Merge branch 'more-refactor' of https://github.com/bakkot/stable-diffusion into bakkot-more-refactor

This commit is contained in:
Lincoln Stein 2022-08-25 21:55:08 -04:00
commit e202441f0c

View File

@ -216,7 +216,7 @@ The vast majority of these arguments default to reasonable values.
strength // strength for noising/unnoising init_img. 0.0 preserves image exactly, 1.0 replaces it completely strength // strength for noising/unnoising init_img. 0.0 preserves image exactly, 1.0 replaces it completely
ddim_eta // image randomness (eta=0.0 means the same seed always produces the same image) ddim_eta // image randomness (eta=0.0 means the same seed always produces the same image)
variants // if >0, the 1st generated image will be passed back to img2img to generate the requested number of variants variants // if >0, the 1st generated image will be passed back to img2img to generate the requested number of variants
callback // a function or method that will be called each time an image is generated image_callback // a function or method that will be called each time an image is generated
To use the callback, define a function of method that receives two arguments, an Image object To use the callback, define a function of method that receives two arguments, an Image object
and the seed. You can then do whatever you like with the image, including converting it to and the seed. You can then do whatever you like with the image, including converting it to
@ -249,79 +249,66 @@ The vast majority of these arguments default to reasonable values.
height = h height = h
width = w width = w
data = [batch_size * [prompt]]
scope = autocast if self.precision=="autocast" else nullcontext scope = autocast if self.precision=="autocast" else nullcontext
tic = time.time() tic = time.time()
results = list()
try:
if init_img: if init_img:
assert os.path.exists(init_img),f'{init_img}: File not found' assert os.path.exists(init_img),f'{init_img}: File not found'
results = self._img2img(prompt, images_iterator = self._img2img(prompt,
data=data,precision_scope=scope, precision_scope=scope,
batch_size=batch_size,iterations=iterations, batch_size=batch_size,
steps=steps,seed=seed,cfg_scale=cfg_scale,ddim_eta=ddim_eta, steps=steps,cfg_scale=cfg_scale,ddim_eta=ddim_eta,
skip_normalize=skip_normalize, skip_normalize=skip_normalize,
init_img=init_img,strength=strength,variants=variants, init_img=init_img,strength=strength)
callback=image_callback)
else: else:
results = self._txt2img(prompt, images_iterator = self._txt2img(prompt,
data=data,precision_scope=scope, precision_scope=scope,
batch_size=batch_size,iterations=iterations, batch_size=batch_size,
steps=steps,seed=seed,cfg_scale=cfg_scale,ddim_eta=ddim_eta, steps=steps,cfg_scale=cfg_scale,ddim_eta=ddim_eta,
skip_normalize=skip_normalize, skip_normalize=skip_normalize,
width=width,height=height, width=width,height=height)
callback=image_callback)
with scope(self.device.type), self.model.ema_scope():
for n in trange(iterations, desc="Sampling"):
seed_everything(seed)
iter_images = next(images_iterator)
for image in iter_images:
results.append([image, seed])
if image_callback is not None:
image_callback(image,seed)
seed = self._new_seed()
except KeyboardInterrupt:
print('*interrupted*')
print('Partial results will be returned; if --grid was requested, nothing will be returned.')
except RuntimeError as e:
print(str(e))
toc = time.time() toc = time.time()
print(f'{len(results)} images generated in',"%4.2fs"% (toc-tic)) print(f'{len(results)} images generated in',"%4.2fs"% (toc-tic))
return results return results
@torch.no_grad() @torch.no_grad()
def _txt2img(self,prompt, def _txt2img(self,
data,precision_scope, prompt,
batch_size,iterations, precision_scope,
steps,seed,cfg_scale,ddim_eta, batch_size,
steps,cfg_scale,ddim_eta,
skip_normalize, skip_normalize,
width,height, width,height):
callback): # the callback is called each time a new Image is generated
""" """
Generate an image from the prompt, writing iteration images into the outdir An infinite iterator of images from the prompt.
The output is a list of lists in the format: [[image1,seed1], [image2,seed2],...]
""" """
sampler = self.sampler sampler = self.sampler
images = list()
image_count = 0
# Gawd. Too many levels of indent here. Need to refactor into smaller routines!
try:
with precision_scope(self.device.type), self.model.ema_scope():
all_samples = list()
for n in trange(iterations, desc="Sampling"):
seed_everything(seed)
for prompts in tqdm(data, desc="data", dynamic_ncols=True):
uc = None
if cfg_scale != 1.0:
uc = self.model.get_learned_conditioning(batch_size * [""])
if isinstance(prompts, tuple):
prompts = list(prompts)
# weighted sub-prompts
subprompts,weights = T2I._split_weighted_subprompts(prompts[0])
if len(subprompts) > 1:
# i dont know if this is correct.. but it works
c = torch.zeros_like(uc)
# get total weight for normalizing
totalWeight = sum(weights)
# normalize each "sub prompt" and add it
for i in range(0,len(subprompts)):
weight = weights[i]
if not skip_normalize:
weight = weight / totalWeight
c = torch.add(c,self.model.get_learned_conditioning(subprompts[i]), alpha=weight)
else: # just standard 1 prompt
c = self.model.get_learned_conditioning(prompts)
while True:
uc, c = self._get_uc_and_c(prompt, batch_size, skip_normalize)
shape = [self.latent_channels, height // self.downsampling_factor, width // self.downsampling_factor] shape = [self.latent_channels, height // self.downsampling_factor, width // self.downsampling_factor]
samples_ddim, _ = sampler.sample(S=steps, samples, _ = sampler.sample(S=steps,
conditioning=c, conditioning=c,
batch_size=batch_size, batch_size=batch_size,
shape=shape, shape=shape,
@ -329,36 +316,18 @@ The vast majority of these arguments default to reasonable values.
unconditional_guidance_scale=cfg_scale, unconditional_guidance_scale=cfg_scale,
unconditional_conditioning=uc, unconditional_conditioning=uc,
eta=ddim_eta) eta=ddim_eta)
yield self._samples_to_images(samples)
x_samples_ddim = self.model.decode_first_stage(samples_ddim)
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
for x_sample in x_samples_ddim:
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
image = Image.fromarray(x_sample.astype(np.uint8))
images.append([image,seed])
if callback is not None:
callback(image,seed)
seed = self._new_seed()
except KeyboardInterrupt:
print('*interrupted*')
print('Partial results will be returned; if --grid was requested, nothing will be returned.')
except RuntimeError as e:
print(str(e))
return images
@torch.no_grad() @torch.no_grad()
def _img2img(self,prompt, def _img2img(self,
data,precision_scope, prompt,
batch_size,iterations, precision_scope,
steps,seed,cfg_scale,ddim_eta, batch_size,
steps,cfg_scale,ddim_eta,
skip_normalize, skip_normalize,
init_img,strength,variants, init_img,strength):
callback):
""" """
Generate an image from the prompt and the initial image, writing iteration images into the outdir An infinite iterator of images from the prompt and the initial image
The output is a list of lists in the format: [[image,seed1], [image,seed2],...]
""" """
# PLMS sampler not supported yet, so ignore previous sampler # PLMS sampler not supported yet, so ignore previous sampler
@ -377,22 +346,24 @@ The vast majority of these arguments default to reasonable values.
t_enc = int(strength * steps) t_enc = int(strength * steps)
# print(f"target t_enc is {t_enc} steps") # print(f"target t_enc is {t_enc} steps")
images = list()
try: while True:
with precision_scope(self.device.type), self.model.ema_scope(): uc, c = self._get_uc_and_c(prompt, batch_size, skip_normalize)
all_samples = list()
for n in trange(iterations, desc="Sampling"): # encode (scaled latent)
seed_everything(seed) z_enc = sampler.stochastic_encode(init_latent, torch.tensor([t_enc]*batch_size).to(self.device))
for prompts in tqdm(data, desc="data", dynamic_ncols=True): # decode it
uc = None samples = sampler.decode(z_enc, c, t_enc, unconditional_guidance_scale=cfg_scale,
if cfg_scale != 1.0: unconditional_conditioning=uc,)
yield self._samples_to_images(samples)
# TODO: does this actually need to run every loop? does anything in it vary by random seed?
def _get_uc_and_c(self, prompt, batch_size, skip_normalize):
uc = self.model.get_learned_conditioning(batch_size * [""]) uc = self.model.get_learned_conditioning(batch_size * [""])
if isinstance(prompts, tuple):
prompts = list(prompts)
# weighted sub-prompts # weighted sub-prompts
subprompts,weights = T2I._split_weighted_subprompts(prompts[0]) subprompts,weights = T2I._split_weighted_subprompts(prompt)
if len(subprompts) > 1: if len(subprompts) > 1:
# i dont know if this is correct.. but it works # i dont know if this is correct.. but it works
c = torch.zeros_like(uc) c = torch.zeros_like(uc)
@ -403,33 +374,19 @@ The vast majority of these arguments default to reasonable values.
weight = weights[i] weight = weights[i]
if not skip_normalize: if not skip_normalize:
weight = weight / totalWeight weight = weight / totalWeight
c = torch.add(c,self.model.get_learned_conditioning(subprompts[i]), alpha=weight) c = torch.add(c, self.model.get_learned_conditioning(batch_size * [subprompts[i]]), alpha=weight)
else: # just standard 1 prompt else: # just standard 1 prompt
c = self.model.get_learned_conditioning(prompts) c = self.model.get_learned_conditioning(batch_size * [prompt])
return (uc, c)
# encode (scaled latent)
z_enc = sampler.stochastic_encode(init_latent, torch.tensor([t_enc]*batch_size).to(self.device))
# decode it
samples = sampler.decode(z_enc, c, t_enc, unconditional_guidance_scale=cfg_scale,
unconditional_conditioning=uc,)
def _samples_to_images(self, samples):
x_samples = self.model.decode_first_stage(samples) x_samples = self.model.decode_first_stage(samples)
x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0) x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0)
images = list()
for x_sample in x_samples: for x_sample in x_samples:
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c') x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
image = Image.fromarray(x_sample.astype(np.uint8)) image = Image.fromarray(x_sample.astype(np.uint8))
images.append([image,seed]) images.append(image)
if callback is not None:
callback(image,seed)
seed = self._new_seed()
except KeyboardInterrupt:
print('*interrupted*')
print('Partial results will be returned; if --grid was requested, nothing will be returned.')
except RuntimeError as e:
print("Oops! A runtime error has occurred. If this is unexpected, please copy-and-paste this stack trace and post it as an Issue to http://github.com/lstein/stable-diffusion")
traceback.print_exc()
return images return images
def _new_seed(self): def _new_seed(self):