mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
plms works, bugs quashed
- The plms sampler now works with custom inpainting model - Quashed bug that was causing generation on normal models to fail (oops!) - Can now generate non-square images with custom inpainting model Credits for advice and assistance during porting: @any-winter-4079 (http://github.com/any-winter-4079) @db3000 (Danny Beer http://github.com/db3000)
This commit is contained in:
@ -12,22 +12,6 @@ from ldm.modules.diffusionmodules.util import (
|
||||
extract_into_tensor,
|
||||
)
|
||||
|
||||
def make_cond_in(uncond, cond):
|
||||
if isinstance(cond, dict):
|
||||
assert isinstance(uncond, dict)
|
||||
cond_in = dict()
|
||||
for k in cond:
|
||||
if isinstance(cond[k], list):
|
||||
cond_in[k] = [
|
||||
torch.cat([uncond[k][i], cond[k][i]])
|
||||
for i in range(len(cond[k]))
|
||||
]
|
||||
else:
|
||||
cond_in[k] = torch.cat([uncond[k], cond[k]])
|
||||
else:
|
||||
cond_in = torch.cat([uncond, cond])
|
||||
return cond_in
|
||||
|
||||
def cfg_apply_threshold(result, threshold = 0.0, scale = 0.7):
|
||||
if threshold <= 0.0:
|
||||
return result
|
||||
@ -43,9 +27,10 @@ def cfg_apply_threshold(result, threshold = 0.0, scale = 0.7):
|
||||
|
||||
|
||||
class CFGDenoiser(nn.Module):
|
||||
def __init__(self, model, threshold = 0, warmup = 0):
|
||||
def __init__(self, sampler, threshold = 0, warmup = 0):
|
||||
super().__init__()
|
||||
self.inner_model = model
|
||||
self.inner_model = sampler.model
|
||||
self.sampler = sampler
|
||||
self.threshold = threshold
|
||||
self.warmup_max = warmup
|
||||
self.warmup = max(warmup / 10, 1)
|
||||
@ -53,7 +38,7 @@ class CFGDenoiser(nn.Module):
|
||||
def forward(self, x, sigma, uncond, cond, cond_scale):
|
||||
x_in = torch.cat([x] * 2)
|
||||
sigma_in = torch.cat([sigma] * 2)
|
||||
cond_in = make_cond_in(uncond,cond)
|
||||
cond_in = self.sampler.make_cond_in(uncond,cond)
|
||||
uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2)
|
||||
if self.warmup < self.warmup_max:
|
||||
thresh = max(1, 1 + (self.threshold - 1) * (self.warmup / self.warmup_max))
|
||||
@ -80,7 +65,7 @@ class KSampler(Sampler):
|
||||
def forward(self, x, sigma, uncond, cond, cond_scale):
|
||||
x_in = torch.cat([x] * 2)
|
||||
sigma_in = torch.cat([sigma] * 2)
|
||||
cond_in = make_cond_in(uncond, cond)
|
||||
cond_in = self.make_cond_in(uncond, cond)
|
||||
uncond, cond = self.inner_model(
|
||||
x_in, sigma_in, cond=cond_in
|
||||
).chunk(2)
|
||||
@ -209,7 +194,7 @@ class KSampler(Sampler):
|
||||
else:
|
||||
x = torch.randn([batch_size, *shape], device=self.device) * sigmas[0]
|
||||
|
||||
model_wrap_cfg = CFGDenoiser(self.model, threshold=threshold, warmup=max(0.8*S,S-10))
|
||||
model_wrap_cfg = CFGDenoiser(self, threshold=threshold, warmup=max(0.8*S,S-10))
|
||||
extra_args = {
|
||||
'cond': conditioning,
|
||||
'uncond': unconditional_conditioning,
|
||||
|
Reference in New Issue
Block a user