputField( collection: list[float] = InputField(
default=0, description="The collection of float values", ui_type=UIType.FloatCollection default_factory=list, description="The collection of float values", ui_type=UIType.FloatCollection
) )
def invoke(self, context: InvocationContext) -> FloatCollectionOutput: def invoke(self, context: InvocationContext) -> FloatCollectionOutput:
@ -192,7 +186,7 @@ class StringOutput(BaseInvocationOutput):
"""Base class for nodes that output a single string""" """Base class for nodes that output a single string"""
type: Literal["string_output"] = "string_output" type: Literal["string_output"] = "string_output"
text: str = OutputField(description="The output string") value: str = OutputField(description="The output string")
class StringCollectionOutput(BaseInvocationOutput): class StringCollectionOutput(BaseInvocationOutput):
@ -201,9 +195,7 @@ class StringCollectionOutput(BaseInvocationOutput):
type: Literal["string_collection_output"] = "string_collection_output" type: Literal["string_collection_output"] = "string_collection_output"
# Outputs # Outputs
collection: list[str] = OutputField( collection: list[str] = OutputField(description="The output strings", ui_type=UIType.StringCollection)
default_factory=list, description="The output strings", ui_type=UIType.StringCollection
)
@title("String Primitive") @title("String Primitive")
@ -214,10 +206,10 @@ class StringInvocation(BaseInvocation):
type: Literal["string"] = "string" type: Literal["string"] = "string"
# Inputs # Inputs
text: str = InputField(default="", description="The string value", ui_component=UIComponent.Textarea) value: str = InputField(default="", description="The string value", ui_component=UIComponent.Textarea)
def invoke(self, context: InvocationContext) -> StringOutput: def invoke(self, context: InvocationContext) -> StringOutput:
return StringOutput(text=self.text) return StringOutput(value=self.value)
@title("String Primitive Collection") @title("String Primitive Collection")
@ -229,7 +221,7 @@ class StringCollectionInvocation(BaseInvocation):
# Inputs # Inputs
collection: list[str] = InputField( collection: list[str] = InputField(
default=0, description="The collection of string values", ui_type=UIType.StringCollection default_factory=list, description="The collection of string values", ui_type=UIType.StringCollection
) )
def invoke(self, context: InvocationContext) -> StringCollectionOutput: def invoke(self, context: InvocationContext) -> StringCollectionOutput:
@ -262,9 +254,7 @@ class ImageCollectionOutput(BaseInvocationOutput):
type: Literal["image_collection_output"] = "image_collection_output" type: Literal["image_collection_output"] = "image_collection_output"
# Outputs # Outputs
collection: list[ImageField] = OutputField( collection: list[ImageField] = OutputField(description="The output images", ui_type=UIType.ImageCollection)
default_factory=list, description="The output images", ui_type=UIType.ImageCollection
)
@title("Image Primitive") @title("Image Primitive")
@ -334,7 +324,6 @@ class LatentsCollectionOutput(BaseInvocationOutput):
type: Literal["latents_collection_output"] = "latents_collection_output" type: Literal["latents_collection_output"] = "latents_collection_output"
collection: list[LatentsField] = OutputField( collection: list[LatentsField] = OutputField(
default_factory=list,
description=FieldDescriptions.latents, description=FieldDescriptions.latents,
ui_type=UIType.LatentsCollection, ui_type=UIType.LatentsCollection,
) )
@ -365,7 +354,7 @@ class LatentsCollectionInvocation(BaseInvocation):
# Inputs # Inputs
collection: list[LatentsField] = InputField( collection: list[LatentsField] = InputField(
default=0, description="The collection of latents tensors", ui_type=UIType.LatentsCollection description="The collection of latents tensors", ui_type=UIType.LatentsCollection
) )
def invoke(self, context: InvocationContext) -> LatentsCollectionOutput: def invoke(self, context: InvocationContext) -> LatentsCollectionOutput:
@ -410,9 +399,7 @@ class ColorCollectionOutput(BaseInvocationOutput):
type: Literal["color_collection_output"] = "color_collection_output" type: Literal["color_collection_output"] = "color_collection_output"
# Outputs # Outputs
collection: list[ColorField] = OutputField( collection: list[ColorField] = OutputField(description="The output colors", ui_type=UIType.ColorCollection)
default_factory=list, description="The output colors", ui_type=UIType.ColorCollection
)
@title("Color Primitive") @title("Color Primitive")
@ -455,7 +442,6 @@ class ConditioningCollectionOutput(BaseInvocationOutput):
# Outputs # Outputs
collection: list[ConditioningField] = OutputField( collection: list[ConditioningField] = OutputField(
default_factory=list,
description="The output conditioning tensors", description="The output conditioning tensors",
ui_type=UIType.ConditioningCollection, ui_type=UIType.ConditioningCollection,
) )

View File

@ -37,7 +37,7 @@ class SDXLRefinerModelLoaderOutput(BaseInvocationOutput):
vae: VaeField = OutputField(description=FieldDescriptions.vae, title="VAE") vae: VaeField = OutputField(description=FieldDescriptions.vae, title="VAE")
@title("SDXL Main Model Loader") @title("SDXL Main Model")
@tags("model", "sdxl") @tags("model", "sdxl")
class SDXLModelLoaderInvocation(BaseInvocation): class SDXLModelLoaderInvocation(BaseInvocation):
"""Loads an sdxl base model, outputting its submodels.""" """Loads an sdxl base model, outputting its submodels."""
@ -122,7 +122,7 @@ class SDXLModelLoaderInvocation(BaseInvocation):
) )
@title("SDXL Refiner Model Loader") @title("SDXL Refiner Model")
@tags("model", "sdxl", "refiner") @tags("model", "sdxl", "refiner")
class SDXLRefinerModelLoaderInvocation(BaseInvocation): class SDXLRefinerModelLoaderInvocation(BaseInvocation):
"""Loads an sdxl refiner model, outputting its submodels.""" """Loads an sdxl refiner model, outputting its submodels."""

View File

@ -0,0 +1,8 @@
"""
Init file for InvokeAI configure package
"""
from .invokeai_config import ( # noqa F401
InvokeAIAppConfig,
get_invokeai_config,
)

View File

@ -0,0 +1,239 @@
# Copyright (c) 2023 Lincoln Stein (https://github.com/lstein) and the InvokeAI Development Team
"""
Base class for the InvokeAI configuration system.
It defines a type of pydantic BaseSettings object that
is able to read and write from an omegaconf-based config file,
with overriding of settings from environment variables and/or
the command line.
"""
from __future__ import annotations
import argparse
import os
import pydoc
import sys
from argparse import ArgumentParser
from omegaconf import OmegaConf, DictConfig, ListConfig
from pathlib import Path
from pydantic import BaseSettings
from typing import ClassVar, Dict, List, Literal, Union, get_origin, get_type_hints, get_args
class PagingArgumentParser(argparse.ArgumentParser):
"""
A custom ArgumentParser that uses pydoc to page its output.
It also supports reading defaults from an init file.
"""
def print_help(self, file=None):
text = self.format_help()
pydoc.pager(text)
class InvokeAISettings(BaseSettings):
"""
Runtime configuration settings in which default values are
read from an omegaconf .yaml file.
"""
initconf: ClassVar[DictConfig] = None
argparse_groups: ClassVar[Dict] = {}
def parse_args(self, argv: list = sys.argv[1:]):
parser = self.get_parser()
opt = parser.parse_args(argv)
for name in self.__fields__:
if name not in self._excluded():
value = getattr(opt, name)
if isinstance(value, ListConfig):
value = list(value)
elif isinstance(value, DictConfig):
value = dict(value)
setattr(self, name, value)
def to_yaml(self) -> str:
"""
Return a YAML string representing our settings. This can be used
as the contents of `invokeai.yaml` to restore settings later.
"""
cls = self.__class__
type = get_args(get_type_hints(cls)["type"])[0]
field_dict = dict({type: dict()})
for name, field in self.__fields__.items():
if name in cls._excluded_from_yaml():
continue
category = field.field_info.extra.get("category") or "Uncategorized"
value = getattr(self, name)
if category not in field_dict[type]:
field_dict[type][category] = dict()
# keep paths as strings to make it easier to read
field_dict[type][category][name] = str(value) if isinstance(value, Path) else value
conf = OmegaConf.create(field_dict)
return OmegaConf.to_yaml(conf)
@classmethod
def add_parser_arguments(cls, parser):
if "type" in get_type_hints(cls):
settings_stanza = get_args(get_type_hints(cls)["type"])[0]
else:
settings_stanza = "Uncategorized"
env_prefix = cls.Config.env_prefix if hasattr(cls.Config, "env_prefix") else settings_stanza.upper()
initconf = (
cls.initconf.get(settings_stanza)
if cls.initconf and settings_stanza in cls.initconf
else OmegaConf.create()
)
# create an upcase version of the environment in
# order to achieve case-insensitive environment
# variables (the way Windows does)
upcase_environ = dict()
for key, value in os.environ.items():
upcase_environ[key.upper()] = value
fields = cls.__fields__
cls.argparse_groups = {}
for name, field in fields.items():
if name not in cls._excluded():
current_default = field.default
category = field.field_info.extra.get("category", "Uncategorized")
env_name = env_prefix + "_" + name
if category in initconf and name in initconf.get(category):
field.default = initconf.get(category).get(name)
if env_name.upper() in upcase_environ:
field.default = upcase_environ[env_name.upper()]
cls.add_field_argument(parser, name, field)
field.default = current_default
@classmethod
def cmd_name(self, command_field: str = "type") -> str:
hints = get_type_hints(self)
if command_field in hints:
return get_args(hints[command_field])[0]
else:
return "Uncategorized"
@classmethod
def get_parser(cls) -> ArgumentParser:
parser = PagingArgumentParser(
prog=cls.cmd_name(),
description=cls.__doc__,
)
cls.add_parser_arguments(parser)
return parser
@classmethod
def add_subparser(cls, parser: argparse.ArgumentParser):
parser.add_parser(cls.cmd_name(), help=cls.__doc__)
@classmethod
def _excluded(self) -> List[str]:
# internal fields that shouldn't be exposed as command line options
return ["type", "initconf"]
@classmethod
def _excluded_from_yaml(self) -> List[str]:
# combination of deprecated parameters and internal ones that shouldn't be exposed as invokeai.yaml options
return [
"type",
"initconf",
"version",
"from_file",
"model",
"root",
"max_cache_size",
"max_vram_cache_size",
"always_use_cpu",
"free_gpu_mem",
"xformers_enabled",
"tiled_decode",
]
class Config:
env_file_encoding = "utf-8"
arbitrary_types_allowed = True
case_sensitive = True
@classmethod
def add_field_argument(cls, command_parser, name: str, field, default_override=None):
field_type = get_type_hints(cls).get(name)
default = (
default_override
if default_override is not None
else field.default
if field.default_factory is None
else field.default_factory()
)
if category := field.field_info.extra.get("category"):
if category not in cls.argparse_groups:
cls.argparse_groups[category] = command_parser.add_argument_group(category)
argparse_group = cls.argparse_groups[category]
else:
argparse_group = command_parser
if get_origin(field_type) == Literal:
allowed_values = get_args(field.type_)
allowed_types = set()
for val in allowed_values:
allowed_types.add(type(val))
allowed_types_list = list(allowed_types)
field_type = allowed_types_list[0] if len(allowed_types) == 1 else int_or_float_or_str
argparse_group.add_argument(
f"--{name}",
dest=name,
type=field_type,
default=default,
choices=allowed_values,
help=field.field_info.description,
)
elif get_origin(field_type) == Union:
argparse_group.add_argument(
f"--{name}",
dest=name,
type=int_or_float_or_str,
default=default,
help=field.field_info.description,
)
elif get_origin(field_type) == list:
argparse_group.add_argument(
f"--{name}",
dest=name,
nargs="*",
type=field.type_,
default=default,
action=argparse.BooleanOptionalAction if field.type_ == bool else "store",
help=field.field_info.description,
)
else:
argparse_group.add_argument(
f"--{name}",
dest=name,
type=field.type_,
default=default,
action=argparse.BooleanOptionalAction if field.type_ == bool else "store",
help=field.field_info.description,
)
def int_or_float_or_str(value: str) -> Union[int, float, str]:
"""
Workaround for argparse type checking.
"""
try:
return int(value)
except Exception as e: # noqa F841
pass
try:
return float(value)
except Exception as e: # noqa F841
pass
return str(value)

View File

@ -10,37 +10,49 @@ categories returned by `invokeai --help`. The file looks like this:
[file: invokeai.yaml] [file: invokeai.yaml]
InvokeAI: InvokeAI:
Paths:
root: /home/lstein/invokeai-main
conf_path: configs/models.yaml
legacy_conf_dir: configs/stable-diffusion
outdir: outputs
autoimport_dir: null
Models:
model: stable-diffusion-1.5
embeddings: true
Memory/Performance:
xformers_enabled: false
sequential_guidance: false
precision: float16
max_cache_size: 6
max_vram_cache_size: 0.5
always_use_cpu: false
free_gpu_mem: false
Features:
esrgan: true
patchmatch: true
internet_available: true
log_tokenization: false
Web Server: Web Server:
host: 127.0.0.1 host: 127.0.0.1
port: 8081 port: 9090
allow_origins: [] allow_origins: []
allow_credentials: true allow_credentials: true
allow_methods: allow_methods:
- '*' - '*'
allow_headers: allow_headers:
- '*' - '*'
Features:
esrgan: true
internet_available: true
log_tokenization: false
patchmatch: true
ignore_missing_core_models: false
Paths:
autoimport_dir: autoimport
lora_dir: null
embedding_dir: null
controlnet_dir: null
conf_path: configs/models.yaml
models_dir: models
legacy_conf_dir: configs/stable-diffusion
db_dir: databases
outdir: /home/lstein/invokeai-main/outputs
use_memory_db: false
Logging:
log_handlers:
- console
log_format: plain
log_level: info
Model Cache:
ram: 13.5
vram: 0.25
lazy_offload: true
Device:
device: auto
precision: auto
Generation:
sequential_guidance: false
attention_type: xformers
attention_slice_size: auto
force_tiled_decode: false
The default name of the configuration file is `invokeai.yaml`, located The default name of the configuration file is `invokeai.yaml`, located
in INVOKEAI_ROOT. You can replace supersede this by providing any in INVOKEAI_ROOT. You can replace supersede this by providing any
@ -54,24 +66,23 @@ InvokeAIAppConfig.parse_args() will parse the contents of `sys.argv`
at initialization time. You may pass a list of strings in the optional at initialization time. You may pass a list of strings in the optional
`argv` argument to use instead of the system argv: `argv` argument to use instead of the system argv:
conf.parse_args(argv=['--xformers_enabled']) conf.parse_args(argv=['--log_tokenization'])
It is also possible to set a value at initialization time. However, if It is also possible to set a value at initialization time. However, if
you call parse_args() it may be overwritten. you call parse_args() it may be overwritten.
conf = InvokeAIAppConfig(xformers_enabled=True) conf = InvokeAIAppConfig(log_tokenization=True)
conf.parse_args(argv=['--no-xformers']) conf.parse_args(argv=['--no-log_tokenization'])
conf.xformers_enabled conf.log_tokenization
# False # False
To avoid this, use `get_config()` to retrieve the application-wide To avoid this, use `get_config()` to retrieve the application-wide
configuration object. This will retain any properties set at object configuration object. This will retain any properties set at object
creation time: creation time:
conf = InvokeAIAppConfig.get_config(xformers_enabled=True) conf = InvokeAIAppConfig.get_config(log_tokenization=True)
conf.parse_args(argv=['--no-xformers']) conf.parse_args(argv=['--no-log_tokenization'])
conf.xformers_enabled conf.log_tokenization
# True # True
Any setting can be overwritten by setting an environment variable of Any setting can be overwritten by setting an environment variable of
@ -93,7 +104,7 @@ Typical usage at the top level file:
# get global configuration and print its cache size # get global configuration and print its cache size
conf = InvokeAIAppConfig.get_config() conf = InvokeAIAppConfig.get_config()
conf.parse_args() conf.parse_args()
print(conf.max_cache_size) print(conf.ram_cache_size)
Typical usage in a backend module: Typical usage in a backend module:
@ -101,8 +112,7 @@ Typical usage in a backend module:
# get global configuration and print its cache size value # get global configuration and print its cache size value
conf = InvokeAIAppConfig.get_config() conf = InvokeAIAppConfig.get_config()
print(conf.max_cache_size) print(conf.ram_cache_size)
Computed properties: Computed properties:
@ -159,15 +169,15 @@ two configs are kept in separate sections of the config file:
""" """
from __future__ import annotations from __future__ import annotations
import argparse
import pydoc
import os import os
import sys
from argparse import ArgumentParser
from omegaconf import OmegaConf, DictConfig, ListConfig
from pathlib import Path from pathlib import Path
from pydantic import BaseSettings, Field, parse_obj_as from typing import ClassVar, Dict, List, Literal, Union, get_type_hints, Optional
from typing import ClassVar, Dict, List, Literal, Union, get_origin, get_type_hints, get_args
from omegaconf import OmegaConf, DictConfig
from pydantic import Field, parse_obj_as
from .base import InvokeAISettings
INIT_FILE = Path("invokeai.yaml") INIT_FILE = Path("invokeai.yaml")
DB_FILE = Path("invokeai.db") DB_FILE = Path("invokeai.db")
@ -175,195 +185,6 @@ LEGACY_INIT_FILE = Path("invokeai.init")
DEFAULT_MAX_VRAM = 0.5 DEFAULT_MAX_VRAM = 0.5
class InvokeAISettings(BaseSettings):
"""
Runtime configuration settings in which default values are
read from an omegaconf .yaml file.
"""
initconf: ClassVar[DictConfig] = None
argparse_groups: ClassVar[Dict] = {}
def parse_args(self, argv: list = sys.argv[1:]):
parser = self.get_parser()
opt = parser.parse_args(argv)
for name in self.__fields__:
if name not in self._excluded():
value = getattr(opt, name)
if isinstance(value, ListConfig):
value = list(value)
elif isinstance(value, DictConfig):
value = dict(value)
setattr(self, name, value)
def to_yaml(self) -> str:
"""
Return a YAML string representing our settings. This can be used
as the contents of `invokeai.yaml` to restore settings later.
"""
cls = self.__class__
type = get_args(get_type_hints(cls)["type"])[0]
field_dict = dict({type: dict()})
for name, field in self.__fields__.items():
if name in cls._excluded_from_yaml():
continue
category = field.field_info.extra.get("category") or "Uncategorized"
value = getattr(self, name)
if category not in field_dict[type]:
field_dict[type][category] = dict()
# keep paths as strings to make it easier to read
field_dict[type][category][name] = str(value) if isinstance(value, Path) else value
conf = OmegaConf.create(field_dict)
return OmegaConf.to_yaml(conf)
@classmethod
def add_parser_arguments(cls, parser):
if "type" in get_type_hints(cls):
settings_stanza = get_args(get_type_hints(cls)["type"])[0]
else:
settings_stanza = "Uncategorized"
env_prefix = cls.Config.env_prefix if hasattr(cls.Config, "env_prefix") else settings_stanza.upper()
initconf = (
cls.initconf.get(settings_stanza)
if cls.initconf and settings_stanza in cls.initconf
else OmegaConf.create()
)
# create an upcase version of the environment in
# order to achieve case-insensitive environment
# variables (the way Windows does)
upcase_environ = dict()
for key, value in os.environ.items():
upcase_environ[key.upper()] = value
fields = cls.__fields__
cls.argparse_groups = {}
for name, field in fields.items():
if name not in cls._excluded():
current_default = field.default
category = field.field_info.extra.get("category", "Uncategorized")
env_name = env_prefix + "_" + name
if category in initconf and name in initconf.get(category):
field.default = initconf.get(category).get(name)
if env_name.upper() in upcase_environ:
field.default = upcase_environ[env_name.upper()]
cls.add_field_argument(parser, name, field)
field.default = current_default
@classmethod
def cmd_name(self, command_field: str = "type") -> str:
hints = get_type_hints(self)
if command_field in hints:
return get_args(hints[command_field])[0]
else:
return "Uncategorized"
@classmethod
def get_parser(cls) -> ArgumentParser:
parser = PagingArgumentParser(
prog=cls.cmd_name(),
description=cls.__doc__,
)
cls.add_parser_arguments(parser)
return parser
@classmethod
def add_subparser(cls, parser: argparse.ArgumentParser):
parser.add_parser(cls.cmd_name(), help=cls.__doc__)
@classmethod
def _excluded(self) -> List[str]:
# internal fields that shouldn't be exposed as command line options
return ["type", "initconf"]
@classmethod
def _excluded_from_yaml(self) -> List[str]:
# combination of deprecated parameters and internal ones that shouldn't be exposed as invokeai.yaml options
return [
"type",
"initconf",
"version",
"from_file",
"model",
"root",
]
class Config:
env_file_encoding = "utf-8"
arbitrary_types_allowed = True
case_sensitive = True
@classmethod
def add_field_argument(cls, command_parser, name: str, field, default_override=None):
field_type = get_type_hints(cls).get(name)
default = (
default_override
if default_override is not None
else field.default
if field.default_factory is None
else field.default_factory()
)
if category := field.field_info.extra.get("category"):
if category not in cls.argparse_groups:
cls.argparse_groups[category] = command_parser.add_argument_group(category)
argparse_group = cls.argparse_groups[category]
else:
argparse_group = command_parser
if get_origin(field_type) == Literal:
allowed_values = get_args(field.type_)
allowed_types = set()
for val in allowed_values:
allowed_types.add(type(val))
allowed_types_list = list(allowed_types)
field_type = allowed_types_list[0] if len(allowed_types) == 1 else Union[allowed_types_list] # type: ignore
argparse_group.add_argument(
f"--{name}",
dest=name,
type=field_type,
default=default,
choices=allowed_values,
help=field.field_info.description,
)
elif get_origin(field_type) == list:
argparse_group.add_argument(
f"--{name}",
dest=name,
nargs="*",
type=field.type_,
default=default,
action=argparse.BooleanOptionalAction if field.type_ == bool else "store",
help=field.field_info.description,
)
else:
argparse_group.add_argument(
f"--{name}",
dest=name,
type=field.type_,
default=default,
action=argparse.BooleanOptionalAction if field.type_ == bool else "store",
help=field.field_info.description,
)
def _find_root() -> Path:
venv = Path(os.environ.get("VIRTUAL_ENV") or ".")
if os.environ.get("INVOKEAI_ROOT"):
root = Path(os.environ["INVOKEAI_ROOT"])
elif any([(venv.parent / x).exists() for x in [INIT_FILE, LEGACY_INIT_FILE]]):
root = (venv.parent).resolve()
else:
root = Path("~/invokeai").expanduser().resolve()
return root
class InvokeAIAppConfig(InvokeAISettings): class InvokeAIAppConfig(InvokeAISettings):
""" """
Generate images using Stable Diffusion. Use "invokeai" to launch Generate images using Stable Diffusion. Use "invokeai" to launch
@ -378,6 +199,8 @@ class InvokeAIAppConfig(InvokeAISettings):
# fmt: off # fmt: off
type: Literal["InvokeAI"] = "InvokeAI" type: Literal["InvokeAI"] = "InvokeAI"
# WEB
host : str = Field(default="127.0.0.1", description="IP address to bind to", category='Web Server') host : str = Field(default="127.0.0.1", description="IP address to bind to", category='Web Server')
port : int = Field(default=9090, description="Port to bind to", category='Web Server') port : int = Field(default=9090, description="Port to bind to", category='Web Server')
allow_origins : List[str] = Field(default=[], description="Allowed CORS origins", category='Web Server') allow_origins : List[str] = Field(default=[], description="Allowed CORS origins", category='Web Server')
@ -385,20 +208,14 @@ class InvokeAIAppConfig(InvokeAISettings):
allow_methods : List[str] = Field(default=["*"], description="Methods allowed for CORS", category='Web Server') allow_methods : List[str] = Field(default=["*"], description="Methods allowed for CORS", category='Web Server')
allow_headers : List[str] = Field(default=["*"], description="Headers allowed for CORS", category='Web Server') allow_headers : List[str] = Field(default=["*"], description="Headers allowed for CORS", category='Web Server')
# FEATURES
esrgan : bool = Field(default=True, description="Enable/disable upscaling code", category='Features') esrgan : bool = Field(default=True, description="Enable/disable upscaling code", category='Features')
internet_available : bool = Field(default=True, description="If true, attempt to download models on the fly; otherwise only use local models", category='Features') internet_available : bool = Field(default=True, description="If true, attempt to download models on the fly; otherwise only use local models", category='Features')
log_tokenization : bool = Field(default=False, description="Enable logging of parsed prompt tokens.", category='Features') log_tokenization : bool = Field(default=False, description="Enable logging of parsed prompt tokens.", category='Features')
patchmatch : bool = Field(default=True, description="Enable/disable patchmatch inpaint code", category='Features') patchmatch : bool = Field(default=True, description="Enable/disable patchmatch inpaint code", category='Features')
ignore_missing_core_models : bool = Field(default=False, description='Ignore missing models in models/core/convert', category='Features')
always_use_cpu : bool = Field(default=False, description="If true, use the CPU for rendering even if a GPU is available.", category='Memory/Performance') # PATHS
free_gpu_mem : bool = Field(default=False, description="If true, purge model from GPU after each generation.", category='Memory/Performance')
max_cache_size : float = Field(default=6.0, gt=0, description="Maximum memory amount used by model cache for rapid switching", category='Memory/Performance')
max_vram_cache_size : float = Field(default=2.75, ge=0, description="Amount of VRAM reserved for model storage", category='Memory/Performance')
precision : Literal['auto', 'float16', 'float32', 'autocast'] = Field(default='auto', description='Floating point precision', category='Memory/Performance')
sequential_guidance : bool = Field(default=False, description="Whether to calculate guidance in serial instead of in parallel, lowering memory requirements", category='Memory/Performance')
xformers_enabled : bool = Field(default=True, description="Enable/disable memory-efficient attention", category='Memory/Performance')
tiled_decode : bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty)", category='Memory/Performance')
root : Path = Field(default=None, description='InvokeAI runtime root directory', category='Paths') root : Path = Field(default=None, description='InvokeAI runtime root directory', category='Paths')
autoimport_dir : Path = Field(default='autoimport', description='Path to a directory of models files to be imported on startup.', category='Paths') autoimport_dir : Path = Field(default='autoimport', description='Path to a directory of models files to be imported on startup.', category='Paths')
lora_dir : Path = Field(default=None, description='Path to a directory of LoRA/LyCORIS models to be imported on startup.', category='Paths') lora_dir : Path = Field(default=None, description='Path to a directory of LoRA/LyCORIS models to be imported on startup.', category='Paths')
@ -409,16 +226,43 @@ class InvokeAIAppConfig(InvokeAISettings):
legacy_conf_dir : Path = Field(default='configs/stable-diffusion', description='Path to directory of legacy checkpoint config files', category='Paths') legacy_conf_dir : Path = Field(default='configs/stable-diffusion', description='Path to directory of legacy checkpoint config files', category='Paths')
db_dir : Path = Field(default='databases', description='Path to InvokeAI databases directory', category='Paths') db_dir : Path = Field(default='databases', description='Path to InvokeAI databases directory', category='Paths')
outdir : Path = Field(default='outputs', description='Default folder for output images', category='Paths') outdir : Path = Field(default='outputs', description='Default folder for output images', category='Paths')
from_file : Path = Field(default=None, description='Take command input from the indicated file (command-line client only)', category='Paths')
use_memory_db : bool = Field(default=False, description='Use in-memory database for storing image metadata', category='Paths') use_memory_db : bool = Field(default=False, description='Use in-memory database for storing image metadata', category='Paths')
ignore_missing_core_models : bool = Field(default=False, description='Ignore missing models in models/core/convert', category='Features') from_file : Path = Field(default=None, description='Take command input from the indicated file (command-line client only)', category='Paths')
# LOGGING
log_handlers : List[str] = Field(default=["console"], description='Log handler. Valid options are "console", "file=<path>", "syslog=path|address:host:port", "http=<url>"', category="Logging") log_handlers : List[str] = Field(default=["console"], description='Log handler. Valid options are "console", "file=<path>", "syslog=path|address:host:port", "http=<url>"', category="Logging")
# note - would be better to read the log_format values from logging.py, but this creates circular dependencies issues # note - would be better to read the log_format values from logging.py, but this creates circular dependencies issues
log_format : Literal['plain', 'color', 'syslog', 'legacy'] = Field(default="color", description='Log format. Use "plain" for text-only, "color" for colorized output, "legacy" for 2.3-style logging and "syslog" for syslog-style', category="Logging") log_format : Literal['plain', 'color', 'syslog', 'legacy'] = Field(default="color", description='Log format. Use "plain" for text-only, "color" for colorized output, "legacy" for 2.3-style logging and "syslog" for syslog-style', category="Logging")
log_level : Literal["debug", "info", "warning", "error", "critical"] = Field(default="info", description="Emit logging messages at this level or higher", category="Logging") log_level : Literal["debug", "info", "warning", "error", "critical"] = Field(default="info", description="Emit logging messages at this level or higher", category="Logging")
dev_reload : bool = Field(default=False, description="Automatically reload when Python sources are changed.", category="Development")
version : bool = Field(default=False, description="Show InvokeAI version and exit", category="Other") version : bool = Field(default=False, description="Show InvokeAI version and exit", category="Other")
# CACHE
ram : Union[float, Literal["auto"]] = Field(default=6.0, gt=0, description="Maximum memory amount used by model cache for rapid switching (floating point number or 'auto')", category="Model Cache", )
vram : Union[float, Literal["auto"]] = Field(default=0.25, ge=0, description="Amount of VRAM reserved for model storage (floating point number or 'auto')", category="Model Cache", )
lazy_offload : bool = Field(default=True, description="Keep models in VRAM until their space is needed", category="Model Cache", )
# DEVICE
device : Literal[tuple(["auto", "cpu", "cuda", "cuda:1", "mps"])] = Field(default="auto", description="Generation device", category="Device", )
precision: Literal[tuple(["auto", "float16", "float32", "autocast"])] = Field(default="auto", description="Floating point precision", category="Device", )
# GENERATION
sequential_guidance : bool = Field(default=False, description="Whether to calculate guidance in serial instead of in parallel, lowering memory requirements", category="Generation", )
attention_type : Literal[tuple(["auto", "normal", "xformers", "sliced", "torch-sdp"])] = Field(default="auto", description="Attention type", category="Generation", )
attention_slice_size: Literal[tuple(["auto", "balanced", "max", 1, 2, 3, 4, 5, 6, 7, 8])] = Field(default="auto", description='Slice size, valid when attention_type=="sliced"', category="Generation", )
force_tiled_decode: bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty)", category="Generation",)
# DEPRECATED FIELDS - STILL HERE IN ORDER TO OBTAN VALUES FROM PRE-3.1 CONFIG FILES
always_use_cpu : bool = Field(default=False, description="If true, use the CPU for rendering even if a GPU is available.", category='Memory/Performance')
free_gpu_mem : Optional[bool] = Field(default=None, description="If true, purge model from GPU after each generation.", category='Memory/Performance')
max_cache_size : Optional[float] = Field(default=None, gt=0, description="Maximum memory amount used by model cache for rapid switching", category='Memory/Performance')
max_vram_cache_size : Optional[float] = Field(default=None, ge=0, description="Amount of VRAM reserved for model storage", category='Memory/Performance')
xformers_enabled : bool = Field(default=True, description="Enable/disable memory-efficient attention", category='Memory/Performance')
tiled_decode : bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty)", category='Memory/Performance')
# See InvokeAIAppConfig subclass below for CACHE and DEVICE categories
# fmt: on # fmt: on
class Config: class Config:
@ -541,11 +385,6 @@ class InvokeAIAppConfig(InvokeAISettings):
"""Return true if precision set to float32""" """Return true if precision set to float32"""
return self.precision == "float32" return self.precision == "float32"
@property
def disable_xformers(self) -> bool:
"""Return true if xformers_enabled is false"""
return not self.xformers_enabled
@property @property
def try_patchmatch(self) -> bool: def try_patchmatch(self) -> bool:
"""Return true if patchmatch true""" """Return true if patchmatch true"""
@ -561,6 +400,27 @@ class InvokeAIAppConfig(InvokeAISettings):
"""invisible watermark node is always active and disabled from Web UIe""" """invisible watermark node is always active and disabled from Web UIe"""
return True return True
@property
def ram_cache_size(self) -> float:
return self.max_cache_size or self.ram
@property
def vram_cache_size(self) -> float:
return self.max_vram_cache_size or self.vram
@property
def use_cpu(self) -> bool:
return self.always_use_cpu or self.device == "cpu"
@property
def disable_xformers(self) -> bool:
"""
Return true if enable_xformers is false (reversed logic)
and attention type is not set to xformers.
"""
disabled_in_config = not self.xformers_enabled
return disabled_in_config and self.attention_type != "xformers"
@staticmethod @staticmethod
def find_root() -> Path: def find_root() -> Path:
""" """
@ -570,19 +430,19 @@ class InvokeAIAppConfig(InvokeAISettings):
return _find_root() return _find_root()
class PagingArgumentParser(argparse.ArgumentParser):
"""
A custom ArgumentParser that uses pydoc to page its output.
It also supports reading defaults from an init file.
"""
def print_help(self, file=None):
text = self.format_help()
pydoc.pager(text)
def get_invokeai_config(**kwargs) -> InvokeAIAppConfig: def get_invokeai_config(**kwargs) -> InvokeAIAppConfig:
""" """
Legacy function which returns InvokeAIAppConfig.get_config() Legacy function which returns InvokeAIAppConfig.get_config()
""" """
return InvokeAIAppConfig.get_config(**kwargs) return InvokeAIAppConfig.get_config(**kwargs)
def _find_root() -> Path:
venv = Path(os.environ.get("VIRTUAL_ENV") or ".")
if os.environ.get("INVOKEAI_ROOT"):
root = Path(os.environ["INVOKEAI_ROOT"])
elif any([(venv.parent / x).exists() for x in [INIT_FILE, LEGACY_INIT_FILE]]):
root = (venv.parent).resolve()
else:
root = Path("~/invokeai").expanduser().resolve()
return root

View File

@ -17,9 +17,9 @@ def create_text_to_image() -> LibraryGraph:
description="Converts text to an image", description="Converts text to an image",
graph=Graph( graph=Graph(
nodes={ nodes={
"width": IntegerInvocation(id="width", a=512), "width": IntegerInvocation(id="width", value=512),
"height": IntegerInvocation(id="height", a=512), "height": IntegerInvocation(id="height", value=512),
"seed": IntegerInvocation(id="seed", a=-1), "seed": IntegerInvocation(id="seed", value=-1),
"3": NoiseInvocation(id="3"), "3": NoiseInvocation(id="3"),
"4": CompelInvocation(id="4"), "4": CompelInvocation(id="4"),
"5": CompelInvocation(id="5"), "5": CompelInvocation(id="5"),
@ -29,15 +29,15 @@ def create_text_to_image() -> LibraryGraph:
}, },
edges=[ edges=[
Edge( Edge(
source=EdgeConnection(node_id="width", field="a"), source=EdgeConnection(node_id="width", field="value"),
destination=EdgeConnection(node_id="3", field="width"), destination=EdgeConnection(node_id="3", field="width"),
), ),
Edge( Edge(
source=EdgeConnection(node_id="height", field="a"), source=EdgeConnection(node_id="height", field="value"),
destination=EdgeConnection(node_id="3", field="height"), destination=EdgeConnection(node_id="3", field="height"),
), ),
Edge( Edge(
source=EdgeConnection(node_id="seed", field="a"), source=EdgeConnection(node_id="seed", field="value"),
destination=EdgeConnection(node_id="3", field="seed"), destination=EdgeConnection(node_id="3", field="seed"),
), ),
Edge( Edge(
@ -65,9 +65,9 @@ def create_text_to_image() -> LibraryGraph:
exposed_inputs=[ exposed_inputs=[
ExposedNodeInput(node_path="4", field="prompt", alias="positive_prompt"), ExposedNodeInput(node_path="4", field="prompt", alias="positive_prompt"),
ExposedNodeInput(node_path="5", field="prompt", alias="negative_prompt"), ExposedNodeInput(node_path="5", field="prompt", alias="negative_prompt"),
ExposedNodeInput(node_path="width", field="a", alias="width"), ExposedNodeInput(node_path="width", field="value", alias="width"),
ExposedNodeInput(node_path="height", field="a", alias="height"), ExposedNodeInput(node_path="height", field="value", alias="height"),
ExposedNodeInput(node_path="seed", field="a", alias="seed"), ExposedNodeInput(node_path="seed", field="value", alias="seed"),
], ],
exposed_outputs=[ExposedNodeOutput(node_path="8", field="image", alias="image")], exposed_outputs=[ExposedNodeOutput(node_path="8", field="image", alias="image")],
) )

View File

@ -49,9 +49,36 @@ from invokeai.backend.model_management.model_cache import CacheStats
GIG = 1073741824 GIG = 1073741824
@dataclass
class NodeStats:
"""Class for tracking execution stats of an invocation node"""
calls: int = 0
time_used: float = 0.0 # seconds
max_vram: float = 0.0 # GB
cache_hits: int = 0
cache_misses: int = 0
cache_high_watermark: int = 0
@dataclass
class NodeLog:
"""Class for tracking node usage"""
# {node_type => NodeStats}
nodes: Dict[str, NodeStats] = field(default_factory=dict)
class InvocationStatsServiceBase(ABC): class InvocationStatsServiceBase(ABC):
"Abstract base class for recording node memory/time performance statistics" "Abstract base class for recording node memory/time performance statistics"
graph_execution_manager: ItemStorageABC["GraphExecutionState"]
# {graph_id => NodeLog}
_stats: Dict[str, NodeLog]
_cache_stats: Dict[str, CacheStats]
ram_used: float
ram_changed: float
@abstractmethod @abstractmethod
def __init__(self, graph_execution_manager: ItemStorageABC["GraphExecutionState"]): def __init__(self, graph_execution_manager: ItemStorageABC["GraphExecutionState"]):
""" """
@ -94,8 +121,6 @@ class InvocationStatsServiceBase(ABC):
invocation_type: str, invocation_type: str,
time_used: float, time_used: float,
vram_used: float, vram_used: float,
ram_used: float,
ram_changed: float,
): ):
""" """
Add timing information on execution of a node. Usually Add timing information on execution of a node. Usually
@ -104,8 +129,6 @@ class InvocationStatsServiceBase(ABC):
:param invocation_type: String literal type of the node :param invocation_type: String literal type of the node
:param time_used: Time used by node's exection (sec) :param time_used: Time used by node's exection (sec)
:param vram_used: Maximum VRAM used during exection (GB) :param vram_used: Maximum VRAM used during exection (GB)
:param ram_used: Current RAM available (GB)
:param ram_changed: Change in RAM usage over course of the run (GB)
""" """
pass pass
@ -116,25 +139,19 @@ class InvocationStatsServiceBase(ABC):
""" """
pass pass
@abstractmethod
def update_mem_stats(
self,
ram_used: float,
ram_changed: float,
):
"""
Update the collector with RAM memory usage info.
@dataclass :param ram_used: How much RAM is currently in use.
class NodeStats: :param ram_changed: How much RAM changed since last generation.
"""Class for tracking execution stats of an invocation node""" """
pass
calls: int = 0
time_used: float = 0.0 # seconds
max_vram: float = 0.0 # GB
cache_hits: int = 0
cache_misses: int = 0
cache_high_watermark: int = 0
@dataclass
class NodeLog:
"""Class for tracking node usage"""
# {node_type => NodeStats}
nodes: Dict[str, NodeStats] = field(default_factory=dict)
class InvocationStatsService(InvocationStatsServiceBase): class InvocationStatsService(InvocationStatsServiceBase):
@ -152,12 +169,12 @@ class InvocationStatsService(InvocationStatsServiceBase):
class StatsContext: class StatsContext:
"""Context manager for collecting statistics.""" """Context manager for collecting statistics."""
invocation: BaseInvocation = None invocation: BaseInvocation
collector: "InvocationStatsServiceBase" = None collector: "InvocationStatsServiceBase"
graph_id: str = None graph_id: str
start_time: int = 0 start_time: float
ram_used: int = 0 ram_used: int
model_manager: ModelManagerService = None model_manager: ModelManagerService
def __init__( def __init__(
self, self,
@ -170,7 +187,7 @@ class InvocationStatsService(InvocationStatsServiceBase):
self.invocation = invocation self.invocation = invocation
self.collector = collector self.collector = collector
self.graph_id = graph_id self.graph_id = graph_id
self.start_time = 0 self.start_time = 0.0
self.ram_used = 0 self.ram_used = 0
self.model_manager = model_manager self.model_manager = model_manager
@ -191,7 +208,7 @@ class InvocationStatsService(InvocationStatsServiceBase):
) )
self.collector.update_invocation_stats( self.collector.update_invocation_stats(
graph_id=self.graph_id, graph_id=self.graph_id,
invocation_type=self.invocation.type, invocation_type=self.invocation.type, # type: ignore - `type` is not on the `BaseInvocation` model, but *is* on all invocations
time_used=time.time() - self.start_time, time_used=time.time() - self.start_time,
vram_used=torch.cuda.max_memory_allocated() / GIG if torch.cuda.is_available() else 0.0, vram_used=torch.cuda.max_memory_allocated() / GIG if torch.cuda.is_available() else 0.0,
) )
@ -202,11 +219,6 @@ class InvocationStatsService(InvocationStatsServiceBase):
graph_execution_state_id: str, graph_execution_state_id: str,
model_manager: ModelManagerService, model_manager: ModelManagerService,
) -> StatsContext: ) -> StatsContext:
"""
Return a context object that will capture the statistics.
:param invocation: BaseInvocation object from the current graph.
:param graph_execution_state: GraphExecutionState object from the current session.
"""
if not self._stats.get(graph_execution_state_id): # first time we're seeing this if not self._stats.get(graph_execution_state_id): # first time we're seeing this
self._stats[graph_execution_state_id] = NodeLog() self._stats[graph_execution_state_id] = NodeLog()
self._cache_stats[graph_execution_state_id] = CacheStats() self._cache_stats[graph_execution_state_id] = CacheStats()
@ -217,7 +229,6 @@ class InvocationStatsService(InvocationStatsServiceBase):
self._stats = {} self._stats = {}
def reset_stats(self, graph_execution_id: str): def reset_stats(self, graph_execution_id: str):
"""Zero the statistics for the indicated graph."""
try: try:
self._stats.pop(graph_execution_id) self._stats.pop(graph_execution_id)
except KeyError: except KeyError:
@ -228,12 +239,6 @@ class InvocationStatsService(InvocationStatsServiceBase):
ram_used: float, ram_used: float,
ram_changed: float, ram_changed: float,
): ):
"""
Update the collector with RAM memory usage info.
:param ram_used: How much RAM is currently in use.
:param ram_changed: How much RAM changed since last generation.
"""
self.ram_used = ram_used self.ram_used = ram_used
self.ram_changed = ram_changed self.ram_changed = ram_changed
@ -244,16 +249,6 @@ class InvocationStatsService(InvocationStatsServiceBase):
time_used: float, time_used: float,
vram_used: float, vram_used: float,
): ):
"""
Add timing information on execution of a node. Usually
used internally.
:param graph_id: ID of the graph that is currently executing
:param invocation_type: String literal type of the node
:param time_used: Time used by node's exection (sec)
:param vram_used: Maximum VRAM used during exection (GB)
:param ram_used: Current RAM available (GB)
:param ram_changed: Change in RAM usage over course of the run (GB)
"""
if not self._stats[graph_id].nodes.get(invocation_type): if not self._stats[graph_id].nodes.get(invocation_type):
self._stats[graph_id].nodes[invocation_type] = NodeStats() self._stats[graph_id].nodes[invocation_type] = NodeStats()
stats = self._stats[graph_id].nodes[invocation_type] stats = self._stats[graph_id].nodes[invocation_type]
@ -262,14 +257,15 @@ class InvocationStatsService(InvocationStatsServiceBase):
stats.max_vram = max(stats.max_vram, vram_used) stats.max_vram = max(stats.max_vram, vram_used)
def log_stats(self): def log_stats(self):
"""
Send the statistics to the system logger at the info level.
Stats will only be printed when the execution of the graph
is complete.
"""
completed = set() completed = set()
errored = set()
for graph_id, node_log in self._stats.items(): for graph_id, node_log in self._stats.items():
current_graph_state = self.graph_execution_manager.get(graph_id) try:
current_graph_state = self.graph_execution_manager.get(graph_id)
except Exception:
errored.add(graph_id)
continue
if not current_graph_state.is_complete(): if not current_graph_state.is_complete():
continue continue
@ -302,3 +298,7 @@ class InvocationStatsService(InvocationStatsServiceBase):
for graph_id in completed: for graph_id in completed:
del self._stats[graph_id] del self._stats[graph_id]
del self._cache_stats[graph_id] del self._cache_stats[graph_id]
for graph_id in errored:
del self._stats[graph_id]
del self._cache_stats[graph_id]

View File

@ -330,8 +330,8 @@ class ModelManagerService(ModelManagerServiceBase):
# configuration value. If present, then the # configuration value. If present, then the
# cache size is set to 2.5 GB times # cache size is set to 2.5 GB times
# the number of max_loaded_models. Otherwise # the number of max_loaded_models. Otherwise
# use new `max_cache_size` config setting # use new `ram_cache_size` config setting
max_cache_size = config.max_cache_size if hasattr(config, "max_cache_size") else config.max_loaded_models * 2.5 max_cache_size = config.ram_cache_size
logger.debug(f"Maximum RAM cache size: {max_cache_size} GiB") logger.debug(f"Maximum RAM cache size: {max_cache_size} GiB")

View File

@ -0,0 +1,56 @@
import gc
from typing import Any
import numpy as np
import torch
from PIL import Image
from invokeai.app.services.config import get_invokeai_config
from invokeai.backend.util.devices import choose_torch_device
def norm_img(np_img):
if len(np_img.shape) == 2:
np_img = np_img[:, :, np.newaxis]
np_img = np.transpose(np_img, (2, 0, 1))
np_img = np_img.astype("float32") / 255
return np_img
def load_jit_model(url_or_path, device):
model_path = url_or_path
print(f"Loading model from: {model_path}")
model = torch.jit.load(model_path, map_location="cpu").to(device)
model.eval()
return model
class LaMA:
def __call__(self, input_image: Image.Image, *args: Any, **kwds: Any) -> Any:
device = choose_torch_device()
model_location = get_invokeai_config().models_path / "core/misc/lama/lama.pt"
model = load_jit_model(model_location, device)
image = np.asarray(input_image.convert("RGB"))
image = norm_img(image)
mask = input_image.split()[-1]
mask = np.asarray(mask)
mask = np.invert(mask)
mask = norm_img(mask)
mask = (mask > 0) * 1
image = torch.from_numpy(image).unsqueeze(0).to(device)
mask = torch.from_numpy(mask).unsqueeze(0).to(device)
with torch.inference_mode():
infilled_image = model(image, mask)
infilled_image = infilled_image[0].permute(1, 2, 0).detach().cpu().numpy()
infilled_image = np.clip(infilled_image * 255, 0, 255).astype("uint8")
infilled_image = Image.fromarray(infilled_image)
del model
gc.collect()
return infilled_image

View File

@ -21,6 +21,7 @@ from argparse import Namespace
from enum import Enum from enum import Enum
from pathlib import Path from pathlib import Path
from shutil import get_terminal_size from shutil import get_terminal_size
from typing import get_type_hints, get_args, Any
from urllib import request from urllib import request
import npyscreen import npyscreen
@ -49,7 +50,8 @@ from invokeai.frontend.install.model_install import addModelsForm, process_and_e
# TO DO - Move all the frontend code into invokeai.frontend.install # TO DO - Move all the frontend code into invokeai.frontend.install
from invokeai.frontend.install.widgets import ( from invokeai.frontend.install.widgets import (
SingleSelectColumns, SingleSelectColumnsSimple,
MultiSelectColumns,
CenteredButtonPress, CenteredButtonPress,
FileBox, FileBox,
set_min_terminal_size, set_min_terminal_size,
@ -71,6 +73,10 @@ warnings.filterwarnings("ignore")
transformers.logging.set_verbosity_error() transformers.logging.set_verbosity_error()
def get_literal_fields(field) -> list[Any]:
return get_args(get_type_hints(InvokeAIAppConfig).get(field))
# --------------------------globals----------------------- # --------------------------globals-----------------------
config = InvokeAIAppConfig.get_config() config = InvokeAIAppConfig.get_config()
@ -80,7 +86,11 @@ Model_dir = "models"
Default_config_file = config.model_conf_path Default_config_file = config.model_conf_path
SD_Configs = config.legacy_conf_path SD_Configs = config.legacy_conf_path
PRECISION_CHOICES = ["auto", "float16", "float32"] PRECISION_CHOICES = get_literal_fields("precision")
DEVICE_CHOICES = get_literal_fields("device")
ATTENTION_CHOICES = get_literal_fields("attention_type")
ATTENTION_SLICE_CHOICES = get_literal_fields("attention_slice_size")
GENERATION_OPT_CHOICES = ["sequential_guidance", "force_tiled_decode", "lazy_offload"]
GB = 1073741824 # GB in bytes GB = 1073741824 # GB in bytes
HAS_CUDA = torch.cuda.is_available() HAS_CUDA = torch.cuda.is_available()
_, MAX_VRAM = torch.cuda.mem_get_info() if HAS_CUDA else (0, 0) _, MAX_VRAM = torch.cuda.mem_get_info() if HAS_CUDA else (0, 0)
@ -311,6 +321,7 @@ class editOptsForm(CyclingForm, npyscreen.FormMultiPage):
Use ctrl-N and ctrl-P to move to the <N>ext and <P>revious fields. Use ctrl-N and ctrl-P to move to the <N>ext and <P>revious fields.
Use cursor arrows to make a checkbox selection, and space to toggle. Use cursor arrows to make a checkbox selection, and space to toggle.
""" """
self.nextrely -= 1
for i in textwrap.wrap(label, width=window_width - 6): for i in textwrap.wrap(label, width=window_width - 6):
self.add_widget_intelligent( self.add_widget_intelligent(
npyscreen.FixedText, npyscreen.FixedText,
@ -337,76 +348,127 @@ Use cursor arrows to make a checkbox selection, and space to toggle.
use_two_lines=False, use_two_lines=False,
scroll_exit=True, scroll_exit=True,
) )
self.nextrely += 1
self.add_widget_intelligent( # old settings for defaults
npyscreen.TitleFixedText,
name="GPU Management",
begin_entry_at=0,
editable=False,
color="CONTROL",
scroll_exit=True,
)
self.nextrely -= 1
self.free_gpu_mem = self.add_widget_intelligent(
npyscreen.Checkbox,
name="Free GPU memory after each generation",
value=old_opts.free_gpu_mem,
max_width=45,
relx=5,
scroll_exit=True,
)
self.nextrely -= 1
self.xformers_enabled = self.add_widget_intelligent(
npyscreen.Checkbox,
name="Enable xformers support",
value=old_opts.xformers_enabled,
max_width=30,
relx=50,
scroll_exit=True,
)
self.nextrely -= 1
self.always_use_cpu = self.add_widget_intelligent(
npyscreen.Checkbox,
name="Force CPU to be used on GPU systems",
value=old_opts.always_use_cpu,
relx=80,
scroll_exit=True,
)
precision = old_opts.precision or ("float32" if program_opts.full_precision else "auto") precision = old_opts.precision or ("float32" if program_opts.full_precision else "auto")
device = old_opts.device
attention_type = old_opts.attention_type
attention_slice_size = old_opts.attention_slice_size
self.nextrely += 1 self.nextrely += 1
self.add_widget_intelligent( self.add_widget_intelligent(
npyscreen.TitleFixedText, npyscreen.TitleFixedText,
name="Floating Point Precision", name="Image Generation Options:",
editable=False,
color="CONTROL",
scroll_exit=True,
)
self.nextrely -= 2
self.generation_options = self.add_widget_intelligent(
MultiSelectColumns,
columns=3,
values=GENERATION_OPT_CHOICES,
value=[GENERATION_OPT_CHOICES.index(x) for x in GENERATION_OPT_CHOICES if getattr(old_opts, x)],
relx=30,
max_height=2,
max_width=80,
scroll_exit=True,
)
self.add_widget_intelligent(
npyscreen.TitleFixedText,
name="Floating Point Precision:",
begin_entry_at=0, begin_entry_at=0,
editable=False, editable=False,
color="CONTROL", color="CONTROL",
scroll_exit=True, scroll_exit=True,
) )
self.nextrely -= 1 self.nextrely -= 2
self.precision = self.add_widget_intelligent( self.precision = self.add_widget_intelligent(
SingleSelectColumns, SingleSelectColumnsSimple,
columns=3, columns=len(PRECISION_CHOICES),
name="Precision", name="Precision",
values=PRECISION_CHOICES, values=PRECISION_CHOICES,
value=PRECISION_CHOICES.index(precision), value=PRECISION_CHOICES.index(precision),
begin_entry_at=3, begin_entry_at=3,
max_height=2, max_height=2,
relx=30,
max_width=56,
scroll_exit=True,
)
self.add_widget_intelligent(
npyscreen.TitleFixedText,
name="Generation Device:",
begin_entry_at=0,
editable=False,
color="CONTROL",
scroll_exit=True,
)
self.nextrely -= 2
self.device = self.add_widget_intelligent(
SingleSelectColumnsSimple,
columns=len(DEVICE_CHOICES),
values=DEVICE_CHOICES,
value=[DEVICE_CHOICES.index(device)],
begin_entry_at=3,
relx=30,
max_height=2,
max_width=60,
scroll_exit=True,
)
self.add_widget_intelligent(
npyscreen.TitleFixedText,
name="Attention Type:",
begin_entry_at=0,
editable=False,
color="CONTROL",
scroll_exit=True,
)
self.nextrely -= 2
self.attention_type = self.add_widget_intelligent(
SingleSelectColumnsSimple,
columns=len(ATTENTION_CHOICES),
values=ATTENTION_CHOICES,
value=[ATTENTION_CHOICES.index(attention_type)],
begin_entry_at=3,
max_height=2,
relx=30,
max_width=80, max_width=80,
scroll_exit=True, scroll_exit=True,
) )
self.nextrely += 1 self.attention_type.on_changed = self.show_hide_slice_sizes
self.attention_slice_label = self.add_widget_intelligent(
npyscreen.TitleFixedText,
name="Attention Slice Size:",
relx=5,
editable=False,
hidden=attention_type != "sliced",
color="CONTROL",
scroll_exit=True,
)
self.nextrely -= 2
self.attention_slice_size = self.add_widget_intelligent(
SingleSelectColumnsSimple,
columns=len(ATTENTION_SLICE_CHOICES),
values=ATTENTION_SLICE_CHOICES,
value=[ATTENTION_SLICE_CHOICES.index(attention_slice_size)],
relx=30,
hidden=attention_type != "sliced",
max_height=2,
max_width=110,
scroll_exit=True,
)
self.add_widget_intelligent( self.add_widget_intelligent(
npyscreen.TitleFixedText, npyscreen.TitleFixedText,
name="RAM cache size (GB). Make this at least large enough to hold a single full model.", name="Model RAM cache size (GB). Make this at least large enough to hold a single full model.",
begin_entry_at=0, begin_entry_at=0,
editable=False, editable=False,
color="CONTROL", color="CONTROL",
scroll_exit=True, scroll_exit=True,
) )
self.nextrely -= 1 self.nextrely -= 1
self.max_cache_size = self.add_widget_intelligent( self.ram = self.add_widget_intelligent(
npyscreen.Slider, npyscreen.Slider,
value=clip(old_opts.max_cache_size, range=(3.0, MAX_RAM), step=0.5), value=clip(old_opts.ram_cache_size, range=(3.0, MAX_RAM), step=0.5),
out_of=round(MAX_RAM), out_of=round(MAX_RAM),
lowest=0.0, lowest=0.0,
step=0.5, step=0.5,
@ -417,16 +479,16 @@ Use cursor arrows to make a checkbox selection, and space to toggle.
self.nextrely += 1 self.nextrely += 1
self.add_widget_intelligent( self.add_widget_intelligent(
npyscreen.TitleFixedText, npyscreen.TitleFixedText,
name="VRAM cache size (GB). Reserving a small amount of VRAM will modestly speed up the start of image generation.", name="Model VRAM cache size (GB). Reserving a small amount of VRAM will modestly speed up the start of image generation.",
begin_entry_at=0, begin_entry_at=0,
editable=False, editable=False,
color="CONTROL", color="CONTROL",
scroll_exit=True, scroll_exit=True,
) )
self.nextrely -= 1 self.nextrely -= 1
self.max_vram_cache_size = self.add_widget_intelligent( self.vram = self.add_widget_intelligent(
npyscreen.Slider, npyscreen.Slider,
value=clip(old_opts.max_vram_cache_size, range=(0, MAX_VRAM), step=0.25), value=clip(old_opts.vram_cache_size, range=(0, MAX_VRAM), step=0.25),
out_of=round(MAX_VRAM * 2) / 2, out_of=round(MAX_VRAM * 2) / 2,
lowest=0.0, lowest=0.0,
relx=8, relx=8,
@ -434,7 +496,7 @@ Use cursor arrows to make a checkbox selection, and space to toggle.
scroll_exit=True, scroll_exit=True,
) )
else: else:
self.max_vram_cache_size = DummyWidgetValue.zero self.vram_cache_size = DummyWidgetValue.zero
self.nextrely += 1 self.nextrely += 1
self.outdir = self.add_widget_intelligent( self.outdir = self.add_widget_intelligent(
FileBox, FileBox,
@ -490,6 +552,11 @@ https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/LICENS
when_pressed_function=self.on_ok, when_pressed_function=self.on_ok,
) )
def show_hide_slice_sizes(self, value):
show = ATTENTION_CHOICES[value[0]] == "sliced"
self.attention_slice_label.hidden = not show
self.attention_slice_size.hidden = not show
def on_ok(self): def on_ok(self):
options = self.marshall_arguments() options = self.marshall_arguments()
if self.validate_field_values(options): if self.validate_field_values(options):
@ -523,12 +590,9 @@ https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/LICENS
new_opts = Namespace() new_opts = Namespace()
for attr in [ for attr in [
"ram",
"vram",
"outdir", "outdir",
"free_gpu_mem",
"max_cache_size",
"max_vram_cache_size",
"xformers_enabled",
"always_use_cpu",
]: ]:
setattr(new_opts, attr, getattr(self, attr).value) setattr(new_opts, attr, getattr(self, attr).value)
@ -541,6 +605,12 @@ https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/LICENS
new_opts.hf_token = self.hf_token.value new_opts.hf_token = self.hf_token.value
new_opts.license_acceptance = self.license_acceptance.value new_opts.license_acceptance = self.license_acceptance.value
new_opts.precision = PRECISION_CHOICES[self.precision.value[0]] new_opts.precision = PRECISION_CHOICES[self.precision.value[0]]
new_opts.device = DEVICE_CHOICES[self.device.value[0]]
new_opts.attention_type = ATTENTION_CHOICES[self.attention_type.value[0]]
new_opts.attention_slice_size = ATTENTION_SLICE_CHOICES[self.attention_slice_size.value[0]]
generation_options = [GENERATION_OPT_CHOICES[x] for x in self.generation_options.value]
for v in GENERATION_OPT_CHOICES:
setattr(new_opts, v, v in generation_options)
return new_opts return new_opts
@ -635,8 +705,6 @@ def initialize_rootdir(root: Path, yes_to_all: bool = False):
path = dest / "core" path = dest / "core"
path.mkdir(parents=True, exist_ok=True) path.mkdir(parents=True, exist_ok=True)
maybe_create_models_yaml(root)
def maybe_create_models_yaml(root: Path): def maybe_create_models_yaml(root: Path):
models_yaml = root / "configs" / "models.yaml" models_yaml = root / "configs" / "models.yaml"

View File

@ -341,7 +341,8 @@ class ModelManager(object):
self.logger = logger self.logger = logger
self.cache = ModelCache( self.cache = ModelCache(
max_cache_size=max_cache_size, max_cache_size=max_cache_size,
max_vram_cache_size=self.app_config.max_vram_cache_size, max_vram_cache_size=self.app_config.vram_cache_size,
lazy_offloading=self.app_config.lazy_offload,
execution_device=device_type, execution_device=device_type,
precision=precision, precision=precision,
sequential_offload=sequential_offload, sequential_offload=sequential_offload,

View File

@ -33,7 +33,7 @@ from .diffusion import (
PostprocessingSettings, PostprocessingSettings,
BasicConditioningInfo, BasicConditioningInfo,
) )
from ..util import normalize_device from ..util import normalize_device, auto_detect_slice_size
@dataclass @dataclass
@ -291,6 +291,24 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
if xformers is available, use it, otherwise use sliced attention. if xformers is available, use it, otherwise use sliced attention.
""" """
config = InvokeAIAppConfig.get_config() config = InvokeAIAppConfig.get_config()
if config.attention_type == "xformers":
self.enable_xformers_memory_efficient_attention()
return
elif config.attention_type == "sliced":
slice_size = config.attention_slice_size
if slice_size == "auto":
slice_size = auto_detect_slice_size(latents)
elif slice_size == "balanced":
slice_size = "auto"
self.enable_attention_slicing(slice_size=slice_size)
return
elif config.attention_type == "normal":
self.disable_attention_slicing()
return
elif config.attention_type == "torch-sdp":
raise Exception("torch-sdp attention slicing not yet implemented")
# the remainder if this code is called when attention_type=='auto'
if self.unet.device.type == "cuda": if self.unet.device.type == "cuda":
if is_xformers_available() and not config.disable_xformers: if is_xformers_available() and not config.disable_xformers:
self.enable_xformers_memory_efficient_attention() self.enable_xformers_memory_efficient_attention()

View File

@ -11,4 +11,11 @@ from .devices import ( # noqa: F401
torch_dtype, torch_dtype,
) )
from .log import write_log # noqa: F401 from .log import write_log # noqa: F401
from .util import ask_user, download_with_resume, instantiate_from_config, url_attachment_name, Chdir # noqa: F401 from .util import ( # noqa: F401
ask_user,
download_with_resume,
instantiate_from_config,
url_attachment_name,
Chdir,
)
from .attention import auto_detect_slice_size # noqa: F401

View File

@ -0,0 +1,32 @@
# Copyright (c) 2023 Lincoln Stein and the InvokeAI Team
"""
Utility routine used for autodetection of optimal slice size
for attention mechanism.
"""
import torch
import psutil
def auto_detect_slice_size(latents: torch.Tensor) -> str:
bytes_per_element_needed_for_baddbmm_duplication = latents.element_size() + 4
max_size_required_for_baddbmm = (
16
* latents.size(dim=2)
* latents.size(dim=3)
* latents.size(dim=2)
* latents.size(dim=3)
* bytes_per_element_needed_for_baddbmm_duplication
)
if latents.device.type in {"cpu", "mps"}:
mem_free = psutil.virtual_memory().free
elif latents.device.type == "cuda":
mem_free, _ = torch.cuda.mem_get_info(latents.device)
else:
raise ValueError(f"unrecognized device {latents.device}")
if max_size_required_for_baddbmm > (mem_free * 3.0 / 4.0):
return "max"
elif torch.backends.mps.is_available():
return "max"
else:
return "balanced"

View File

@ -17,13 +17,17 @@ config = InvokeAIAppConfig.get_config()
def choose_torch_device() -> torch.device: def choose_torch_device() -> torch.device:
"""Convenience routine for guessing which GPU device to run model on""" """Convenience routine for guessing which GPU device to run model on"""
if config.always_use_cpu: if config.use_cpu: # legacy setting - force CPU
return CPU_DEVICE return CPU_DEVICE
if torch.cuda.is_available(): elif config.device == "auto":
return torch.device("cuda") if torch.cuda.is_available():
if hasattr(torch.backends, "mps") and torch.backends.mps.is_available(): return torch.device("cuda")
return torch.device("mps") if hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
return CPU_DEVICE return torch.device("mps")
else:
return CPU_DEVICE
else:
return torch.device(config.device)
def choose_precision(device: torch.device) -> str: def choose_precision(device: torch.device) -> str:

View File

@ -17,8 +17,8 @@ from shutil import get_terminal_size
from curses import BUTTON2_CLICKED, BUTTON3_CLICKED from curses import BUTTON2_CLICKED, BUTTON3_CLICKED
# minimum size for UIs # minimum size for UIs
MIN_COLS = 130 MIN_COLS = 150
MIN_LINES = 38 MIN_LINES = 40
class WindowTooSmallException(Exception): class WindowTooSmallException(Exception):
@ -177,6 +177,8 @@ class FloatTitleSlider(npyscreen.TitleText):
class SelectColumnBase: class SelectColumnBase:
"""Base class for selection widget arranged in columns."""
def make_contained_widgets(self): def make_contained_widgets(self):
self._my_widgets = [] self._my_widgets = []
column_width = self.width // self.columns column_width = self.width // self.columns
@ -253,6 +255,7 @@ class MultiSelectColumns(SelectColumnBase, npyscreen.MultiSelect):
class SingleSelectWithChanged(npyscreen.SelectOne): class SingleSelectWithChanged(npyscreen.SelectOne):
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs) super().__init__(*args, **kwargs)
self.on_changed = None
def h_select(self, ch): def h_select(self, ch):
super().h_select(ch) super().h_select(ch)
@ -260,7 +263,9 @@ class SingleSelectWithChanged(npyscreen.SelectOne):
self.on_changed(self.value) self.on_changed(self.value)
class SingleSelectColumns(SelectColumnBase, SingleSelectWithChanged): class SingleSelectColumnsSimple(SelectColumnBase, SingleSelectWithChanged):
"""Row of radio buttons. Spacebar to select."""
def __init__(self, screen, columns: int = 1, values: list = [], **keywords): def __init__(self, screen, columns: int = 1, values: list = [], **keywords):
self.columns = columns self.columns = columns
self.value_cnt = len(values) self.value_cnt = len(values)
@ -268,15 +273,19 @@ class SingleSelectColumns(SelectColumnBase, SingleSelectWithChanged):
self.on_changed = None self.on_changed = None
super().__init__(screen, values=values, **keywords) super().__init__(screen, values=values, **keywords)
def when_value_edited(self): def h_cursor_line_right(self, ch):
self.h_select(self.cursor_line) self.h_exit_down("bye bye")
def h_cursor_line_left(self, ch):
self.h_exit_up("bye bye")
class SingleSelectColumns(SingleSelectColumnsSimple):
"""Row of radio buttons. When tabbing over a selection, it is auto selected."""
def when_cursor_moved(self): def when_cursor_moved(self):
self.h_select(self.cursor_line) self.h_select(self.cursor_line)
def h_cursor_line_right(self, ch):
self.h_exit_down("bye bye")
class TextBoxInner(npyscreen.MultiLineEdit): class TextBoxInner(npyscreen.MultiLineEdit):
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
@ -324,55 +333,6 @@ class TextBoxInner(npyscreen.MultiLineEdit):
if bstate & (BUTTON2_CLICKED | BUTTON3_CLICKED): if bstate & (BUTTON2_CLICKED | BUTTON3_CLICKED):
self.h_paste() self.h_paste()
# def update(self, clear=True):
# if clear:
# self.clear()
# HEIGHT = self.height
# WIDTH = self.width
# # draw box.
# self.parent.curses_pad.hline(self.rely, self.relx, curses.ACS_HLINE, WIDTH)
# self.parent.curses_pad.hline(
# self.rely + HEIGHT, self.relx, curses.ACS_HLINE, WIDTH
# )
# self.parent.curses_pad.vline(
# self.rely, self.relx, curses.ACS_VLINE, self.height
# )
# self.parent.curses_pad.vline(
# self.rely, self.relx + WIDTH, curses.ACS_VLINE, HEIGHT
# )
# # draw corners
# self.parent.curses_pad.addch(
# self.rely,
# self.relx,
# curses.ACS_ULCORNER,
# )
# self.parent.curses_pad.addch(
# self.rely,
# self.relx + WIDTH,
# curses.ACS_URCORNER,
# )
# self.parent.curses_pad.addch(
# self.rely + HEIGHT,
# self.relx,
# curses.ACS_LLCORNER,
# )
# self.parent.curses_pad.addch(
# self.rely + HEIGHT,
# self.relx + WIDTH,
# curses.ACS_LRCORNER,
# )
# # fool our superclass into thinking drawing area is smaller - this is really hacky but it seems to work
# (relx, rely, height, width) = (self.relx, self.rely, self.height, self.width)
# self.relx += 1
# self.rely += 1
# self.height -= 1
# self.width -= 1
# super().update(clear=False)
# (self.relx, self.rely, self.height, self.width) = (relx, rely, height, width)
class TextBox(npyscreen.BoxTitle): class TextBox(npyscreen.BoxTitle):
_contained_widget = TextBoxInner _contained_widget = TextBoxInner

View File

@ -9,8 +9,8 @@ module.exports = {
'plugin:@typescript-eslint/recommended', 'plugin:@typescript-eslint/recommended',
'plugin:react/recommended', 'plugin:react/recommended',
'plugin:react-hooks/recommended', 'plugin:react-hooks/recommended',
'plugin:prettier/recommended',
'plugin:react/jsx-runtime', 'plugin:react/jsx-runtime',
'prettier',
], ],
parser: '@typescript-eslint/parser', parser: '@typescript-eslint/parser',
parserOptions: { parserOptions: {
@ -23,6 +23,11 @@ module.exports = {
plugins: ['react', '@typescript-eslint', 'eslint-plugin-react-hooks'], plugins: ['react', '@typescript-eslint', 'eslint-plugin-react-hooks'],
root: true, root: true,
rules: { rules: {
curly: 'error',
'react/jsx-curly-brace-presence': [
'error',
{ props: 'never', children: 'never' },
],
'react-hooks/exhaustive-deps': 'error', 'react-hooks/exhaustive-deps': 'error',
'no-var': 'error', 'no-var': 'error',
'brace-style': 'error', 'brace-style': 'error',
@ -34,7 +39,6 @@ module.exports = {
'warn', 'warn',
{ varsIgnorePattern: '^_', argsIgnorePattern: '^_' }, { varsIgnorePattern: '^_', argsIgnorePattern: '^_' },
], ],
'prettier/prettier': ['error', { endOfLine: 'auto' }],
'@typescript-eslint/ban-ts-comment': 'warn', '@typescript-eslint/ban-ts-comment': 'warn',
'@typescript-eslint/no-explicit-any': 'warn', '@typescript-eslint/no-explicit-any': 'warn',
'@typescript-eslint/no-empty-interface': [ '@typescript-eslint/no-empty-interface': [

View File

@ -29,12 +29,13 @@
"lint:eslint": "eslint --max-warnings=0 .", "lint:eslint": "eslint --max-warnings=0 .",
"lint:prettier": "prettier --check .", "lint:prettier": "prettier --check .",
"lint:tsc": "tsc --noEmit", "lint:tsc": "tsc --noEmit",
"lint": "yarn run lint:eslint && yarn run lint:prettier && yarn run lint:tsc && yarn run lint:madge", "lint": "concurrently -g -n eslint,prettier,tsc,madge -c cyan,green,magenta,yellow \"yarn run lint:eslint\" \"yarn run lint:prettier\" \"yarn run lint:tsc\" \"yarn run lint:madge\"",
"fix": "eslint --fix . && prettier --loglevel warn --write . && tsc --noEmit", "fix": "eslint --fix . && prettier --loglevel warn --write . && tsc --noEmit",
"lint-staged": "lint-staged", "lint-staged": "lint-staged",
"postinstall": "patch-package && yarn run theme", "postinstall": "patch-package && yarn run theme",
"theme": "chakra-cli tokens src/theme/theme.ts", "theme": "chakra-cli tokens src/theme/theme.ts",
"theme:watch": "chakra-cli tokens src/theme/theme.ts --watch" "theme:watch": "chakra-cli tokens src/theme/theme.ts --watch",
"up": "yarn upgrade-interactive --latest"
}, },
"madge": { "madge": {
"detectiveOptions": { "detectiveOptions": {
@ -54,7 +55,7 @@
}, },
"dependencies": { "dependencies": {
"@chakra-ui/anatomy": "^2.2.0", "@chakra-ui/anatomy": "^2.2.0",
"@chakra-ui/icons": "^2.0.19", "@chakra-ui/icons": "^2.1.0",
"@chakra-ui/react": "^2.8.0", "@chakra-ui/react": "^2.8.0",
"@chakra-ui/styled-system": "^2.9.1", "@chakra-ui/styled-system": "^2.9.1",
"@chakra-ui/theme-tools": "^2.1.0", "@chakra-ui/theme-tools": "^2.1.0",
@ -65,55 +66,55 @@
"@emotion/react": "^11.11.1", "@emotion/react": "^11.11.1",
"@emotion/styled": "^11.11.0", "@emotion/styled": "^11.11.0",
"@floating-ui/react-dom": "^2.0.1", "@floating-ui/react-dom": "^2.0.1",
"@fontsource-variable/inter": "^5.0.3", "@fontsource-variable/inter": "^5.0.8",
"@fontsource/inter": "^5.0.3", "@fontsource/inter": "^5.0.8",
"@mantine/core": "^6.0.14", "@mantine/core": "^6.0.19",
"@mantine/form": "^6.0.15", "@mantine/form": "^6.0.19",
"@mantine/hooks": "^6.0.14", "@mantine/hooks": "^6.0.19",
"@nanostores/react": "^0.7.1", "@nanostores/react": "^0.7.1",
"@reduxjs/toolkit": "^1.9.5", "@reduxjs/toolkit": "^1.9.5",
"@roarr/browser-log-writer": "^1.1.5", "@roarr/browser-log-writer": "^1.1.5",
"chakra-ui-contextmenu": "^1.0.5",
"dateformat": "^5.0.3", "dateformat": "^5.0.3",
"downshift": "^7.6.0", "formik": "^2.4.3",
"formik": "^2.4.2", "framer-motion": "^10.16.1",
"framer-motion": "^10.12.17",
"fuse.js": "^6.6.2", "fuse.js": "^6.6.2",
"i18next": "^23.2.3", "i18next": "^23.4.4",
"i18next-browser-languagedetector": "^7.0.2", "i18next-browser-languagedetector": "^7.0.2",
"i18next-http-backend": "^2.2.1", "i18next-http-backend": "^2.2.1",
"konva": "^9.2.0", "konva": "^9.2.0",
"lodash-es": "^4.17.21", "lodash-es": "^4.17.21",
"nanostores": "^0.9.2", "nanostores": "^0.9.2",
"openapi-fetch": "^0.6.1", "new-github-issue-url": "^1.0.0",
"openapi-fetch": "^0.7.4",
"overlayscrollbars": "^2.2.0", "overlayscrollbars": "^2.2.0",
"overlayscrollbars-react": "^0.5.0", "overlayscrollbars-react": "^0.5.0",
"patch-package": "^7.0.0", "patch-package": "^8.0.0",
"query-string": "^8.1.0", "query-string": "^8.1.0",
"re-resizable": "^6.9.9",
"react": "^18.2.0", "react": "^18.2.0",
"react-colorful": "^5.6.1", "react-colorful": "^5.6.1",
"react-dom": "^18.2.0", "react-dom": "^18.2.0",
"react-dropzone": "^14.2.3", "react-dropzone": "^14.2.3",
"react-hotkeys-hook": "4.4.0", "react-error-boundary": "^4.0.11",
"react-i18next": "^13.0.1", "react-hotkeys-hook": "4.4.1",
"react-i18next": "^13.1.2",
"react-icons": "^4.10.1", "react-icons": "^4.10.1",
"react-konva": "^18.2.10", "react-konva": "^18.2.10",
"react-redux": "^8.1.1", "react-redux": "^8.1.2",
"react-resizable-panels": "^0.0.52", "react-resizable-panels": "^0.0.55",
"react-use": "^17.4.0", "react-use": "^17.4.0",
"react-virtuoso": "^4.3.11", "react-virtuoso": "^4.5.0",
"react-zoom-pan-pinch": "^3.0.8", "react-zoom-pan-pinch": "^3.0.8",
"reactflow": "^11.7.4", "reactflow": "^11.8.3",
"redux-dynamic-middlewares": "^2.2.0", "redux-dynamic-middlewares": "^2.2.0",
"redux-remember": "^3.3.1", "redux-remember": "^4.0.1",
"roarr": "^7.15.0", "roarr": "^7.15.1",
"serialize-error": "^11.0.0", "serialize-error": "^11.0.1",
"socket.io-client": "^4.7.0", "socket.io-client": "^4.7.2",
"use-debounce": "^9.0.4", "use-debounce": "^9.0.4",
"use-image": "^1.1.1", "use-image": "^1.1.1",
"uuid": "^9.0.0", "uuid": "^9.0.0",
"zod": "^3.21.4" "zod": "^3.22.2",
"zod-validation-error": "^1.5.0"
}, },
"peerDependencies": { "peerDependencies": {
"@chakra-ui/cli": "^2.4.0", "@chakra-ui/cli": "^2.4.0",
@ -126,38 +127,36 @@
"@chakra-ui/cli": "^2.4.1", "@chakra-ui/cli": "^2.4.1",
"@types/dateformat": "^5.0.0", "@types/dateformat": "^5.0.0",
"@types/lodash-es": "^4.14.194", "@types/lodash-es": "^4.14.194",
"@types/node": "^20.3.1", "@types/node": "^20.5.1",
"@types/react": "^18.2.14", "@types/react": "^18.2.20",
"@types/react-dom": "^18.2.6", "@types/react-dom": "^18.2.6",
"@types/react-redux": "^7.1.25", "@types/react-redux": "^7.1.25",
"@types/react-transition-group": "^4.4.6", "@types/react-transition-group": "^4.4.6",
"@types/uuid": "^9.0.2", "@types/uuid": "^9.0.2",
"@typescript-eslint/eslint-plugin": "^5.60.0", "@typescript-eslint/eslint-plugin": "^6.4.1",
"@typescript-eslint/parser": "^5.60.0", "@typescript-eslint/parser": "^6.4.1",
"@vitejs/plugin-react-swc": "^3.3.2", "@vitejs/plugin-react-swc": "^3.3.2",
"axios": "^1.4.0", "axios": "^1.4.0",
"babel-plugin-transform-imports": "^2.0.0", "babel-plugin-transform-imports": "^2.0.0",
"concurrently": "^8.2.0", "concurrently": "^8.2.0",
"eslint": "^8.43.0", "eslint": "^8.47.0",
"eslint-config-prettier": "^8.8.0", "eslint-config-prettier": "^9.0.0",
"eslint-plugin-prettier": "^4.2.1", "eslint-plugin-prettier": "^5.0.0",
"eslint-plugin-react": "^7.32.2", "eslint-plugin-react": "^7.33.2",
"eslint-plugin-react-hooks": "^4.6.0", "eslint-plugin-react-hooks": "^4.6.0",
"form-data": "^4.0.0", "form-data": "^4.0.0",
"husky": "^8.0.3", "husky": "^8.0.3",
"lint-staged": "^13.2.2", "lint-staged": "^14.0.1",
"madge": "^6.1.0", "madge": "^6.1.0",
"openapi-types": "^12.1.3", "openapi-types": "^12.1.3",
"openapi-typescript": "^6.2.8", "openapi-typescript": "^6.5.2",
"openapi-typescript-codegen": "^0.24.0",
"postinstall-postinstall": "^2.1.0", "postinstall-postinstall": "^2.1.0",
"prettier": "^2.8.8", "prettier": "^3.0.2",
"rollup-plugin-visualizer": "^5.9.2", "rollup-plugin-visualizer": "^5.9.2",
"terser": "^5.18.1",
"ts-toolbelt": "^9.6.0", "ts-toolbelt": "^9.6.0",
"vite": "^4.3.9", "vite": "^4.4.9",
"vite-plugin-css-injected-by-js": "^3.1.1", "vite-plugin-css-injected-by-js": "^3.3.0",
"vite-plugin-dts": "^2.3.0", "vite-plugin-dts": "^3.5.2",
"vite-plugin-eslint": "^1.8.1", "vite-plugin-eslint": "^1.8.1",
"vite-tsconfig-paths": "^4.2.0", "vite-tsconfig-paths": "^4.2.0",
"yarn": "^1.22.19" "yarn": "^1.22.19"

View File

@ -19,7 +19,7 @@
"toggleAutoscroll": "Toggle autoscroll", "toggleAutoscroll": "Toggle autoscroll",
"toggleLogViewer": "Toggle Log Viewer", "toggleLogViewer": "Toggle Log Viewer",
"showGallery": "Show Gallery", "showGallery": "Show Gallery",
"showOptionsPanel": "Show Options Panel", "showOptionsPanel": "Show Side Panel",
"menu": "Menu" "menu": "Menu"
}, },
"common": { "common": {
@ -52,7 +52,7 @@
"img2img": "Image To Image", "img2img": "Image To Image",
"unifiedCanvas": "Unified Canvas", "unifiedCanvas": "Unified Canvas",
"linear": "Linear", "linear": "Linear",
"nodes": "Node Editor", "nodes": "Workflow Editor",
"batch": "Batch Manager", "batch": "Batch Manager",
"modelManager": "Model Manager", "modelManager": "Model Manager",
"postprocessing": "Post Processing", "postprocessing": "Post Processing",
@ -95,7 +95,6 @@
"statusModelConverted": "Model Converted", "statusModelConverted": "Model Converted",
"statusMergingModels": "Merging Models", "statusMergingModels": "Merging Models",
"statusMergedModels": "Models Merged", "statusMergedModels": "Models Merged",
"pinOptionsPanel": "Pin Options Panel",
"loading": "Loading", "loading": "Loading",
"loadingInvokeAI": "Loading Invoke AI", "loadingInvokeAI": "Loading Invoke AI",
"random": "Random", "random": "Random",
@ -116,7 +115,6 @@
"maintainAspectRatio": "Maintain Aspect Ratio", "maintainAspectRatio": "Maintain Aspect Ratio",
"autoSwitchNewImages": "Auto-Switch to New Images", "autoSwitchNewImages": "Auto-Switch to New Images",
"singleColumnLayout": "Single Column Layout", "singleColumnLayout": "Single Column Layout",
"pinGallery": "Pin Gallery",
"allImagesLoaded": "All Images Loaded", "allImagesLoaded": "All Images Loaded",
"loadMore": "Load More", "loadMore": "Load More",
"noImagesInGallery": "No Images to Display", "noImagesInGallery": "No Images to Display",
@ -133,6 +131,7 @@
"generalHotkeys": "General Hotkeys", "generalHotkeys": "General Hotkeys",
"galleryHotkeys": "Gallery Hotkeys", "galleryHotkeys": "Gallery Hotkeys",
"unifiedCanvasHotkeys": "Unified Canvas Hotkeys", "unifiedCanvasHotkeys": "Unified Canvas Hotkeys",
"nodesHotkeys": "Nodes Hotkeys",
"invoke": { "invoke": {
"title": "Invoke", "title": "Invoke",
"desc": "Generate an image" "desc": "Generate an image"
@ -332,6 +331,10 @@
"acceptStagingImage": { "acceptStagingImage": {
"title": "Accept Staging Image", "title": "Accept Staging Image",
"desc": "Accept Current Staging Area Image" "desc": "Accept Current Staging Area Image"
},
"addNodes": {
"title": "Add Nodes",
"desc": "Opens the add node menu"
} }
}, },
"modelManager": { "modelManager": {
@ -506,12 +509,9 @@
"maskAdjustmentsHeader": "Mask Adjustments", "maskAdjustmentsHeader": "Mask Adjustments",
"maskBlur": "Mask Blur", "maskBlur": "Mask Blur",
"maskBlurMethod": "Mask Blur Method", "maskBlurMethod": "Mask Blur Method",
"seamPaintingHeader": "Seam Painting", "coherencePassHeader": "Coherence Pass",
"seamSize": "Seam Size", "coherenceSteps": "Coherence Pass Steps",
"seamBlur": "Seam Blur", "coherenceStrength": "Coherence Pass Strength",
"seamSteps": "Seam Steps",
"seamStrength": "Seam Strength",
"seamThreshold": "Seam Threshold",
"seamLowThreshold": "Low", "seamLowThreshold": "Low",
"seamHighThreshold": "High", "seamHighThreshold": "High",
"scaleBeforeProcessing": "Scale Before Processing", "scaleBeforeProcessing": "Scale Before Processing",
@ -572,7 +572,7 @@
"resetWebUI": "Reset Web UI", "resetWebUI": "Reset Web UI",
"resetWebUIDesc1": "Resetting the web UI only resets the browser's local cache of your images and remembered settings. It does not delete any images from disk.", "resetWebUIDesc1": "Resetting the web UI only resets the browser's local cache of your images and remembered settings. It does not delete any images from disk.",
"resetWebUIDesc2": "If images aren't showing up in the gallery or something else isn't working, please try resetting before submitting an issue on GitHub.", "resetWebUIDesc2": "If images aren't showing up in the gallery or something else isn't working, please try resetting before submitting an issue on GitHub.",
"resetComplete": "Web UI has been reset. Refresh the page to reload.", "resetComplete": "Web UI has been reset.",
"consoleLogLevel": "Log Level", "consoleLogLevel": "Log Level",
"shouldLogToConsole": "Console Logging", "shouldLogToConsole": "Console Logging",
"developer": "Developer", "developer": "Developer",
@ -715,11 +715,12 @@
"swapSizes": "Swap Sizes" "swapSizes": "Swap Sizes"
}, },
"nodes": { "nodes": {
"reloadSchema": "Reload Schema", "reloadNodeTemplates": "Reload Node Templates",
"saveGraph": "Save Graph", "saveWorkflow": "Save Workflow",
"loadGraph": "Load Graph (saved from Node Editor) (Do not copy-paste metadata)", "loadWorkflow": "Load Workflow",
"clearGraph": "Clear Graph", "resetWorkflow": "Reset Workflow",
"clearGraphDesc": "Are you sure you want to clear all nodes?", "resetWorkflowDesc": "Are you sure you want to reset this workflow?",
"resetWorkflowDesc2": "Resetting the workflow will clear all nodes, edges and workflow details.",
"zoomInNodes": "Zoom In", "zoomInNodes": "Zoom In",
"zoomOutNodes": "Zoom Out", "zoomOutNodes": "Zoom Out",
"fitViewportNodes": "Fit View", "fitViewportNodes": "Fit View",

View File

@ -27,22 +27,10 @@ async function main() {
* field accepts connection input. If it does, we can make the field optional. * field accepts connection input. If it does, we can make the field optional.
*/ */
// Check if we are generating types for an invocation if ('class' in schemaObject && schemaObject.class === 'invocation') {
const isInvocationPath = metadata.path.match(
/^#\/components\/schemas\/\w*Invocation$/
);
const hasInvocationProperties =
schemaObject.properties &&
['id', 'is_intermediate', 'type'].every(
(prop) => prop in schemaObject.properties
);
if (isInvocationPath && hasInvocationProperties) {
// We only want to make fields optional if they are required // We only want to make fields optional if they are required
if (!Array.isArray(schemaObject?.required)) { if (!Array.isArray(schemaObject?.required)) {
schemaObject.required = ['id', 'type']; schemaObject.required = [];
return;
} }
schemaObject.required.forEach((prop) => { schemaObject.required.forEach((prop) => {
@ -61,19 +49,13 @@ async function main() {
); );
} }
}); });
schemaObject.required = [
...new Set(schemaObject.required.concat(['id', 'type'])),
];
return; return;
} }
// if (
// 'input' in schemaObject && // Check if we are generating types for an invocation output
// (schemaObject.input === 'any' || schemaObject.input === 'connection') if ('class' in schemaObject && schemaObject.class === 'output') {
// ) { // modify output types
// schemaObject.required = false; }
// }
}, },
}); });
fs.writeFileSync(OUTPUT_FILE, types); fs.writeFileSync(OUTPUT_FILE, types);

View File

@ -1,4 +1,4 @@
import { Flex, Grid, Portal } from '@chakra-ui/react'; import { Flex, Grid } from '@chakra-ui/react';
import { useLogger } from 'app/logging/useLogger'; import { useLogger } from 'app/logging/useLogger';
import { appStarted } from 'app/store/middleware/listenerMiddleware/listeners/appStarted'; import { appStarted } from 'app/store/middleware/listenerMiddleware/listeners/appStarted';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks'; import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
@ -6,17 +6,15 @@ import { PartialAppConfig } from 'app/types/invokeai';
import ImageUploader from 'common/components/ImageUploader'; import ImageUploader from 'common/components/ImageUploader';
import ChangeBoardModal from 'features/changeBoardModal/components/ChangeBoardModal'; import ChangeBoardModal from 'features/changeBoardModal/components/ChangeBoardModal';
import DeleteImageModal from 'features/deleteImageModal/components/DeleteImageModal'; import DeleteImageModal from 'features/deleteImageModal/components/DeleteImageModal';
import GalleryDrawer from 'features/gallery/components/GalleryPanel';
import SiteHeader from 'features/system/components/SiteHeader'; import SiteHeader from 'features/system/components/SiteHeader';
import { configChanged } from 'features/system/store/configSlice'; import { configChanged } from 'features/system/store/configSlice';
import { languageSelector } from 'features/system/store/systemSelectors'; import { languageSelector } from 'features/system/store/systemSelectors';
import FloatingGalleryButton from 'features/ui/components/FloatingGalleryButton';
import FloatingParametersPanelButtons from 'features/ui/components/FloatingParametersPanelButtons';
import InvokeTabs from 'features/ui/components/InvokeTabs'; import InvokeTabs from 'features/ui/components/InvokeTabs';
import ParametersDrawer from 'features/ui/components/ParametersDrawer';
import i18n from 'i18n'; import i18n from 'i18n';
import { size } from 'lodash-es'; import { size } from 'lodash-es';
import { ReactNode, memo, useEffect } from 'react'; import { ReactNode, memo, useCallback, useEffect } from 'react';
import { ErrorBoundary } from 'react-error-boundary';
import AppErrorBoundaryFallback from './AppErrorBoundaryFallback';
import GlobalHotkeys from './GlobalHotkeys'; import GlobalHotkeys from './GlobalHotkeys';
import Toaster from './Toaster'; import Toaster from './Toaster';
@ -30,8 +28,13 @@ interface Props {
const App = ({ config = DEFAULT_CONFIG, headerComponent }: Props) => { const App = ({ config = DEFAULT_CONFIG, headerComponent }: Props) => {
const language = useAppSelector(languageSelector); const language = useAppSelector(languageSelector);
const logger = useLogger(); const logger = useLogger('system');
const dispatch = useAppDispatch(); const dispatch = useAppDispatch();
const handleReset = useCallback(() => {
localStorage.clear();
location.reload();
return false;
}, []);
useEffect(() => { useEffect(() => {
i18n.changeLanguage(language); i18n.changeLanguage(language);
@ -39,7 +42,7 @@ const App = ({ config = DEFAULT_CONFIG, headerComponent }: Props) => {
useEffect(() => { useEffect(() => {
if (size(config)) { if (size(config)) {
logger.info({ namespace: 'App', config }, 'Received config'); logger.info({ config }, 'Received config');
dispatch(configChanged(config)); dispatch(configChanged(config));
} }
}, [dispatch, config, logger]); }, [dispatch, config, logger]);
@ -49,7 +52,10 @@ const App = ({ config = DEFAULT_CONFIG, headerComponent }: Props) => {
}, [dispatch]); }, [dispatch]);
return ( return (
<> <ErrorBoundary
onReset={handleReset}
FallbackComponent={AppErrorBoundaryFallback}
>
<Grid w="100vw" h="100vh" position="relative" overflow="hidden"> <Grid w="100vw" h="100vh" position="relative" overflow="hidden">
<ImageUploader> <ImageUploader>
<Grid <Grid
@ -73,21 +79,12 @@ const App = ({ config = DEFAULT_CONFIG, headerComponent }: Props) => {
</Flex> </Flex>
</Grid> </Grid>
</ImageUploader> </ImageUploader>
<GalleryDrawer />
<ParametersDrawer />
<Portal>
<FloatingParametersPanelButtons />
</Portal>
<Portal>
<FloatingGalleryButton />
</Portal>
</Grid> </Grid>
<DeleteImageModal /> <DeleteImageModal />
<ChangeBoardModal /> <ChangeBoardModal />
<Toaster /> <Toaster />
<GlobalHotkeys /> <GlobalHotkeys />
</> </ErrorBoundary>
); );
}; };

View File

@ -0,0 +1,97 @@
import { Flex, Heading, Link, Text, useToast } from '@chakra-ui/react';
import IAIButton from 'common/components/IAIButton';
import newGithubIssueUrl from 'new-github-issue-url';
import { memo, useCallback, useMemo } from 'react';
import { FaCopy, FaExternalLinkAlt } from 'react-icons/fa';
import { FaArrowRotateLeft } from 'react-icons/fa6';
import { serializeError } from 'serialize-error';
type Props = {
error: Error;
resetErrorBoundary: () => void;
};
const AppErrorBoundaryFallback = ({ error, resetErrorBoundary }: Props) => {
const toast = useToast();
const handleCopy = useCallback(() => {
const text = JSON.stringify(serializeError(error), null, 2);
navigator.clipboard.writeText(`\`\`\`\n${text}\n\`\`\``);
toast({
title: 'Error Copied',
});
}, [error, toast]);
const url = useMemo(
() =>
newGithubIssueUrl({
user: 'invoke-ai',
repo: 'InvokeAI',
template: 'BUG_REPORT.yml',
title: `[bug]: ${error.name}: ${error.message}`,
}),
[error.message, error.name]
);
return (
<Flex
layerStyle="body"
sx={{
w: '100vw',
h: '100vh',
alignItems: 'center',
justifyContent: 'center',
p: 4,
}}
>
<Flex
layerStyle="first"
sx={{
flexDir: 'column',
borderRadius: 'base',
justifyContent: 'center',
gap: 8,
p: 16,
}}
>
<Heading>Something went wrong</Heading>
<Flex
layerStyle="second"
sx={{
px: 8,
py: 4,
borderRadius: 'base',
gap: 4,
justifyContent: 'space-between',
alignItems: 'center',
}}
>
<Text
sx={{
fontWeight: 600,
color: 'error.500',
_dark: { color: 'error.400' },
}}
>
{error.name}: {error.message}
</Text>
</Flex>
<Flex sx={{ gap: 4 }}>
<IAIButton
leftIcon={<FaArrowRotateLeft />}
onClick={resetErrorBoundary}
>
Reset UI
</IAIButton>
<IAIButton leftIcon={<FaCopy />} onClick={handleCopy}>
Copy Error
</IAIButton>
<Link href={url} isExternal>
<IAIButton leftIcon={<FaExternalLinkAlt />}>Create Issue</IAIButton>
</Link>
</Flex>
</Flex>
</Flex>
);
};
export default memo(AppErrorBoundaryFallback);

View File

@ -1,30 +1,21 @@
import { createSelector } from '@reduxjs/toolkit'; import { createSelector } from '@reduxjs/toolkit';
import { stateSelector } from 'app/store/store'; import { stateSelector } from 'app/store/store';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks'; import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { requestCanvasRescale } from 'features/canvas/store/thunks/requestCanvasScale';
import { import {
ctrlKeyPressed, ctrlKeyPressed,
metaKeyPressed, metaKeyPressed,
shiftKeyPressed, shiftKeyPressed,
} from 'features/ui/store/hotkeysSlice'; } from 'features/ui/store/hotkeysSlice';
import { activeTabNameSelector } from 'features/ui/store/uiSelectors'; import { setActiveTab } from 'features/ui/store/uiSlice';
import {
setActiveTab,
toggleGalleryPanel,
toggleParametersPanel,
togglePinGalleryPanel,
togglePinParametersPanel,
} from 'features/ui/store/uiSlice';
import { isEqual } from 'lodash-es'; import { isEqual } from 'lodash-es';
import React, { memo } from 'react'; import React, { memo } from 'react';
import { isHotkeyPressed, useHotkeys } from 'react-hotkeys-hook'; import { isHotkeyPressed, useHotkeys } from 'react-hotkeys-hook';
const globalHotkeysSelector = createSelector( const globalHotkeysSelector = createSelector(
[stateSelector], [stateSelector],
({ hotkeys, ui }) => { ({ hotkeys }) => {
const { shift, ctrl, meta } = hotkeys; const { shift, ctrl, meta } = hotkeys;
const { shouldPinParametersPanel, shouldPinGallery } = ui; return { shift, ctrl, meta };
return { shift, ctrl, meta, shouldPinGallery, shouldPinParametersPanel };
}, },
{ {
memoizeOptions: { memoizeOptions: {
@ -41,9 +32,7 @@ const globalHotkeysSelector = createSelector(
*/ */
const GlobalHotkeys: React.FC = () => { const GlobalHotkeys: React.FC = () => {
const dispatch = useAppDispatch(); const dispatch = useAppDispatch();
const { shift, ctrl, meta, shouldPinParametersPanel, shouldPinGallery } = const { shift, ctrl, meta } = useAppSelector(globalHotkeysSelector);
useAppSelector(globalHotkeysSelector);
const activeTabName = useAppSelector(activeTabNameSelector);
useHotkeys( useHotkeys(
'*', '*',
@ -68,34 +57,6 @@ const GlobalHotkeys: React.FC = () => {
[shift, ctrl, meta] [shift, ctrl, meta]
); );
useHotkeys('o', () => {
dispatch(toggleParametersPanel());
if (activeTabName === 'unifiedCanvas' && shouldPinParametersPanel) {
dispatch(requestCanvasRescale());
}
});
useHotkeys(['shift+o'], () => {
dispatch(togglePinParametersPanel());
if (activeTabName === 'unifiedCanvas') {
dispatch(requestCanvasRescale());
}
});
useHotkeys('g', () => {
dispatch(toggleGalleryPanel());
if (activeTabName === 'unifiedCanvas' && shouldPinGallery) {
dispatch(requestCanvasRescale());
}
});
useHotkeys(['shift+g'], () => {
dispatch(togglePinGalleryPanel());
if (activeTabName === 'unifiedCanvas') {
dispatch(requestCanvasRescale());
}
});
useHotkeys('1', () => { useHotkeys('1', () => {
dispatch(setActiveTab('txt2img')); dispatch(setActiveTab('txt2img'));
}); });
@ -112,6 +73,10 @@ const GlobalHotkeys: React.FC = () => {
dispatch(setActiveTab('nodes')); dispatch(setActiveTab('nodes'));
}); });
useHotkeys('5', () => {
dispatch(setActiveTab('modelManager'));
});
return null; return null;
}; };

View File

@ -3,7 +3,7 @@ import {
createLocalStorageManager, createLocalStorageManager,
extendTheme, extendTheme,
} from '@chakra-ui/react'; } from '@chakra-ui/react';
import { ReactNode, useEffect, useMemo } from 'react'; import { ReactNode, memo, useEffect, useMemo } from 'react';
import { useTranslation } from 'react-i18next'; import { useTranslation } from 'react-i18next';
import { theme as invokeAITheme } from 'theme/theme'; import { theme as invokeAITheme } from 'theme/theme';
@ -46,4 +46,4 @@ function ThemeLocaleProvider({ children }: ThemeLocaleProviderProps) {
); );
} }
export default ThemeLocaleProvider; export default memo(ThemeLocaleProvider);

View File

@ -3,7 +3,7 @@ import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { toastQueueSelector } from 'features/system/store/systemSelectors'; import { toastQueueSelector } from 'features/system/store/systemSelectors';
import { addToast, clearToastQueue } from 'features/system/store/systemSlice'; import { addToast, clearToastQueue } from 'features/system/store/systemSlice';
import { MakeToastArg, makeToast } from 'features/system/util/makeToast'; import { MakeToastArg, makeToast } from 'features/system/util/makeToast';
import { useCallback, useEffect } from 'react'; import { memo, useCallback, useEffect } from 'react';
/** /**
* Logical component. Watches the toast queue and makes toasts when the queue is not empty. * Logical component. Watches the toast queue and makes toasts when the queue is not empty.
@ -44,4 +44,4 @@ export const useAppToaster = () => {
return toaster; return toaster;
}; };
export default Toaster; export default memo(Toaster);

View File

@ -9,7 +9,7 @@ export const log = Roarr.child(BASE_CONTEXT);
export const $logger = atom<Logger>(Roarr.child(BASE_CONTEXT)); export const $logger = atom<Logger>(Roarr.child(BASE_CONTEXT));
type LoggerNamespace = export type LoggerNamespace =
| 'images' | 'images'
| 'models' | 'models'
| 'config' | 'config'

View File

@ -1,12 +1,17 @@
import { useStore } from '@nanostores/react';
import { createSelector } from '@reduxjs/toolkit'; import { createSelector } from '@reduxjs/toolkit';
import { createLogWriter } from '@roarr/browser-log-writer'; import { createLogWriter } from '@roarr/browser-log-writer';
import { useAppSelector } from 'app/store/storeHooks'; import { useAppSelector } from 'app/store/storeHooks';
import { systemSelector } from 'features/system/store/systemSelectors'; import { systemSelector } from 'features/system/store/systemSelectors';
import { isEqual } from 'lodash-es'; import { isEqual } from 'lodash-es';
import { useEffect } from 'react'; import { useEffect, useMemo } from 'react';
import { ROARR, Roarr } from 'roarr'; import { ROARR, Roarr } from 'roarr';
import { $logger, BASE_CONTEXT, LOG_LEVEL_MAP } from './logger'; import {
$logger,
BASE_CONTEXT,
LOG_LEVEL_MAP,
LoggerNamespace,
logger,
} from './logger';
const selector = createSelector( const selector = createSelector(
systemSelector, systemSelector,
@ -25,7 +30,7 @@ const selector = createSelector(
} }
); );
export const useLogger = () => { export const useLogger = (namespace: LoggerNamespace) => {
const { consoleLogLevel, shouldLogToConsole } = useAppSelector(selector); const { consoleLogLevel, shouldLogToConsole } = useAppSelector(selector);
// The provided Roarr browser log writer uses localStorage to config logging to console // The provided Roarr browser log writer uses localStorage to config logging to console
@ -57,7 +62,7 @@ export const useLogger = () => {
$logger.set(Roarr.child(newContext)); $logger.set(Roarr.child(newContext));
}, []); }, []);
const logger = useStore($logger); const log = useMemo(() => logger(namespace), [namespace]);
return logger; return log;
}; };

View File

@ -1,13 +1,17 @@
import { logger } from 'app/logging/logger'; import { logger } from 'app/logging/logger';
import { resetCanvas } from 'features/canvas/store/canvasSlice'; import { resetCanvas } from 'features/canvas/store/canvasSlice';
import { controlNetReset } from 'features/controlNet/store/controlNetSlice'; import {
controlNetImageChanged,
controlNetProcessedImageChanged,
} from 'features/controlNet/store/controlNetSlice';
import { imageDeletionConfirmed } from 'features/deleteImageModal/store/actions'; import { imageDeletionConfirmed } from 'features/deleteImageModal/store/actions';
import { isModalOpenChanged } from 'features/deleteImageModal/store/slice'; import { isModalOpenChanged } from 'features/deleteImageModal/store/slice';
import { selectListImagesBaseQueryArgs } from 'features/gallery/store/gallerySelectors'; import { selectListImagesBaseQueryArgs } from 'features/gallery/store/gallerySelectors';
import { imageSelected } from 'features/gallery/store/gallerySlice'; import { imageSelected } from 'features/gallery/store/gallerySlice';
import { nodeEditorReset } from 'features/nodes/store/nodesSlice'; import { fieldImageValueChanged } from 'features/nodes/store/nodesSlice';
import { isInvocationNode } from 'features/nodes/types/types';
import { clearInitialImage } from 'features/parameters/store/generationSlice'; import { clearInitialImage } from 'features/parameters/store/generationSlice';
import { clamp } from 'lodash-es'; import { clamp, forEach } from 'lodash-es';
import { api } from 'services/api'; import { api } from 'services/api';
import { imagesApi } from 'services/api/endpoints/images'; import { imagesApi } from 'services/api/endpoints/images';
import { imagesAdapter } from 'services/api/util'; import { imagesAdapter } from 'services/api/util';
@ -73,22 +77,61 @@ export const addRequestedSingleImageDeletionListener = () => {
} }
// We need to reset the features where the image is in use - none of these work if their image(s) don't exist // We need to reset the features where the image is in use - none of these work if their image(s) don't exist
if (imageUsage.isCanvasImage) { if (imageUsage.isCanvasImage) {
dispatch(resetCanvas()); dispatch(resetCanvas());
} }
if (imageUsage.isControlNetImage) { imageDTOs.forEach((imageDTO) => {
dispatch(controlNetReset()); // reset init image if we deleted it
} if (
getState().generation.initialImage?.imageName === imageDTO.image_name
) {
dispatch(clearInitialImage());
}
if (imageUsage.isInitialImage) { // reset controlNets that use the deleted images
dispatch(clearInitialImage()); forEach(getState().controlNet.controlNets, (controlNet) => {
} if (
controlNet.controlImage === imageDTO.image_name ||
controlNet.processedControlImage === imageDTO.image_name
) {
dispatch(
controlNetImageChanged({
controlNetId: controlNet.controlNetId,
controlImage: null,
})
);
dispatch(
controlNetProcessedImageChanged({
controlNetId: controlNet.controlNetId,
processedControlImage: null,
})
);
}
});
if (imageUsage.isNodesImage) { // reset nodes that use the deleted images
dispatch(nodeEditorReset()); getState().nodes.nodes.forEach((node) => {
} if (!isInvocationNode(node)) {
return;
}
forEach(node.data.inputs, (input) => {
if (
input.type === 'ImageField' &&
input.value?.image_name === imageDTO.image_name
) {
dispatch(
fieldImageValueChanged({
nodeId: node.data.id,
fieldName: input.name,
value: undefined,
})
);
}
});
});
});
// Delete from server // Delete from server
const { requestId } = dispatch( const { requestId } = dispatch(
@ -154,17 +197,58 @@ export const addRequestedMultipleImageDeletionListener = () => {
dispatch(resetCanvas()); dispatch(resetCanvas());
} }
if (imagesUsage.some((i) => i.isControlNetImage)) { imageDTOs.forEach((imageDTO) => {
dispatch(controlNetReset()); // reset init image if we deleted it
} if (
getState().generation.initialImage?.imageName ===
imageDTO.image_name
) {
dispatch(clearInitialImage());
}
if (imagesUsage.some((i) => i.isInitialImage)) { // reset controlNets that use the deleted images
dispatch(clearInitialImage()); forEach(getState().controlNet.controlNets, (controlNet) => {
} if (
controlNet.controlImage === imageDTO.image_name ||
controlNet.processedControlImage === imageDTO.image_name
) {
dispatch(
controlNetImageChanged({
controlNetId: controlNet.controlNetId,
controlImage: null,
})
);
dispatch(
controlNetProcessedImageChanged({
controlNetId: controlNet.controlNetId,
processedControlImage: null,
})
);
}
});
if (imagesUsage.some((i) => i.isNodesImage)) { // reset nodes that use the deleted images
dispatch(nodeEditorReset()); getState().nodes.nodes.forEach((node) => {
} if (!isInvocationNode(node)) {
return;
}
forEach(node.data.inputs, (input) => {
if (
input.type === 'ImageField' &&
input.value?.image_name === imageDTO.image_name
) {
dispatch(
fieldImageValueChanged({
nodeId: node.data.id,
fieldName: input.name,
value: undefined,
})
);
}
});
});
});
} catch { } catch {
// no-op // no-op
} }

View File

@ -5,6 +5,7 @@ import { modelsApi } from 'services/api/endpoints/models';
import { receivedOpenAPISchema } from 'services/api/thunks/schema'; import { receivedOpenAPISchema } from 'services/api/thunks/schema';
import { appSocketConnected, socketConnected } from 'services/events/actions'; import { appSocketConnected, socketConnected } from 'services/events/actions';
import { startAppListening } from '../..'; import { startAppListening } from '../..';
import { size } from 'lodash-es';
export const addSocketConnectedEventListener = () => { export const addSocketConnectedEventListener = () => {
startAppListening({ startAppListening({
@ -18,7 +19,7 @@ export const addSocketConnectedEventListener = () => {
const { disabledTabs } = config; const { disabledTabs } = config;
if (!nodes.schema && !disabledTabs.includes('nodes')) { if (!size(nodes.nodeTemplates) && !disabledTabs.includes('nodes')) {
dispatch(receivedOpenAPISchema()); dispatch(receivedOpenAPISchema());
} }

View File

@ -8,8 +8,8 @@ import {
import { memo, ReactNode } from 'react'; import { memo, ReactNode } from 'react';
export interface IAIButtonProps extends ButtonProps { export interface IAIButtonProps extends ButtonProps {
tooltip?: string; tooltip?: TooltipProps['label'];
tooltipProps?: Omit<TooltipProps, 'children'>; tooltipProps?: Omit<TooltipProps, 'children' | 'label'>;
isChecked?: boolean; isChecked?: boolean;
children: ReactNode; children: ReactNode;
} }

View File

@ -34,14 +34,10 @@ const IAICollapse = (props: IAIToggleCollapseProps) => {
gap: 2, gap: 2,
borderTopRadius: 'base', borderTopRadius: 'base',
borderBottomRadius: isOpen ? 0 : 'base', borderBottomRadius: isOpen ? 0 : 'base',
bg: isOpen bg: mode('base.250', 'base.750')(colorMode),
? mode('base.200', 'base.750')(colorMode)
: mode('base.150', 'base.800')(colorMode),
color: mode('base.900', 'base.100')(colorMode), color: mode('base.900', 'base.100')(colorMode),
_hover: { _hover: {
bg: isOpen bg: mode('base.300', 'base.700')(colorMode),
? mode('base.250', 'base.700')(colorMode)
: mode('base.200', 'base.750')(colorMode),
}, },
fontSize: 'sm', fontSize: 'sm',
fontWeight: 600, fontWeight: 600,
@ -90,9 +86,10 @@ const IAICollapse = (props: IAIToggleCollapseProps) => {
<Collapse in={isOpen} animateOpacity style={{ overflow: 'unset' }}> <Collapse in={isOpen} animateOpacity style={{ overflow: 'unset' }}>
<Box <Box
sx={{ sx={{
p: 4, p: 2,
pt: 3,
borderBottomRadius: 'base', borderBottomRadius: 'base',
bg: 'base.100', bg: 'base.150',
_dark: { _dark: {
bg: 'base.800', bg: 'base.800',
}, },

View File

@ -100,14 +100,18 @@ const IAIDndImage = (props: IAIDndImageProps) => {
const [isHovered, setIsHovered] = useState(false); const [isHovered, setIsHovered] = useState(false);
const handleMouseOver = useCallback( const handleMouseOver = useCallback(
(e: MouseEvent<HTMLDivElement>) => { (e: MouseEvent<HTMLDivElement>) => {
if (onMouseOver) onMouseOver(e); if (onMouseOver) {
onMouseOver(e);
}
setIsHovered(true); setIsHovered(true);
}, },
[onMouseOver] [onMouseOver]
); );
const handleMouseOut = useCallback( const handleMouseOut = useCallback(
(e: MouseEvent<HTMLDivElement>) => { (e: MouseEvent<HTMLDivElement>) => {
if (onMouseOut) onMouseOut(e); if (onMouseOut) {
onMouseOut(e);
}
setIsHovered(false); setIsHovered(false);
}, },
[onMouseOut] [onMouseOut]
@ -122,7 +126,7 @@ const IAIDndImage = (props: IAIDndImageProps) => {
? {} ? {}
: { : {
cursor: 'pointer', cursor: 'pointer',
bg: mode('base.200', 'base.800')(colorMode), bg: mode('base.200', 'base.700')(colorMode),
_hover: { _hover: {
bg: mode('base.300', 'base.650')(colorMode), bg: mode('base.300', 'base.650')(colorMode),
color: mode('base.500', 'base.300')(colorMode), color: mode('base.500', 'base.300')(colorMode),

View File

@ -1,4 +1,5 @@
import { Box, Flex, Icon } from '@chakra-ui/react'; import { Box, Flex, Icon } from '@chakra-ui/react';
import { memo } from 'react';
import { FaExclamation } from 'react-icons/fa'; import { FaExclamation } from 'react-icons/fa';
const IAIErrorLoadingImageFallback = () => { const IAIErrorLoadingImageFallback = () => {
@ -39,4 +40,4 @@ const IAIErrorLoadingImageFallback = () => {
); );
}; };
export default IAIErrorLoadingImageFallback; export default memo(IAIErrorLoadingImageFallback);

View File

@ -1,4 +1,5 @@
import { Box, Skeleton } from '@chakra-ui/react'; import { Box, Skeleton } from '@chakra-ui/react';
import { memo } from 'react';
const IAIFillSkeleton = () => { const IAIFillSkeleton = () => {
return ( return (
@ -27,4 +28,4 @@ const IAIFillSkeleton = () => {
); );
}; };
export default IAIFillSkeleton; export default memo(IAIFillSkeleton);

View File

@ -9,8 +9,8 @@ import { memo } from 'react';
export type IAIIconButtonProps = IconButtonProps & { export type IAIIconButtonProps = IconButtonProps & {
role?: string; role?: string;
tooltip?: string; tooltip?: TooltipProps['label'];
tooltipProps?: Omit<TooltipProps, 'children'>; tooltipProps?: Omit<TooltipProps, 'children' | 'label'>;
isChecked?: boolean; isChecked?: boolean;
}; };

View File

@ -1,4 +1,5 @@
import { Badge, Flex } from '@chakra-ui/react'; import { Badge, Flex } from '@chakra-ui/react';
import { memo } from 'react';
import { ImageDTO } from 'services/api/types'; import { ImageDTO } from 'services/api/types';
type ImageMetadataOverlayProps = { type ImageMetadataOverlayProps = {
@ -26,4 +27,4 @@ const ImageMetadataOverlay = ({ imageDTO }: ImageMetadataOverlayProps) => {
); );
}; };
export default ImageMetadataOverlay; export default memo(ImageMetadataOverlay);

View File

@ -1,4 +1,5 @@
import { Box, Flex, Heading } from '@chakra-ui/react'; import { Box, Flex, Heading } from '@chakra-ui/react';
import { memo } from 'react';
import { useHotkeys } from 'react-hotkeys-hook'; import { useHotkeys } from 'react-hotkeys-hook';
type ImageUploadOverlayProps = { type ImageUploadOverlayProps = {
@ -87,4 +88,4 @@ const ImageUploadOverlay = (props: ImageUploadOverlayProps) => {
</Box> </Box>
); );
}; };
export default ImageUploadOverlay; export default memo(ImageUploadOverlay);

View File

@ -150,7 +150,9 @@ const ImageUploader = (props: ImageUploaderProps) => {
{...getRootProps({ style: {} })} {...getRootProps({ style: {} })}
onKeyDown={(e: KeyboardEvent) => { onKeyDown={(e: KeyboardEvent) => {
// Bail out if user hits spacebar - do not open the uploader // Bail out if user hits spacebar - do not open the uploader
if (e.key === ' ') return; if (e.key === ' ') {
return;
}
}} }}
> >
<input {...getInputProps()} /> <input {...getInputProps()} />

View File

@ -1,4 +1,5 @@
import { Flex, Icon } from '@chakra-ui/react'; import { Flex, Icon } from '@chakra-ui/react';
import { memo } from 'react';
import { FaImage } from 'react-icons/fa'; import { FaImage } from 'react-icons/fa';
const SelectImagePlaceholder = () => { const SelectImagePlaceholder = () => {
@ -19,4 +20,4 @@ const SelectImagePlaceholder = () => {
); );
}; };
export default SelectImagePlaceholder; export default memo(SelectImagePlaceholder);

View File

@ -1,4 +1,5 @@
import { Box } from '@chakra-ui/react'; import { Box } from '@chakra-ui/react';
import { memo } from 'react';
type Props = { type Props = {
isSelected: boolean; isSelected: boolean;
@ -18,6 +19,7 @@ const SelectionOverlay = ({ isSelected, isHovered }: Props) => {
opacity: isSelected ? 1 : 0.7, opacity: isSelected ? 1 : 0.7,
transitionProperty: 'common', transitionProperty: 'common',
transitionDuration: '0.1s', transitionDuration: '0.1s',
pointerEvents: 'none',
shadow: isSelected shadow: isSelected
? isHovered ? isHovered
? 'hoverSelected.light' ? 'hoverSelected.light'
@ -39,4 +41,4 @@ const SelectionOverlay = ({ isSelected, isHovered }: Props) => {
); );
}; };
export default SelectionOverlay; export default memo(SelectionOverlay);

View File

@ -2,71 +2,108 @@ import { createSelector } from '@reduxjs/toolkit';
import { stateSelector } from 'app/store/store'; import { stateSelector } from 'app/store/store';
import { useAppSelector } from 'app/store/storeHooks'; import { useAppSelector } from 'app/store/storeHooks';
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions'; import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
// import { validateSeedWeights } from 'common/util/seedWeightPairs'; import { isInvocationNode } from 'features/nodes/types/types';
import { activeTabNameSelector } from 'features/ui/store/uiSelectors'; import { activeTabNameSelector } from 'features/ui/store/uiSelectors';
import { forEach } from 'lodash-es'; import { forEach, map } from 'lodash-es';
import { NON_REFINER_BASE_MODELS } from 'services/api/constants'; import { getConnectedEdges } from 'reactflow';
import { modelsApi } from '../../services/api/endpoints/models';
const readinessSelector = createSelector( const selector = createSelector(
[stateSelector, activeTabNameSelector], [stateSelector, activeTabNameSelector],
(state, activeTabName) => { (state, activeTabName) => {
const { generation, system } = state; const { generation, system, nodes } = state;
const { initialImage } = generation; const { initialImage, model } = generation;
const { isProcessing, isConnected } = system; const { isProcessing, isConnected } = system;
let isReady = true; const reasons: string[] = [];
const reasonsWhyNotReady: string[] = [];
if (activeTabName === 'img2img' && !initialImage) {
isReady = false;
reasonsWhyNotReady.push('No initial image selected');
}
const { isSuccess: mainModelsSuccessfullyLoaded } =
modelsApi.endpoints.getMainModels.select(NON_REFINER_BASE_MODELS)(state);
if (!mainModelsSuccessfullyLoaded) {
isReady = false;
reasonsWhyNotReady.push('Models are not loaded');
}
// TODO: job queue
// Cannot generate if already processing an image // Cannot generate if already processing an image
if (isProcessing) { if (isProcessing) {
isReady = false; reasons.push('System busy');
reasonsWhyNotReady.push('System Busy');
} }
// Cannot generate if not connected // Cannot generate if not connected
if (!isConnected) { if (!isConnected) {
isReady = false; reasons.push('System disconnected');
reasonsWhyNotReady.push('System Disconnected');
} }
// // Cannot generate variations without valid seed weights if (activeTabName === 'img2img' && !initialImage) {
// if ( reasons.push('No initial image selected');
// shouldGenerateVariations && }
// (!(validateSeedWeights(seedWeights) || seedWeights === '') || seed === -1)
// ) {
// isReady = false;
// reasonsWhyNotReady.push('Seed-Weights badly formatted.');
// }
forEach(state.controlNet.controlNets, (controlNet, id) => { if (activeTabName === 'nodes' && nodes.shouldValidateGraph) {
if (!controlNet.model) { if (!nodes.nodes.length) {
isReady = false; reasons.push('No nodes in graph');
reasonsWhyNotReady.push(`ControlNet ${id} has no model selected.`);
} }
});
// All good nodes.nodes.forEach((node) => {
return { isReady, reasonsWhyNotReady }; if (!isInvocationNode(node)) {
return;
}
const nodeTemplate = nodes.nodeTemplates[node.data.type];
if (!nodeTemplate) {
// Node type not found
reasons.push('Missing node template');
return;
}
const connectedEdges = getConnectedEdges([node], nodes.edges);
forEach(node.data.inputs, (field) => {
const fieldTemplate = nodeTemplate.inputs[field.name];
const hasConnection = connectedEdges.some(
(edge) =>
edge.target === node.id && edge.targetHandle === field.name
);
if (!fieldTemplate) {
reasons.push('Missing field template');
return;
}
if (fieldTemplate.required && !field.value && !hasConnection) {
reasons.push(
`${node.data.label || nodeTemplate.title} -> ${
field.label || fieldTemplate.title
} missing input`
);
return;
}
});
});
} else {
if (!model) {
reasons.push('No model selected');
}
if (state.controlNet.isEnabled) {
map(state.controlNet.controlNets).forEach((controlNet, i) => {
if (!controlNet.isEnabled) {
return;
}
if (!controlNet.model) {
reasons.push(`ControlNet ${i + 1} has no model selected.`);
}
if (
!controlNet.controlImage ||
(!controlNet.processedControlImage &&
controlNet.processorType !== 'none')
) {
reasons.push(`ControlNet ${i + 1} has no control image`);
}
});
}
}
return { isReady: !reasons.length, isProcessing, reasons };
}, },
defaultSelectorOptions defaultSelectorOptions
); );
export const useIsReadyToInvoke = () => { export const useIsReadyToInvoke = () => {
const { isReady } = useAppSelector(readinessSelector); const { isReady, isProcessing, reasons } = useAppSelector(selector);
return isReady; return { isReady, isProcessing, reasons };
}; };

View File

@ -11,8 +11,14 @@ export default function useResolution():
const tabletResolutions = ['md', 'lg']; const tabletResolutions = ['md', 'lg'];
const desktopResolutions = ['xl', '2xl']; const desktopResolutions = ['xl', '2xl'];
if (mobileResolutions.includes(breakpointValue)) return 'mobile'; if (mobileResolutions.includes(breakpointValue)) {
if (tabletResolutions.includes(breakpointValue)) return 'tablet'; return 'mobile';
if (desktopResolutions.includes(breakpointValue)) return 'desktop'; }
if (tabletResolutions.includes(breakpointValue)) {
return 'tablet';
}
if (desktopResolutions.includes(breakpointValue)) {
return 'desktop';
}
return 'unknown'; return 'unknown';
} }

View File

@ -0,0 +1,2 @@
export const colorTokenToCssVar = (colorToken: string) =>
`var(--invokeai-colors-${colorToken.split('.').join('-')}`;

View File

@ -6,7 +6,11 @@ export const dateComparator = (a: string, b: string) => {
const dateB = new Date(b); const dateB = new Date(b);
// sort in ascending order // sort in ascending order
if (dateA > dateB) return 1; if (dateA > dateB) {
if (dateA < dateB) return -1; return 1;
}
if (dateA < dateB) {
return -1;
}
return 0; return 0;
}; };

View File

@ -5,7 +5,9 @@ type Base64AndCaption = {
const openBase64ImageInTab = (images: Base64AndCaption[]) => { const openBase64ImageInTab = (images: Base64AndCaption[]) => {
const w = window.open(''); const w = window.open('');
if (!w) return; if (!w) {
return;
}
images.forEach((i) => { images.forEach((i) => {
const image = new Image(); const image = new Image();

View File

@ -5,6 +5,7 @@ import { clearCanvasHistory } from 'features/canvas/store/canvasSlice';
import { useTranslation } from 'react-i18next'; import { useTranslation } from 'react-i18next';
import { FaTrash } from 'react-icons/fa'; import { FaTrash } from 'react-icons/fa';
import { isStagingSelector } from '../store/canvasSelectors'; import { isStagingSelector } from '../store/canvasSelectors';
import { memo } from 'react';
const ClearCanvasHistoryButtonModal = () => { const ClearCanvasHistoryButtonModal = () => {
const isStaging = useAppSelector(isStagingSelector); const isStaging = useAppSelector(isStagingSelector);
@ -28,4 +29,4 @@ const ClearCanvasHistoryButtonModal = () => {
</IAIAlertDialog> </IAIAlertDialog>
); );
}; };
export default ClearCanvasHistoryButtonModal; export default memo(ClearCanvasHistoryButtonModal);

View File

@ -1,6 +1,6 @@
import { Box, chakra, Flex } from '@chakra-ui/react'; import { Box, chakra, Flex } from '@chakra-ui/react';
import { createSelector } from '@reduxjs/toolkit'; import { createSelector } from '@reduxjs/toolkit';
import { useAppSelector } from 'app/store/storeHooks'; import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions'; import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
import { import {
canvasSelector, canvasSelector,
@ -9,7 +9,7 @@ import {
import Konva from 'konva'; import Konva from 'konva';
import { KonvaEventObject } from 'konva/lib/Node'; import { KonvaEventObject } from 'konva/lib/Node';
import { Vector2d } from 'konva/lib/types'; import { Vector2d } from 'konva/lib/types';
import { useCallback, useRef } from 'react'; import { memo, useCallback, useEffect, useRef } from 'react';
import { Layer, Stage } from 'react-konva'; import { Layer, Stage } from 'react-konva';
import useCanvasDragMove from '../hooks/useCanvasDragMove'; import useCanvasDragMove from '../hooks/useCanvasDragMove';
import useCanvasHotkeys from '../hooks/useCanvasHotkeys'; import useCanvasHotkeys from '../hooks/useCanvasHotkeys';
@ -18,6 +18,7 @@ import useCanvasMouseMove from '../hooks/useCanvasMouseMove';
import useCanvasMouseOut from '../hooks/useCanvasMouseOut'; import useCanvasMouseOut from '../hooks/useCanvasMouseOut';
import useCanvasMouseUp from '../hooks/useCanvasMouseUp'; import useCanvasMouseUp from '../hooks/useCanvasMouseUp';
import useCanvasWheel from '../hooks/useCanvasZoom'; import useCanvasWheel from '../hooks/useCanvasZoom';
import { canvasResized } from '../store/canvasSlice';
import { import {
setCanvasBaseLayer, setCanvasBaseLayer,
setCanvasStage, setCanvasStage,
@ -106,7 +107,8 @@ const IAICanvas = () => {
shouldAntialias, shouldAntialias,
} = useAppSelector(selector); } = useAppSelector(selector);
useCanvasHotkeys(); useCanvasHotkeys();
const dispatch = useAppDispatch();
const containerRef = useRef<HTMLDivElement>(null);
const stageRef = useRef<Konva.Stage | null>(null); const stageRef = useRef<Konva.Stage | null>(null);
const canvasBaseLayerRef = useRef<Konva.Layer | null>(null); const canvasBaseLayerRef = useRef<Konva.Layer | null>(null);
@ -137,8 +139,30 @@ const IAICanvas = () => {
const { handleDragStart, handleDragMove, handleDragEnd } = const { handleDragStart, handleDragMove, handleDragEnd } =
useCanvasDragMove(); useCanvasDragMove();
useEffect(() => {
if (!containerRef.current) {
return;
}
const resizeObserver = new ResizeObserver((entries) => {
for (const entry of entries) {
if (entry.contentBoxSize) {
const { width, height } = entry.contentRect;
dispatch(canvasResized({ width, height }));
}
}
});
resizeObserver.observe(containerRef.current);
return () => {
resizeObserver.disconnect();
};
}, [dispatch]);
return ( return (
<Flex <Flex
id="canvas-container"
ref={containerRef}
sx={{ sx={{
position: 'relative', position: 'relative',
height: '100%', height: '100%',
@ -146,13 +170,18 @@ const IAICanvas = () => {
borderRadius: 'base', borderRadius: 'base',
}} }}
> >
<Box sx={{ position: 'relative' }}> <Box
sx={{
position: 'absolute',
// top: 0,
// insetInlineStart: 0,
}}
>
<ChakraStage <ChakraStage
tabIndex={-1} tabIndex={-1}
ref={canvasStageRefCallback} ref={canvasStageRefCallback}
sx={{ sx={{
outline: 'none', outline: 'none',
// boxShadow: '0px 0px 0px 1px var(--border-color-light)',
overflow: 'hidden', overflow: 'hidden',
cursor: stageCursor ? stageCursor : undefined, cursor: stageCursor ? stageCursor : undefined,
canvas: { canvas: {
@ -213,11 +242,11 @@ const IAICanvas = () => {
/> />
</Layer> </Layer>
</ChakraStage> </ChakraStage>
<IAICanvasStatusText />
<IAICanvasStagingAreaToolbar />
</Box> </Box>
<IAICanvasStatusText />
<IAICanvasStagingAreaToolbar />
</Flex> </Flex>
); );
}; };
export default IAICanvas; export default memo(IAICanvas);

View File

@ -4,6 +4,7 @@ import { isEqual } from 'lodash-es';
import { Group, Rect } from 'react-konva'; import { Group, Rect } from 'react-konva';
import { canvasSelector } from '../store/canvasSelectors'; import { canvasSelector } from '../store/canvasSelectors';
import { memo } from 'react';
const selector = createSelector( const selector = createSelector(
canvasSelector, canvasSelector,
@ -67,4 +68,4 @@ const IAICanvasBoundingBoxOverlay = () => {
); );
}; };
export default IAICanvasBoundingBoxOverlay; export default memo(IAICanvasBoundingBoxOverlay);

View File

@ -6,7 +6,7 @@ import { useAppSelector } from 'app/store/storeHooks';
import { canvasSelector } from 'features/canvas/store/canvasSelectors'; import { canvasSelector } from 'features/canvas/store/canvasSelectors';
import { isEqual, range } from 'lodash-es'; import { isEqual, range } from 'lodash-es';
import { ReactNode, useCallback, useLayoutEffect, useState } from 'react'; import { ReactNode, memo, useCallback, useLayoutEffect, useState } from 'react';
import { Group, Line as KonvaLine } from 'react-konva'; import { Group, Line as KonvaLine } from 'react-konva';
const selector = createSelector( const selector = createSelector(
@ -117,4 +117,4 @@ const IAICanvasGrid = () => {
return <Group>{gridLines}</Group>; return <Group>{gridLines}</Group>;
}; };
export default IAICanvasGrid; export default memo(IAICanvasGrid);

View File

@ -4,6 +4,7 @@ import { useGetImageDTOQuery } from 'services/api/endpoints/images';
import useImage from 'use-image'; import useImage from 'use-image';
import { CanvasImage } from '../store/canvasTypes'; import { CanvasImage } from '../store/canvasTypes';
import { $authToken } from 'services/api/client'; import { $authToken } from 'services/api/client';
import { memo } from 'react';
type IAICanvasImageProps = { type IAICanvasImageProps = {
canvasImage: CanvasImage; canvasImage: CanvasImage;
@ -25,4 +26,4 @@ const IAICanvasImage = (props: IAICanvasImageProps) => {
return <Image x={x} y={y} image={image} listening={false} />; return <Image x={x} y={y} image={image} listening={false} />;
}; };
export default IAICanvasImage; export default memo(IAICanvasImage);

View File

@ -4,7 +4,7 @@ import { systemSelector } from 'features/system/store/systemSelectors';
import { ImageConfig } from 'konva/lib/shapes/Image'; import { ImageConfig } from 'konva/lib/shapes/Image';
import { isEqual } from 'lodash-es'; import { isEqual } from 'lodash-es';
import { useEffect, useState } from 'react'; import { memo, useEffect, useState } from 'react';
import { Image as KonvaImage } from 'react-konva'; import { Image as KonvaImage } from 'react-konva';
import { canvasSelector } from '../store/canvasSelectors'; import { canvasSelector } from '../store/canvasSelectors';
@ -66,4 +66,4 @@ const IAICanvasIntermediateImage = (props: Props) => {
) : null; ) : null;
}; };
export default IAICanvasIntermediateImage; export default memo(IAICanvasIntermediateImage);

View File

@ -7,7 +7,7 @@ import { Rect } from 'react-konva';
import { rgbaColorToString } from 'features/canvas/util/colorToString'; import { rgbaColorToString } from 'features/canvas/util/colorToString';
import Konva from 'konva'; import Konva from 'konva';
import { isNumber } from 'lodash-es'; import { isNumber } from 'lodash-es';
import { useCallback, useEffect, useRef, useState } from 'react'; import { memo, useCallback, useEffect, useRef, useState } from 'react';
export const canvasMaskCompositerSelector = createSelector( export const canvasMaskCompositerSelector = createSelector(
canvasSelector, canvasSelector,
@ -125,7 +125,9 @@ const IAICanvasMaskCompositer = (props: IAICanvasMaskCompositerProps) => {
}, [offset]); }, [offset]);
useEffect(() => { useEffect(() => {
if (fillPatternImage) return; if (fillPatternImage) {
return;
}
const image = new Image(); const image = new Image();
image.onload = () => { image.onload = () => {
@ -135,7 +137,9 @@ const IAICanvasMaskCompositer = (props: IAICanvasMaskCompositerProps) => {
}, [fillPatternImage, maskColorString]); }, [fillPatternImage, maskColorString]);
useEffect(() => { useEffect(() => {
if (!fillPatternImage) return; if (!fillPatternImage) {
return;
}
fillPatternImage.src = getColoredSVG(maskColorString); fillPatternImage.src = getColoredSVG(maskColorString);
}, [fillPatternImage, maskColorString]); }, [fillPatternImage, maskColorString]);
@ -151,8 +155,9 @@ const IAICanvasMaskCompositer = (props: IAICanvasMaskCompositerProps) => {
!isNumber(stageScale) || !isNumber(stageScale) ||
!isNumber(stageDimensions.width) || !isNumber(stageDimensions.width) ||
!isNumber(stageDimensions.height) !isNumber(stageDimensions.height)
) ) {
return null; return null;
}
return ( return (
<Rect <Rect
@ -172,4 +177,4 @@ const IAICanvasMaskCompositer = (props: IAICanvasMaskCompositerProps) => {
); );
}; };
export default IAICanvasMaskCompositer; export default memo(IAICanvasMaskCompositer);

View File

@ -6,6 +6,7 @@ import { isEqual } from 'lodash-es';
import { Group, Line } from 'react-konva'; import { Group, Line } from 'react-konva';
import { isCanvasMaskLine } from '../store/canvasTypes'; import { isCanvasMaskLine } from '../store/canvasTypes';
import { memo } from 'react';
export const canvasLinesSelector = createSelector( export const canvasLinesSelector = createSelector(
[canvasSelector], [canvasSelector],
@ -52,4 +53,4 @@ const IAICanvasLines = (props: InpaintingCanvasLinesProps) => {
); );
}; };
export default IAICanvasLines; export default memo(IAICanvasLines);

View File

@ -12,6 +12,7 @@ import {
isCanvasFillRect, isCanvasFillRect,
} from '../store/canvasTypes'; } from '../store/canvasTypes';
import IAICanvasImage from './IAICanvasImage'; import IAICanvasImage from './IAICanvasImage';
import { memo } from 'react';
const selector = createSelector( const selector = createSelector(
[canvasSelector], [canvasSelector],
@ -33,7 +34,9 @@ const selector = createSelector(
const IAICanvasObjectRenderer = () => { const IAICanvasObjectRenderer = () => {
const { objects } = useAppSelector(selector); const { objects } = useAppSelector(selector);
if (!objects) return null; if (!objects) {
return null;
}
return ( return (
<Group name="outpainting-objects" listening={false}> <Group name="outpainting-objects" listening={false}>
@ -101,4 +104,4 @@ const IAICanvasObjectRenderer = () => {
); );
}; };
export default IAICanvasObjectRenderer; export default memo(IAICanvasObjectRenderer);

View File

@ -1,89 +0,0 @@
import { Flex, Spinner } from '@chakra-ui/react';
import { createSelector } from '@reduxjs/toolkit';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import {
canvasSelector,
initialCanvasImageSelector,
} from 'features/canvas/store/canvasSelectors';
import {
resizeAndScaleCanvas,
resizeCanvas,
setCanvasContainerDimensions,
setDoesCanvasNeedScaling,
} from 'features/canvas/store/canvasSlice';
import { activeTabNameSelector } from 'features/ui/store/uiSelectors';
import { useLayoutEffect, useRef } from 'react';
const canvasResizerSelector = createSelector(
canvasSelector,
initialCanvasImageSelector,
activeTabNameSelector,
(canvas, initialCanvasImage, activeTabName) => {
const { doesCanvasNeedScaling, isCanvasInitialized } = canvas;
return {
doesCanvasNeedScaling,
activeTabName,
initialCanvasImage,
isCanvasInitialized,
};
}
);
const IAICanvasResizer = () => {
const dispatch = useAppDispatch();
const {
doesCanvasNeedScaling,
activeTabName,
initialCanvasImage,
isCanvasInitialized,
} = useAppSelector(canvasResizerSelector);
const ref = useRef<HTMLDivElement>(null);
useLayoutEffect(() => {
window.setTimeout(() => {
if (!ref.current) return;
const { clientWidth, clientHeight } = ref.current;
dispatch(
setCanvasContainerDimensions({
width: clientWidth,
height: clientHeight,
})
);
if (!isCanvasInitialized) {
dispatch(resizeAndScaleCanvas());
} else {
dispatch(resizeCanvas());
}
dispatch(setDoesCanvasNeedScaling(false));
}, 0);
}, [
dispatch,
initialCanvasImage,
doesCanvasNeedScaling,
activeTabName,
isCanvasInitialized,
]);
return (
<Flex
ref={ref}
sx={{
flexDirection: 'column',
alignItems: 'center',
justifyContent: 'center',
gap: 4,
width: '100%',
height: '100%',
}}
>
<Spinner thickness="2px" size="xl" />
</Flex>
);
};
export default IAICanvasResizer;

View File

@ -6,6 +6,7 @@ import { isEqual } from 'lodash-es';
import { Group, Rect } from 'react-konva'; import { Group, Rect } from 'react-konva';
import IAICanvasImage from './IAICanvasImage'; import IAICanvasImage from './IAICanvasImage';
import { memo } from 'react';
const selector = createSelector( const selector = createSelector(
[canvasSelector], [canvasSelector],
@ -88,4 +89,4 @@ const IAICanvasStagingArea = (props: Props) => {
); );
}; };
export default IAICanvasStagingArea; export default memo(IAICanvasStagingArea);

View File

@ -13,7 +13,7 @@ import {
} from 'features/canvas/store/canvasSlice'; } from 'features/canvas/store/canvasSlice';
import { isEqual } from 'lodash-es'; import { isEqual } from 'lodash-es';
import { useCallback } from 'react'; import { memo, useCallback } from 'react';
import { useHotkeys } from 'react-hotkeys-hook'; import { useHotkeys } from 'react-hotkeys-hook';
import { useTranslation } from 'react-i18next'; import { useTranslation } from 'react-i18next';
import { import {
@ -129,7 +129,9 @@ const IAICanvasStagingAreaToolbar = () => {
currentStagingAreaImage?.imageName ?? skipToken currentStagingAreaImage?.imageName ?? skipToken
); );
if (!currentStagingAreaImage) return null; if (!currentStagingAreaImage) {
return null;
}
return ( return (
<Flex <Flex
@ -138,11 +140,10 @@ const IAICanvasStagingAreaToolbar = () => {
w="100%" w="100%"
align="center" align="center"
justify="center" justify="center"
filter="drop-shadow(0 0.5rem 1rem rgba(0,0,0))"
onMouseOver={handleMouseOver} onMouseOver={handleMouseOver}
onMouseOut={handleMouseOut} onMouseOut={handleMouseOut}
> >
<ButtonGroup isAttached> <ButtonGroup isAttached borderRadius="base" shadow="dark-lg">
<IAIIconButton <IAIIconButton
tooltip={`${t('unifiedCanvas.previous')} (Left)`} tooltip={`${t('unifiedCanvas.previous')} (Left)`}
aria-label={`${t('unifiedCanvas.previous')} (Left)`} aria-label={`${t('unifiedCanvas.previous')} (Left)`}
@ -207,4 +208,4 @@ const IAICanvasStagingAreaToolbar = () => {
); );
}; };
export default IAICanvasStagingAreaToolbar; export default memo(IAICanvasStagingAreaToolbar);

View File

@ -7,6 +7,7 @@ import { isEqual } from 'lodash-es';
import { useTranslation } from 'react-i18next'; import { useTranslation } from 'react-i18next';
import roundToHundreth from '../util/roundToHundreth'; import roundToHundreth from '../util/roundToHundreth';
import IAICanvasStatusTextCursorPos from './IAICanvasStatusText/IAICanvasStatusTextCursorPos'; import IAICanvasStatusTextCursorPos from './IAICanvasStatusText/IAICanvasStatusTextCursorPos';
import { memo } from 'react';
const warningColor = 'var(--invokeai-colors-warning-500)'; const warningColor = 'var(--invokeai-colors-warning-500)';
@ -162,4 +163,4 @@ const IAICanvasStatusText = () => {
); );
}; };
export default IAICanvasStatusText; export default memo(IAICanvasStatusText);

View File

@ -10,6 +10,7 @@ import {
COLOR_PICKER_SIZE, COLOR_PICKER_SIZE,
COLOR_PICKER_STROKE_RADIUS, COLOR_PICKER_STROKE_RADIUS,
} from '../util/constants'; } from '../util/constants';
import { memo } from 'react';
const canvasBrushPreviewSelector = createSelector( const canvasBrushPreviewSelector = createSelector(
canvasSelector, canvasSelector,
@ -134,7 +135,9 @@ const IAICanvasToolPreview = (props: GroupConfig) => {
clip, clip,
} = useAppSelector(canvasBrushPreviewSelector); } = useAppSelector(canvasBrushPreviewSelector);
if (!shouldDrawBrushPreview) return null; if (!shouldDrawBrushPreview) {
return null;
}
return ( return (
<Group listening={false} {...clip} {...rest}> <Group listening={false} {...clip} {...rest}>
@ -206,4 +209,4 @@ const IAICanvasToolPreview = (props: GroupConfig) => {
); );
}; };
export default IAICanvasToolPreview; export default memo(IAICanvasToolPreview);

View File

@ -19,7 +19,7 @@ import { KonvaEventObject } from 'konva/lib/Node';
import { Vector2d } from 'konva/lib/types'; import { Vector2d } from 'konva/lib/types';
import { isEqual } from 'lodash-es'; import { isEqual } from 'lodash-es';
import { useCallback, useEffect, useRef, useState } from 'react'; import { memo, useCallback, useEffect, useRef, useState } from 'react';
import { useHotkeys } from 'react-hotkeys-hook'; import { useHotkeys } from 'react-hotkeys-hook';
import { Group, Rect, Transformer } from 'react-konva'; import { Group, Rect, Transformer } from 'react-konva';
@ -85,7 +85,9 @@ const IAICanvasBoundingBox = (props: IAICanvasBoundingBoxPreviewProps) => {
useState(false); useState(false);
useEffect(() => { useEffect(() => {
if (!transformerRef.current || !shapeRef.current) return; if (!transformerRef.current || !shapeRef.current) {
return;
}
transformerRef.current.nodes([shapeRef.current]); transformerRef.current.nodes([shapeRef.current]);
transformerRef.current.getLayer()?.batchDraw(); transformerRef.current.getLayer()?.batchDraw();
}, []); }, []);
@ -133,7 +135,9 @@ const IAICanvasBoundingBox = (props: IAICanvasBoundingBoxPreviewProps) => {
* not its width and height. We need to un-scale the width and height before * not its width and height. We need to un-scale the width and height before
* setting the values. * setting the values.
*/ */
if (!shapeRef.current) return; if (!shapeRef.current) {
return;
}
const rect = shapeRef.current; const rect = shapeRef.current;
@ -313,4 +317,4 @@ const IAICanvasBoundingBox = (props: IAICanvasBoundingBoxPreviewProps) => {
); );
}; };
export default IAICanvasBoundingBox; export default memo(IAICanvasBoundingBox);

View File

@ -20,6 +20,7 @@ import {
} from 'features/canvas/store/canvasSlice'; } from 'features/canvas/store/canvasSlice';
import { rgbaColorToString } from 'features/canvas/util/colorToString'; import { rgbaColorToString } from 'features/canvas/util/colorToString';
import { isEqual } from 'lodash-es'; import { isEqual } from 'lodash-es';
import { memo } from 'react';
import { useHotkeys } from 'react-hotkeys-hook'; import { useHotkeys } from 'react-hotkeys-hook';
import { useTranslation } from 'react-i18next'; import { useTranslation } from 'react-i18next';
@ -150,4 +151,4 @@ const IAICanvasMaskOptions = () => {
); );
}; };
export default IAICanvasMaskOptions; export default memo(IAICanvasMaskOptions);

View File

@ -18,7 +18,7 @@ import {
} from 'features/canvas/store/canvasSlice'; } from 'features/canvas/store/canvasSlice';
import { isEqual } from 'lodash-es'; import { isEqual } from 'lodash-es';
import { ChangeEvent } from 'react'; import { ChangeEvent, memo } from 'react';
import { useHotkeys } from 'react-hotkeys-hook'; import { useHotkeys } from 'react-hotkeys-hook';
import { useTranslation } from 'react-i18next'; import { useTranslation } from 'react-i18next';
import { FaWrench } from 'react-icons/fa'; import { FaWrench } from 'react-icons/fa';
@ -163,4 +163,4 @@ const IAICanvasSettingsButtonPopover = () => {
); );
}; };
export default IAICanvasSettingsButtonPopover; export default memo(IAICanvasSettingsButtonPopover);

Some files were not shown because too many files have changed in this diff Show More