Minor improvements to FLUX workflow.

This commit is contained in:
Ryan Dick 2024-08-07 22:10:09 +00:00
parent 89a652cfcd
commit e6ff7488a1

View File

@ -33,7 +33,7 @@ class FluxTextToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
model: TFluxModelKeys = InputField(description="The FLUX model to use for text-to-image generation.")
use_8bit: bool = InputField(
default=False, description="Whether to quantize the T5 model and transformer model to 8-bit precision."
default=False, description="Whether to quantize the transformer model to 8-bit precision."
)
positive_prompt: str = InputField(description="Positive prompt for text-to-image generation.")
width: int = InputField(default=1024, multiple_of=16, description="Width of the generated image.")
@ -56,7 +56,7 @@ class FluxTextToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
return ImageOutput.build(image_dto)
def _encode_prompt(self, context: InvocationContext, flux_model_dir: Path) -> tuple[torch.Tensor, torch.Tensor]:
# Determine the T5 max sequence lenght based on the model.
# Determine the T5 max sequence length based on the model.
if self.model == "flux-schnell":
max_seq_len = 256
# elif self.model == "flux-dev":
@ -118,7 +118,9 @@ class FluxTextToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
):
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(flux_model_dir / "scheduler", local_files_only=True)
# HACK(ryand): Manually empty the cache.
# HACK(ryand): Manually empty the cache. Currently we don't check the size of the model before loading it from
# disk. Since the transformer model is large (24GB), there's a good chance that it will OOM on 32GB RAM systems
# if the cache is not empty.
context.models._services.model_manager.load.ram_cache.make_room(24 * 2**30)
transformer_path = flux_model_dir / "transformer"
@ -137,7 +139,7 @@ class FluxTextToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
transformer=transformer,
)
return flux_pipeline_with_transformer(
latents = flux_pipeline_with_transformer(
height=self.height,
width=self.width,
num_inference_steps=self.num_steps,
@ -149,6 +151,9 @@ class FluxTextToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
return_dict=False,
)[0]
assert isinstance(latents, torch.Tensor)
return latents
def _run_vae_decoding(
self,
context: InvocationContext,
@ -201,9 +206,14 @@ class FluxTextToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
model_8bit_map_path = model_8bit_path / "quantization_map.json"
if model_8bit_path.exists():
# The quantized model exists, load it.
with torch.device("meta"):
model = FluxTransformer2DModel.from_pretrained(path, local_files_only=True)
assert isinstance(model, FluxTransformer2DModel)
# TODO(ryand): Make loading from quantized model work properly.
# Reference: https://gist.github.com/AmericanPresidentJimmyCarter/873985638e1f3541ba8b00137e7dacd9?permalink_comment_id=5141210#gistcomment-5141210
model = FluxTransformer2DModel.from_pretrained(
path,
local_files_only=True,
)
assert isinstance(model, FluxTransformer2DModel)
model = model.to(device=torch.device("meta"))
state_dict = load_file(model_8bit_weights_path)
with open(model_8bit_map_path, "r") as f:
@ -211,6 +221,9 @@ class FluxTextToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
requantize(model=model, state_dict=state_dict, quantization_map=quant_map)
else:
# The quantized model does not exist yet, quantize and save it.
# TODO(ryand): Loading in float16 and then quantizing seems to result in NaNs. In order to run this on
# GPUs that don't support bfloat16, we would need to host the quantized model instead of generating it
# here.
model = FluxTransformer2DModel.from_pretrained(path, local_files_only=True, torch_dtype=torch.bfloat16)
assert isinstance(model, FluxTransformer2DModel)
@ -222,9 +235,7 @@ class FluxTextToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
with open(model_8bit_map_path, "w") as f:
json.dump(quantization_map(model), f)
else:
model = FluxTransformer2DModel.from_pretrained(
path, local_files_only=True, torch_dtype=TorchDevice.choose_torch_dtype()
)
model = FluxTransformer2DModel.from_pretrained(path, local_files_only=True, torch_dtype=torch.bfloat16)
assert isinstance(model, FluxTransformer2DModel)
return model