Add gradient blending to tile seams in MultiDiffusion.

This commit is contained in:
Ryan Dick 2024-07-19 10:03:01 -04:00 committed by Kent Keirsey
parent 97a7f51721
commit e16faa6370
2 changed files with 43 additions and 15 deletions

View File

@ -175,6 +175,10 @@ class TiledMultiDiffusionDenoiseLatents(BaseInvocation):
_, _, latent_height, latent_width = latents.shape _, _, latent_height, latent_width = latents.shape
# Calculate the tile locations to cover the latent-space image. # Calculate the tile locations to cover the latent-space image.
# TODO(ryand): In the future, we may want to revisit the tile overlap strategy. Things to consider:
# - How much overlap 'context' to provide for each denoising step.
# - How much overlap to use during merging/blending.
# - Should we 'jitter' the tile locations in each step so that the seams are in different places?
tiles = calc_tiles_min_overlap( tiles = calc_tiles_min_overlap(
image_height=latent_height, image_height=latent_height,
image_width=latent_width, image_width=latent_width,

View File

@ -61,6 +61,7 @@ class MultiDiffusionPipeline(StableDiffusionGeneratorPipeline):
# full noise. Investigate the history of why this got commented out. # full noise. Investigate the history of why this got commented out.
# latents = noise * self.scheduler.init_noise_sigma # it's like in t2l according to diffusers # latents = noise * self.scheduler.init_noise_sigma # it's like in t2l according to diffusers
latents = self.scheduler.add_noise(latents, noise, batched_init_timestep) latents = self.scheduler.add_noise(latents, noise, batched_init_timestep)
assert isinstance(latents, torch.Tensor) # For static type checking.
# TODO(ryand): Look into the implications of passing in latents here that are larger than they will be after # TODO(ryand): Look into the implications of passing in latents here that are larger than they will be after
# cropping into regions. # cropping into regions.
@ -122,19 +123,42 @@ class MultiDiffusionPipeline(StableDiffusionGeneratorPipeline):
control_data=region_conditioning.control_data, control_data=region_conditioning.control_data,
) )
# Store the results from the region. # Build a region_weight matrix that applies gradient blending to the edges of the region.
# If two tiles overlap by more than the target overlap amount, crop the left and top edges of the
# affected tiles to achieve the target overlap.
region = region_conditioning.region region = region_conditioning.region
top_adjustment = max(0, region.overlap.top - target_overlap) _, _, region_height, region_width = step_output.prev_sample.shape
left_adjustment = max(0, region.overlap.left - target_overlap) region_weight = torch.ones(
region_height_slice = slice(region.coords.top + top_adjustment, region.coords.bottom) (1, 1, region_height, region_width),
region_width_slice = slice(region.coords.left + left_adjustment, region.coords.right) dtype=latents.dtype,
merged_latents[:, :, region_height_slice, region_width_slice] += step_output.prev_sample[ device=latents.device,
:, :, top_adjustment:, left_adjustment: )
] if region.overlap.left > 0:
# For now, we treat every region as having the same weight. left_grad = torch.linspace(
merged_latents_weights[:, :, region_height_slice, region_width_slice] += 1.0 0, 1, region.overlap.left, device=latents.device, dtype=latents.dtype
).view((1, 1, 1, -1))
region_weight[:, :, :, : region.overlap.left] *= left_grad
if region.overlap.top > 0:
top_grad = torch.linspace(
0, 1, region.overlap.top, device=latents.device, dtype=latents.dtype
).view((1, 1, -1, 1))
region_weight[:, :, : region.overlap.top, :] *= top_grad
if region.overlap.right > 0:
right_grad = torch.linspace(
1, 0, region.overlap.right, device=latents.device, dtype=latents.dtype
).view((1, 1, 1, -1))
region_weight[:, :, :, -region.overlap.right :] *= right_grad
if region.overlap.bottom > 0:
bottom_grad = torch.linspace(
1, 0, region.overlap.bottom, device=latents.device, dtype=latents.dtype
).view((1, 1, -1, 1))
region_weight[:, :, -region.overlap.bottom :, :] *= bottom_grad
# Update the merged results with the region results.
merged_latents[
:, :, region.coords.top : region.coords.bottom, region.coords.left : region.coords.right
] += step_output.prev_sample * region_weight
merged_latents_weights[
:, :, region.coords.top : region.coords.bottom, region.coords.left : region.coords.right
] += region_weight
pred_orig_sample = getattr(step_output, "pred_original_sample", None) pred_orig_sample = getattr(step_output, "pred_original_sample", None)
if pred_orig_sample is not None: if pred_orig_sample is not None:
@ -142,9 +166,9 @@ class MultiDiffusionPipeline(StableDiffusionGeneratorPipeline):
# they all use the same scheduler. # they all use the same scheduler.
if merged_pred_original is None: if merged_pred_original is None:
merged_pred_original = torch.zeros_like(latents) merged_pred_original = torch.zeros_like(latents)
merged_pred_original[:, :, region_height_slice, region_width_slice] += pred_orig_sample[ merged_pred_original[
:, :, top_adjustment:, left_adjustment: :, :, region.coords.top : region.coords.bottom, region.coords.left : region.coords.right
] ] += pred_orig_sample
# Normalize the merged results. # Normalize the merged results.
latents = torch.where(merged_latents_weights > 0, merged_latents / merged_latents_weights, merged_latents) latents = torch.where(merged_latents_weights > 0, merged_latents / merged_latents_weights, merged_latents)