Merge branch 'main' into feat/nodes/freeu

This commit is contained in:
Kent Keirsey
2023-11-06 05:39:58 -08:00
committed by GitHub
206 changed files with 11705 additions and 8252 deletions

View File

@ -23,7 +23,6 @@ from pydantic import field_validator
from torchvision.transforms.functional import resize as tv_resize
from invokeai.app.invocations.ip_adapter import IPAdapterField
from invokeai.app.invocations.metadata import CoreMetadata
from invokeai.app.invocations.primitives import (
DenoiseMaskField,
DenoiseMaskOutput,
@ -64,6 +63,8 @@ from .baseinvocation import (
InvocationContext,
OutputField,
UIType,
WithMetadata,
WithWorkflow,
invocation,
invocation_output,
)
@ -214,7 +215,7 @@ def get_scheduler(
title="Denoise Latents",
tags=["latents", "denoise", "txt2img", "t2i", "t2l", "img2img", "i2i", "l2l"],
category="latents",
version="1.3.0",
version="1.4.0",
)
class DenoiseLatentsInvocation(BaseInvocation):
"""Denoises noisy latents to decodable images"""
@ -491,16 +492,21 @@ class DenoiseLatentsInvocation(BaseInvocation):
context=context,
)
input_image = context.services.images.get_pil_image(single_ip_adapter.image.image_name)
# `single_ip_adapter.image` could be a list or a single ImageField. Normalize to a list here.
single_ipa_images = single_ip_adapter.image
if not isinstance(single_ipa_images, list):
single_ipa_images = [single_ipa_images]
single_ipa_images = [context.services.images.get_pil_image(image.image_name) for image in single_ipa_images]
# TODO(ryand): With some effort, the step of running the CLIP Vision encoder could be done before any other
# models are needed in memory. This would help to reduce peak memory utilization in low-memory environments.
with image_encoder_model_info as image_encoder_model:
# Get image embeddings from CLIP and ImageProjModel.
(
image_prompt_embeds,
uncond_image_prompt_embeds,
) = ip_adapter_model.get_image_embeds(input_image, image_encoder_model)
image_prompt_embeds, uncond_image_prompt_embeds = ip_adapter_model.get_image_embeds(
single_ipa_images, image_encoder_model
)
conditioning_data.ip_adapter_conditioning.append(
IPAdapterConditioningInfo(image_prompt_embeds, uncond_image_prompt_embeds)
)
@ -708,6 +714,8 @@ class DenoiseLatentsInvocation(BaseInvocation):
ModelPatcher.apply_freeu(unet_info.context.model, self.unet.freeu_config),
set_seamless(unet_info.context.model, self.unet.seamless_axes),
unet_info as unet,
# Apply the LoRA after unet has been moved to its target device for faster patching.
ModelPatcher.apply_lora_unet(unet, _lora_loader()),
):
latents = latents.to(device=unet.device, dtype=unet.dtype)
if noise is not None:
@ -788,7 +796,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
category="latents",
version="1.0.0",
)
class LatentsToImageInvocation(BaseInvocation):
class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithWorkflow):
"""Generates an image from latents."""
latents: LatentsField = InputField(
@ -801,11 +809,6 @@ class LatentsToImageInvocation(BaseInvocation):
)
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled)
fp32: bool = InputField(default=DEFAULT_PRECISION == "float32", description=FieldDescriptions.fp32)
metadata: Optional[CoreMetadata] = InputField(
default=None,
description=FieldDescriptions.core_metadata,
ui_hidden=True,
)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
@ -874,7 +877,7 @@ class LatentsToImageInvocation(BaseInvocation):
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata.model_dump() if self.metadata else None,
metadata=self.metadata,
workflow=self.workflow,
)