mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Merge branch 'development' into development
This commit is contained in:
commit
e79069a957
@ -34,6 +34,6 @@ dependencies:
|
||||
- kornia==0.6.0
|
||||
- -e git+https://github.com/openai/CLIP.git@main#egg=clip
|
||||
- -e git+https://github.com/CompVis/taming-transformers.git@master#egg=taming-transformers
|
||||
- -e git+https://github.com/lstein/k-diffusion.git@master#egg=k-diffusion
|
||||
- -e git+https://github.com/Birch-san/k-diffusion.git@mps#egg=k_diffusion
|
||||
- -e git+https://github.com/lstein/GFPGAN@fix-dark-cast-images#egg=gfpgan
|
||||
- -e .
|
||||
|
@ -193,7 +193,7 @@ class Args(object):
|
||||
# img2img generations have parameters relevant only to them and have special handling
|
||||
if a['init_img'] and len(a['init_img'])>0:
|
||||
switches.append(f'-I {a["init_img"]}')
|
||||
switches.append(f'-A ddim') # TODO: FIX ME WHEN IMG2IMG SUPPORTS ALL SAMPLERS
|
||||
switches.append(f'-A {a["sampler_name"]}')
|
||||
if a['fit']:
|
||||
switches.append(f'--fit')
|
||||
if a['init_mask'] and len(a['init_mask'])>0:
|
||||
@ -227,8 +227,8 @@ class Args(object):
|
||||
# 2. However, they come out of the CLI (and probably web) with the keyword "with_variations" and
|
||||
# in broken-out form. Variation (1) should be changed to comply with (2)
|
||||
if a['with_variations']:
|
||||
formatted_variations = ','.join(f'{seed}:{weight}' for seed, weight in (a["variations"]))
|
||||
switches.append(f'-V {a["formatted_variations"]}')
|
||||
formatted_variations = ','.join(f'{seed}:{weight}' for seed, weight in (a["with_variations"]))
|
||||
switches.append(f'-V {formatted_variations}')
|
||||
if 'variations' in a:
|
||||
switches.append(f'-V {a["variations"]}')
|
||||
return ' '.join(switches)
|
||||
|
@ -13,7 +13,6 @@ class Img2Img(Generator):
|
||||
super().__init__(model, precision)
|
||||
self.init_latent = None # by get_noise()
|
||||
|
||||
@torch.no_grad()
|
||||
def get_make_image(self,prompt,sampler,steps,cfg_scale,ddim_eta,
|
||||
conditioning,init_image,strength,step_callback=None,threshold=0.0,perlin=0.0,**kwargs):
|
||||
"""
|
||||
@ -21,12 +20,6 @@ class Img2Img(Generator):
|
||||
Return value depends on the seed at the time you call it.
|
||||
"""
|
||||
self.perlin = perlin
|
||||
# PLMS sampler not supported yet, so ignore previous sampler
|
||||
if not isinstance(sampler,DDIMSampler):
|
||||
print(
|
||||
f">> sampler '{sampler.__class__.__name__}' is not yet supported. Using DDIM sampler"
|
||||
)
|
||||
sampler = DDIMSampler(self.model, device=self.model.device)
|
||||
|
||||
sampler.make_schedule(
|
||||
ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=False
|
||||
@ -41,7 +34,6 @@ class Img2Img(Generator):
|
||||
t_enc = int(strength * steps)
|
||||
uc, c = conditioning
|
||||
|
||||
@torch.no_grad()
|
||||
def make_image(x_T):
|
||||
# encode (scaled latent)
|
||||
z_enc = sampler.stochastic_encode(
|
||||
@ -58,6 +50,7 @@ class Img2Img(Generator):
|
||||
unconditional_guidance_scale=cfg_scale,
|
||||
unconditional_conditioning=uc,
|
||||
)
|
||||
|
||||
return self.sample_to_image(samples)
|
||||
|
||||
return make_image
|
||||
|
@ -8,6 +8,7 @@ from einops import rearrange, repeat
|
||||
from ldm.dream.devices import choose_autocast
|
||||
from ldm.dream.generator.img2img import Img2Img
|
||||
from ldm.models.diffusion.ddim import DDIMSampler
|
||||
from ldm.models.diffusion.ksampler import KSampler
|
||||
|
||||
class Inpaint(Img2Img):
|
||||
def __init__(self, model, precision):
|
||||
@ -23,14 +24,10 @@ class Inpaint(Img2Img):
|
||||
the initial image + mask. Return value depends on the seed at
|
||||
the time you call it. kwargs are 'init_latent' and 'strength'
|
||||
"""
|
||||
|
||||
mask_image = mask_image[0][0].unsqueeze(0).repeat(4,1,1).unsqueeze(0)
|
||||
mask_image = repeat(mask_image, '1 ... -> b ...', b=1)
|
||||
|
||||
# PLMS sampler not supported yet, so ignore previous sampler
|
||||
if not isinstance(sampler,DDIMSampler):
|
||||
# klms samplers not supported yet, so ignore previous sampler
|
||||
if isinstance(sampler,KSampler):
|
||||
print(
|
||||
f">> sampler '{sampler.__class__.__name__}' is not yet supported. Using DDIM sampler"
|
||||
f">> sampler '{sampler.__class__.__name__}' is not yet supported for inpainting, using DDIMSampler instead."
|
||||
)
|
||||
sampler = DDIMSampler(self.model, device=self.model.device)
|
||||
|
||||
@ -38,6 +35,9 @@ class Inpaint(Img2Img):
|
||||
ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=False
|
||||
)
|
||||
|
||||
mask_image = mask_image[0][0].unsqueeze(0).repeat(4,1,1).unsqueeze(0)
|
||||
mask_image = repeat(mask_image, '1 ... -> b ...', b=1)
|
||||
|
||||
scope = choose_autocast(self.precision)
|
||||
with scope(self.model.device.type):
|
||||
self.init_latent = self.model.get_first_stage_encoding(
|
||||
@ -69,6 +69,7 @@ class Inpaint(Img2Img):
|
||||
mask = mask_image,
|
||||
init_latent = self.init_latent
|
||||
)
|
||||
|
||||
return self.sample_to_image(samples)
|
||||
|
||||
return make_image
|
||||
|
@ -32,6 +32,8 @@ class Txt2Img(Generator):
|
||||
if self.free_gpu_mem and self.model.model.device != self.model.device:
|
||||
self.model.model.to(self.model.device)
|
||||
|
||||
sampler.make_schedule(ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=True)
|
||||
|
||||
samples, _ = sampler.sample(
|
||||
batch_size = 1,
|
||||
S = steps,
|
||||
|
@ -1075,3 +1075,15 @@ class Generate:
|
||||
f.write(hash)
|
||||
return hash
|
||||
|
||||
def write_intermediate_images(self,modulus,path):
|
||||
counter = -1
|
||||
if not os.path.exists(path):
|
||||
os.makedirs(path)
|
||||
def callback(img):
|
||||
nonlocal counter
|
||||
counter += 1
|
||||
if counter % modulus != 0:
|
||||
return;
|
||||
image = self.sample_to_image(img)
|
||||
image.save(os.path.join(path,f'{counter:03}.png'),'PNG')
|
||||
return callback
|
||||
|
@ -5,275 +5,16 @@ import numpy as np
|
||||
from tqdm import tqdm
|
||||
from functools import partial
|
||||
from ldm.dream.devices import choose_torch_device
|
||||
from ldm.models.diffusion.sampler import Sampler
|
||||
from ldm.modules.diffusionmodules.util import noise_like
|
||||
|
||||
from ldm.modules.diffusionmodules.util import (
|
||||
make_ddim_sampling_parameters,
|
||||
make_ddim_timesteps,
|
||||
noise_like,
|
||||
extract_into_tensor,
|
||||
)
|
||||
|
||||
|
||||
class DDIMSampler(object):
|
||||
class DDIMSampler(Sampler):
|
||||
def __init__(self, model, schedule='linear', device=None, **kwargs):
|
||||
super().__init__()
|
||||
self.model = model
|
||||
self.ddpm_num_timesteps = model.num_timesteps
|
||||
self.schedule = schedule
|
||||
self.device = device or choose_torch_device()
|
||||
|
||||
def register_buffer(self, name, attr):
|
||||
if type(attr) == torch.Tensor:
|
||||
if attr.device != torch.device(self.device):
|
||||
attr = attr.to(dtype=torch.float32, device=self.device)
|
||||
setattr(self, name, attr)
|
||||
|
||||
def make_schedule(
|
||||
self,
|
||||
ddim_num_steps,
|
||||
ddim_discretize='uniform',
|
||||
ddim_eta=0.0,
|
||||
verbose=True,
|
||||
):
|
||||
self.ddim_timesteps = make_ddim_timesteps(
|
||||
ddim_discr_method=ddim_discretize,
|
||||
num_ddim_timesteps=ddim_num_steps,
|
||||
num_ddpm_timesteps=self.ddpm_num_timesteps,
|
||||
verbose=verbose,
|
||||
)
|
||||
alphas_cumprod = self.model.alphas_cumprod
|
||||
assert (
|
||||
alphas_cumprod.shape[0] == self.ddpm_num_timesteps
|
||||
), 'alphas have to be defined for each timestep'
|
||||
to_torch = (
|
||||
lambda x: x.clone()
|
||||
.detach()
|
||||
.to(torch.float32)
|
||||
.to(self.model.device)
|
||||
)
|
||||
|
||||
self.register_buffer('betas', to_torch(self.model.betas))
|
||||
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
||||
self.register_buffer(
|
||||
'alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev)
|
||||
)
|
||||
|
||||
# calculations for diffusion q(x_t | x_{t-1}) and others
|
||||
self.register_buffer(
|
||||
'sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu()))
|
||||
)
|
||||
self.register_buffer(
|
||||
'sqrt_one_minus_alphas_cumprod',
|
||||
to_torch(np.sqrt(1.0 - alphas_cumprod.cpu())),
|
||||
)
|
||||
self.register_buffer(
|
||||
'log_one_minus_alphas_cumprod',
|
||||
to_torch(np.log(1.0 - alphas_cumprod.cpu())),
|
||||
)
|
||||
self.register_buffer(
|
||||
'sqrt_recip_alphas_cumprod',
|
||||
to_torch(np.sqrt(1.0 / alphas_cumprod.cpu())),
|
||||
)
|
||||
self.register_buffer(
|
||||
'sqrt_recipm1_alphas_cumprod',
|
||||
to_torch(np.sqrt(1.0 / alphas_cumprod.cpu() - 1)),
|
||||
)
|
||||
|
||||
# ddim sampling parameters
|
||||
(
|
||||
ddim_sigmas,
|
||||
ddim_alphas,
|
||||
ddim_alphas_prev,
|
||||
) = make_ddim_sampling_parameters(
|
||||
alphacums=alphas_cumprod.cpu(),
|
||||
ddim_timesteps=self.ddim_timesteps,
|
||||
eta=ddim_eta,
|
||||
verbose=verbose,
|
||||
)
|
||||
self.register_buffer('ddim_sigmas', ddim_sigmas)
|
||||
self.register_buffer('ddim_alphas', ddim_alphas)
|
||||
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
|
||||
self.register_buffer(
|
||||
'ddim_sqrt_one_minus_alphas', np.sqrt(1.0 - ddim_alphas)
|
||||
)
|
||||
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
||||
(1 - self.alphas_cumprod_prev)
|
||||
/ (1 - self.alphas_cumprod)
|
||||
* (1 - self.alphas_cumprod / self.alphas_cumprod_prev)
|
||||
)
|
||||
self.register_buffer(
|
||||
'ddim_sigmas_for_original_num_steps',
|
||||
sigmas_for_original_sampling_steps,
|
||||
)
|
||||
super().__init__(model,schedule,model.num_timesteps,device)
|
||||
|
||||
# This is the central routine
|
||||
@torch.no_grad()
|
||||
def sample(
|
||||
self,
|
||||
S,
|
||||
batch_size,
|
||||
shape,
|
||||
conditioning=None,
|
||||
callback=None,
|
||||
normals_sequence=None,
|
||||
img_callback=None,
|
||||
quantize_x0=False,
|
||||
eta=0.0,
|
||||
mask=None,
|
||||
x0=None,
|
||||
temperature=1.0,
|
||||
noise_dropout=0.0,
|
||||
score_corrector=None,
|
||||
corrector_kwargs=None,
|
||||
verbose=True,
|
||||
x_T=None,
|
||||
log_every_t=100,
|
||||
unconditional_guidance_scale=1.0,
|
||||
unconditional_conditioning=None,
|
||||
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
||||
**kwargs,
|
||||
):
|
||||
if conditioning is not None:
|
||||
if isinstance(conditioning, dict):
|
||||
cbs = conditioning[list(conditioning.keys())[0]].shape[0]
|
||||
if cbs != batch_size:
|
||||
print(
|
||||
f'Warning: Got {cbs} conditionings but batch-size is {batch_size}'
|
||||
)
|
||||
else:
|
||||
if conditioning.shape[0] != batch_size:
|
||||
print(
|
||||
f'Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}'
|
||||
)
|
||||
|
||||
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
|
||||
# sampling
|
||||
C, H, W = shape
|
||||
size = (batch_size, C, H, W)
|
||||
print(f'Data shape for DDIM sampling is {size}, eta {eta}')
|
||||
|
||||
samples, intermediates = self.ddim_sampling(
|
||||
conditioning,
|
||||
size,
|
||||
callback=callback,
|
||||
img_callback=img_callback,
|
||||
quantize_denoised=quantize_x0,
|
||||
mask=mask,
|
||||
x0=x0,
|
||||
ddim_use_original_steps=False,
|
||||
noise_dropout=noise_dropout,
|
||||
temperature=temperature,
|
||||
score_corrector=score_corrector,
|
||||
corrector_kwargs=corrector_kwargs,
|
||||
x_T=x_T,
|
||||
log_every_t=log_every_t,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=unconditional_conditioning,
|
||||
)
|
||||
return samples, intermediates
|
||||
|
||||
# This routine gets called from img2img
|
||||
@torch.no_grad()
|
||||
def ddim_sampling(
|
||||
self,
|
||||
cond,
|
||||
shape,
|
||||
x_T=None,
|
||||
ddim_use_original_steps=False,
|
||||
callback=None,
|
||||
timesteps=None,
|
||||
quantize_denoised=False,
|
||||
mask=None,
|
||||
x0=None,
|
||||
img_callback=None,
|
||||
log_every_t=100,
|
||||
temperature=1.0,
|
||||
noise_dropout=0.0,
|
||||
score_corrector=None,
|
||||
corrector_kwargs=None,
|
||||
unconditional_guidance_scale=1.0,
|
||||
unconditional_conditioning=None,
|
||||
):
|
||||
device = self.model.betas.device
|
||||
b = shape[0]
|
||||
if x_T is None:
|
||||
img = torch.randn(shape, device=device)
|
||||
else:
|
||||
img = x_T
|
||||
|
||||
if timesteps is None:
|
||||
timesteps = (
|
||||
self.ddpm_num_timesteps
|
||||
if ddim_use_original_steps
|
||||
else self.ddim_timesteps
|
||||
)
|
||||
elif timesteps is not None and not ddim_use_original_steps:
|
||||
subset_end = (
|
||||
int(
|
||||
min(timesteps / self.ddim_timesteps.shape[0], 1)
|
||||
* self.ddim_timesteps.shape[0]
|
||||
)
|
||||
- 1
|
||||
)
|
||||
timesteps = self.ddim_timesteps[:subset_end]
|
||||
|
||||
intermediates = {'x_inter': [img], 'pred_x0': [img]}
|
||||
time_range = (
|
||||
reversed(range(0, timesteps))
|
||||
if ddim_use_original_steps
|
||||
else np.flip(timesteps)
|
||||
)
|
||||
total_steps = (
|
||||
timesteps if ddim_use_original_steps else timesteps.shape[0]
|
||||
)
|
||||
print(f'\nRunning DDIM Sampling with {total_steps} timesteps')
|
||||
|
||||
iterator = tqdm(
|
||||
time_range,
|
||||
desc='DDIM Sampler',
|
||||
total=total_steps,
|
||||
dynamic_ncols=True,
|
||||
)
|
||||
|
||||
for i, step in enumerate(iterator):
|
||||
index = total_steps - i - 1
|
||||
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
||||
|
||||
if mask is not None:
|
||||
assert x0 is not None
|
||||
img_orig = self.model.q_sample(
|
||||
x0, ts
|
||||
) # TODO: deterministic forward pass?
|
||||
img = img_orig * mask + (1.0 - mask) * img
|
||||
|
||||
outs = self.p_sample_ddim(
|
||||
img,
|
||||
cond,
|
||||
ts,
|
||||
index=index,
|
||||
use_original_steps=ddim_use_original_steps,
|
||||
quantize_denoised=quantize_denoised,
|
||||
temperature=temperature,
|
||||
noise_dropout=noise_dropout,
|
||||
score_corrector=score_corrector,
|
||||
corrector_kwargs=corrector_kwargs,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=unconditional_conditioning,
|
||||
)
|
||||
img, pred_x0 = outs
|
||||
if callback:
|
||||
callback(i)
|
||||
if img_callback:
|
||||
img_callback(pred_x0, i)
|
||||
|
||||
if index % log_every_t == 0 or index == total_steps - 1:
|
||||
intermediates['x_inter'].append(img)
|
||||
intermediates['pred_x0'].append(pred_x0)
|
||||
|
||||
return img, intermediates
|
||||
|
||||
# This routine gets called from ddim_sampling() and decode()
|
||||
@torch.no_grad()
|
||||
def p_sample_ddim(
|
||||
def p_sample(
|
||||
self,
|
||||
x,
|
||||
c,
|
||||
@ -288,6 +29,7 @@ class DDIMSampler(object):
|
||||
corrector_kwargs=None,
|
||||
unconditional_guidance_scale=1.0,
|
||||
unconditional_conditioning=None,
|
||||
**kwargs,
|
||||
):
|
||||
b, *_, device = *x.shape, x.device
|
||||
|
||||
@ -351,83 +93,5 @@ class DDIMSampler(object):
|
||||
if noise_dropout > 0.0:
|
||||
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
||||
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
||||
return x_prev, pred_x0
|
||||
return x_prev, pred_x0, None
|
||||
|
||||
@torch.no_grad()
|
||||
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
|
||||
# fast, but does not allow for exact reconstruction
|
||||
# t serves as an index to gather the correct alphas
|
||||
if use_original_steps:
|
||||
sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
|
||||
sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
|
||||
else:
|
||||
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
|
||||
sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
|
||||
|
||||
if noise is None:
|
||||
noise = torch.randn_like(x0)
|
||||
return (
|
||||
extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0
|
||||
+ extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape)
|
||||
* noise
|
||||
)
|
||||
|
||||
@torch.no_grad()
|
||||
def decode(
|
||||
self,
|
||||
x_latent,
|
||||
cond,
|
||||
t_start,
|
||||
img_callback=None,
|
||||
unconditional_guidance_scale=1.0,
|
||||
unconditional_conditioning=None,
|
||||
use_original_steps=False,
|
||||
init_latent = None,
|
||||
mask = None,
|
||||
):
|
||||
|
||||
timesteps = (
|
||||
np.arange(self.ddpm_num_timesteps)
|
||||
if use_original_steps
|
||||
else self.ddim_timesteps
|
||||
)
|
||||
timesteps = timesteps[:t_start]
|
||||
|
||||
time_range = np.flip(timesteps)
|
||||
total_steps = timesteps.shape[0]
|
||||
print(f'Running DDIM Sampling with {total_steps} timesteps')
|
||||
|
||||
iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
|
||||
x_dec = x_latent
|
||||
x0 = init_latent
|
||||
|
||||
for i, step in enumerate(iterator):
|
||||
index = total_steps - i - 1
|
||||
ts = torch.full(
|
||||
(x_latent.shape[0],),
|
||||
step,
|
||||
device=x_latent.device,
|
||||
dtype=torch.long,
|
||||
)
|
||||
|
||||
if mask is not None:
|
||||
assert x0 is not None
|
||||
xdec_orig = self.model.q_sample(
|
||||
x0, ts
|
||||
) # TODO: deterministic forward pass?
|
||||
x_dec = xdec_orig * mask + (1.0 - mask) * x_dec
|
||||
|
||||
x_dec, _ = self.p_sample_ddim(
|
||||
x_dec,
|
||||
cond,
|
||||
ts,
|
||||
index=index,
|
||||
use_original_steps=use_original_steps,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=unconditional_conditioning,
|
||||
)
|
||||
|
||||
if img_callback:
|
||||
img_callback(x_dec, i)
|
||||
|
||||
return x_dec
|
||||
|
@ -3,6 +3,7 @@ import k_diffusion as K
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from ldm.dream.devices import choose_torch_device
|
||||
from ldm.models.diffusion.sampler import Sampler
|
||||
from ldm.util import rand_perlin_2d
|
||||
|
||||
def cfg_apply_threshold(result, threshold = 0.0, scale = 0.7):
|
||||
@ -42,12 +43,16 @@ class CFGDenoiser(nn.Module):
|
||||
return cfg_apply_threshold(uncond + (cond - uncond) * cond_scale, thresh)
|
||||
|
||||
|
||||
class KSampler(object):
|
||||
class KSampler(Sampler):
|
||||
def __init__(self, model, schedule='lms', device=None, **kwargs):
|
||||
super().__init__()
|
||||
self.model = K.external.CompVisDenoiser(model)
|
||||
self.schedule = schedule
|
||||
self.device = device or choose_torch_device()
|
||||
denoiser = K.external.CompVisDenoiser(model)
|
||||
super().__init__(
|
||||
denoiser,
|
||||
schedule,
|
||||
steps=model.num_timesteps,
|
||||
)
|
||||
self.ds = None
|
||||
self.s_in = None
|
||||
|
||||
def forward(self, x, sigma, uncond, cond, cond_scale):
|
||||
x_in = torch.cat([x] * 2)
|
||||
@ -59,8 +64,40 @@ class KSampler(object):
|
||||
return uncond + (cond - uncond) * cond_scale
|
||||
|
||||
|
||||
def make_schedule(
|
||||
self,
|
||||
ddim_num_steps,
|
||||
ddim_discretize='uniform',
|
||||
ddim_eta=0.0,
|
||||
verbose=False,
|
||||
):
|
||||
outer_model = self.model
|
||||
self.model = outer_model.inner_model
|
||||
super().make_schedule(
|
||||
ddim_num_steps,
|
||||
ddim_discretize='uniform',
|
||||
ddim_eta=0.0,
|
||||
verbose=False,
|
||||
)
|
||||
self.model = outer_model
|
||||
self.ddim_num_steps = ddim_num_steps
|
||||
sigmas = K.sampling.get_sigmas_karras(
|
||||
n=ddim_num_steps,
|
||||
sigma_min=self.model.sigmas[0].item(),
|
||||
sigma_max=self.model.sigmas[-1].item(),
|
||||
rho=7.,
|
||||
device=self.device,
|
||||
# Birch-san recommends this, but it doesn't match the call signature in his branch of k-diffusion
|
||||
# concat_zero=False
|
||||
)
|
||||
self.sigmas = sigmas
|
||||
|
||||
# most of these arguments are ignored and are only present for compatibility with
|
||||
# ALERT: We are completely overriding the sample() method in the base class, which
|
||||
# means that inpainting will (probably?) not work correctly. To get this to work
|
||||
# we need to be able to modify the inner loop of k_heun, k_lms, etc, as is done
|
||||
# in an ugly way in the lstein/k-diffusion branch.
|
||||
|
||||
# Most of these arguments are ignored and are only present for compatibility with
|
||||
# other samples
|
||||
@torch.no_grad()
|
||||
def sample(
|
||||
@ -92,9 +129,11 @@ class KSampler(object):
|
||||
):
|
||||
def route_callback(k_callback_values):
|
||||
if img_callback is not None:
|
||||
img_callback(k_callback_values['x'], k_callback_values['i'])
|
||||
img_callback(k_callback_values['x'],k_callback_values['i'])
|
||||
|
||||
sigmas = self.model.get_sigmas(S)
|
||||
# sigmas = self.model.get_sigmas(S)
|
||||
# sigmas are now set up in make_schedule - we take the last steps items
|
||||
sigmas = self.sigmas[-S:]
|
||||
if x_T is not None:
|
||||
x = x_T * sigmas[0]
|
||||
else:
|
||||
@ -108,6 +147,7 @@ class KSampler(object):
|
||||
'uncond': unconditional_conditioning,
|
||||
'cond_scale': unconditional_guidance_scale,
|
||||
}
|
||||
print(f'>> Sampling with k__{self.schedule}')
|
||||
return (
|
||||
K.sampling.__dict__[f'sample_{self.schedule}'](
|
||||
model_wrap_cfg, x, sigmas, extra_args=extra_args,
|
||||
@ -115,3 +155,94 @@ class KSampler(object):
|
||||
),
|
||||
None,
|
||||
)
|
||||
|
||||
@torch.no_grad()
|
||||
def p_sample(
|
||||
self,
|
||||
img,
|
||||
cond,
|
||||
ts,
|
||||
index,
|
||||
unconditional_guidance_scale=1.0,
|
||||
unconditional_conditioning=None,
|
||||
**kwargs,
|
||||
):
|
||||
if self.model_wrap is None:
|
||||
self.model_wrap = CFGDenoiser(self.model)
|
||||
extra_args = {
|
||||
'cond': cond,
|
||||
'uncond': unconditional_conditioning,
|
||||
'cond_scale': unconditional_guidance_scale,
|
||||
}
|
||||
if self.s_in is None:
|
||||
self.s_in = img.new_ones([img.shape[0]])
|
||||
if self.ds is None:
|
||||
self.ds = []
|
||||
|
||||
# terrible, confusing names here
|
||||
steps = self.ddim_num_steps
|
||||
t_enc = self.t_enc
|
||||
|
||||
# sigmas is a full steps in length, but t_enc might
|
||||
# be less. We start in the middle of the sigma array
|
||||
# and work our way to the end after t_enc steps.
|
||||
# index starts at t_enc and works its way to zero,
|
||||
# so the actual formula for indexing into sigmas:
|
||||
# sigma_index = (steps-index)
|
||||
s_index = t_enc - index - 1
|
||||
img = K.sampling.__dict__[f'_{self.schedule}'](
|
||||
self.model_wrap,
|
||||
img,
|
||||
self.sigmas,
|
||||
s_index,
|
||||
s_in = self.s_in,
|
||||
ds = self.ds,
|
||||
extra_args=extra_args,
|
||||
)
|
||||
|
||||
return img, None, None
|
||||
|
||||
def get_initial_image(self,x_T,shape,steps):
|
||||
if x_T is not None:
|
||||
return x_T + x_T * self.sigmas[0]
|
||||
else:
|
||||
return (torch.randn(shape, device=self.device) * self.sigmas[0])
|
||||
|
||||
def prepare_to_sample(self,t_enc):
|
||||
self.t_enc = t_enc
|
||||
self.model_wrap = None
|
||||
self.ds = None
|
||||
self.s_in = None
|
||||
|
||||
def q_sample(self,x0,ts):
|
||||
'''
|
||||
Overrides parent method to return the q_sample of the inner model.
|
||||
'''
|
||||
return self.model.inner_model.q_sample(x0,ts)
|
||||
|
||||
@torch.no_grad()
|
||||
def decode(
|
||||
self,
|
||||
z_enc,
|
||||
cond,
|
||||
t_enc,
|
||||
img_callback=None,
|
||||
unconditional_guidance_scale=1.0,
|
||||
unconditional_conditioning=None,
|
||||
use_original_steps=False,
|
||||
init_latent = None,
|
||||
mask = None,
|
||||
):
|
||||
samples,_ = self.sample(
|
||||
batch_size = 1,
|
||||
S = t_enc,
|
||||
x_T = z_enc,
|
||||
shape = z_enc.shape[1:],
|
||||
conditioning = cond,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning = unconditional_conditioning,
|
||||
img_callback = img_callback,
|
||||
x0 = init_latent,
|
||||
mask = mask
|
||||
)
|
||||
return samples
|
||||
|
@ -5,290 +5,21 @@ import numpy as np
|
||||
from tqdm import tqdm
|
||||
from functools import partial
|
||||
from ldm.dream.devices import choose_torch_device
|
||||
|
||||
from ldm.modules.diffusionmodules.util import (
|
||||
make_ddim_sampling_parameters,
|
||||
make_ddim_timesteps,
|
||||
noise_like,
|
||||
)
|
||||
from ldm.models.diffusion.sampler import Sampler
|
||||
from ldm.modules.diffusionmodules.util import noise_like
|
||||
|
||||
|
||||
class PLMSSampler(object):
|
||||
class PLMSSampler(Sampler):
|
||||
def __init__(self, model, schedule='linear', device=None, **kwargs):
|
||||
super().__init__()
|
||||
self.model = model
|
||||
self.ddpm_num_timesteps = model.num_timesteps
|
||||
self.schedule = schedule
|
||||
self.device = device if device else choose_torch_device()
|
||||
|
||||
def register_buffer(self, name, attr):
|
||||
if type(attr) == torch.Tensor:
|
||||
if attr.device != torch.device(self.device):
|
||||
attr = attr.to(torch.float32).to(torch.device(self.device))
|
||||
setattr(self, name, attr)
|
||||
|
||||
def make_schedule(
|
||||
self,
|
||||
ddim_num_steps,
|
||||
ddim_discretize='uniform',
|
||||
ddim_eta=0.0,
|
||||
verbose=True,
|
||||
):
|
||||
if ddim_eta != 0:
|
||||
raise ValueError('ddim_eta must be 0 for PLMS')
|
||||
self.ddim_timesteps = make_ddim_timesteps(
|
||||
ddim_discr_method=ddim_discretize,
|
||||
num_ddim_timesteps=ddim_num_steps,
|
||||
num_ddpm_timesteps=self.ddpm_num_timesteps,
|
||||
verbose=verbose,
|
||||
)
|
||||
alphas_cumprod = self.model.alphas_cumprod
|
||||
assert (
|
||||
alphas_cumprod.shape[0] == self.ddpm_num_timesteps
|
||||
), 'alphas have to be defined for each timestep'
|
||||
to_torch = (
|
||||
lambda x: x.clone()
|
||||
.detach()
|
||||
.to(torch.float32)
|
||||
.to(self.model.device)
|
||||
)
|
||||
|
||||
self.register_buffer('betas', to_torch(self.model.betas))
|
||||
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
||||
self.register_buffer(
|
||||
'alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev)
|
||||
)
|
||||
|
||||
# calculations for diffusion q(x_t | x_{t-1}) and others
|
||||
self.register_buffer(
|
||||
'sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu()))
|
||||
)
|
||||
self.register_buffer(
|
||||
'sqrt_one_minus_alphas_cumprod',
|
||||
to_torch(np.sqrt(1.0 - alphas_cumprod.cpu())),
|
||||
)
|
||||
self.register_buffer(
|
||||
'log_one_minus_alphas_cumprod',
|
||||
to_torch(np.log(1.0 - alphas_cumprod.cpu())),
|
||||
)
|
||||
self.register_buffer(
|
||||
'sqrt_recip_alphas_cumprod',
|
||||
to_torch(np.sqrt(1.0 / alphas_cumprod.cpu())),
|
||||
)
|
||||
self.register_buffer(
|
||||
'sqrt_recipm1_alphas_cumprod',
|
||||
to_torch(np.sqrt(1.0 / alphas_cumprod.cpu() - 1)),
|
||||
)
|
||||
|
||||
# ddim sampling parameters
|
||||
(
|
||||
ddim_sigmas,
|
||||
ddim_alphas,
|
||||
ddim_alphas_prev,
|
||||
) = make_ddim_sampling_parameters(
|
||||
alphacums=alphas_cumprod.cpu(),
|
||||
ddim_timesteps=self.ddim_timesteps,
|
||||
eta=ddim_eta,
|
||||
verbose=verbose,
|
||||
)
|
||||
self.register_buffer('ddim_sigmas', ddim_sigmas)
|
||||
self.register_buffer('ddim_alphas', ddim_alphas)
|
||||
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
|
||||
self.register_buffer(
|
||||
'ddim_sqrt_one_minus_alphas', np.sqrt(1.0 - ddim_alphas)
|
||||
)
|
||||
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
||||
(1 - self.alphas_cumprod_prev)
|
||||
/ (1 - self.alphas_cumprod)
|
||||
* (1 - self.alphas_cumprod / self.alphas_cumprod_prev)
|
||||
)
|
||||
self.register_buffer(
|
||||
'ddim_sigmas_for_original_num_steps',
|
||||
sigmas_for_original_sampling_steps,
|
||||
)
|
||||
super().__init__(model,schedule,model.num_timesteps, device)
|
||||
|
||||
# this is the essential routine
|
||||
@torch.no_grad()
|
||||
def sample(
|
||||
def p_sample(
|
||||
self,
|
||||
S,
|
||||
batch_size,
|
||||
shape,
|
||||
conditioning=None,
|
||||
callback=None,
|
||||
normals_sequence=None,
|
||||
img_callback=None,
|
||||
quantize_x0=False,
|
||||
eta=0.0,
|
||||
mask=None,
|
||||
x0=None,
|
||||
temperature=1.0,
|
||||
noise_dropout=0.0,
|
||||
score_corrector=None,
|
||||
corrector_kwargs=None,
|
||||
verbose=True,
|
||||
x_T=None,
|
||||
log_every_t=100,
|
||||
unconditional_guidance_scale=1.0,
|
||||
unconditional_conditioning=None,
|
||||
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
||||
**kwargs,
|
||||
):
|
||||
if conditioning is not None:
|
||||
if isinstance(conditioning, dict):
|
||||
cbs = conditioning[list(conditioning.keys())[0]].shape[0]
|
||||
if cbs != batch_size:
|
||||
print(
|
||||
f'Warning: Got {cbs} conditionings but batch-size is {batch_size}'
|
||||
)
|
||||
else:
|
||||
if conditioning.shape[0] != batch_size:
|
||||
print(
|
||||
f'Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}'
|
||||
)
|
||||
|
||||
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
|
||||
# sampling
|
||||
C, H, W = shape
|
||||
size = (batch_size, C, H, W)
|
||||
# print(f'Data shape for PLMS sampling is {size}')
|
||||
|
||||
samples, intermediates = self.plms_sampling(
|
||||
conditioning,
|
||||
size,
|
||||
callback=callback,
|
||||
img_callback=img_callback,
|
||||
quantize_denoised=quantize_x0,
|
||||
mask=mask,
|
||||
x0=x0,
|
||||
ddim_use_original_steps=False,
|
||||
noise_dropout=noise_dropout,
|
||||
temperature=temperature,
|
||||
score_corrector=score_corrector,
|
||||
corrector_kwargs=corrector_kwargs,
|
||||
x_T=x_T,
|
||||
log_every_t=log_every_t,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=unconditional_conditioning,
|
||||
)
|
||||
return samples, intermediates
|
||||
|
||||
@torch.no_grad()
|
||||
def plms_sampling(
|
||||
self,
|
||||
cond,
|
||||
shape,
|
||||
x_T=None,
|
||||
ddim_use_original_steps=False,
|
||||
callback=None,
|
||||
timesteps=None,
|
||||
quantize_denoised=False,
|
||||
mask=None,
|
||||
x0=None,
|
||||
img_callback=None,
|
||||
log_every_t=100,
|
||||
temperature=1.0,
|
||||
noise_dropout=0.0,
|
||||
score_corrector=None,
|
||||
corrector_kwargs=None,
|
||||
unconditional_guidance_scale=1.0,
|
||||
unconditional_conditioning=None,
|
||||
):
|
||||
device = self.model.betas.device
|
||||
b = shape[0]
|
||||
if x_T is None:
|
||||
img = torch.randn(shape, device=device)
|
||||
else:
|
||||
img = x_T
|
||||
|
||||
if timesteps is None:
|
||||
timesteps = (
|
||||
self.ddpm_num_timesteps
|
||||
if ddim_use_original_steps
|
||||
else self.ddim_timesteps
|
||||
)
|
||||
elif timesteps is not None and not ddim_use_original_steps:
|
||||
subset_end = (
|
||||
int(
|
||||
min(timesteps / self.ddim_timesteps.shape[0], 1)
|
||||
* self.ddim_timesteps.shape[0]
|
||||
)
|
||||
- 1
|
||||
)
|
||||
timesteps = self.ddim_timesteps[:subset_end]
|
||||
|
||||
intermediates = {'x_inter': [img], 'pred_x0': [img]}
|
||||
time_range = (
|
||||
list(reversed(range(0, timesteps)))
|
||||
if ddim_use_original_steps
|
||||
else np.flip(timesteps)
|
||||
)
|
||||
total_steps = (
|
||||
timesteps if ddim_use_original_steps else timesteps.shape[0]
|
||||
)
|
||||
# print(f"Running PLMS Sampling with {total_steps} timesteps")
|
||||
|
||||
iterator = tqdm(
|
||||
time_range,
|
||||
desc='PLMS Sampler',
|
||||
total=total_steps,
|
||||
dynamic_ncols=True,
|
||||
)
|
||||
old_eps = []
|
||||
|
||||
for i, step in enumerate(iterator):
|
||||
index = total_steps - i - 1
|
||||
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
||||
ts_next = torch.full(
|
||||
(b,),
|
||||
time_range[min(i + 1, len(time_range) - 1)],
|
||||
device=device,
|
||||
dtype=torch.long,
|
||||
)
|
||||
|
||||
if mask is not None:
|
||||
assert x0 is not None
|
||||
img_orig = self.model.q_sample(
|
||||
x0, ts
|
||||
) # TODO: deterministic forward pass?
|
||||
img = img_orig * mask + (1.0 - mask) * img
|
||||
|
||||
outs = self.p_sample_plms(
|
||||
img,
|
||||
cond,
|
||||
ts,
|
||||
index=index,
|
||||
use_original_steps=ddim_use_original_steps,
|
||||
quantize_denoised=quantize_denoised,
|
||||
temperature=temperature,
|
||||
noise_dropout=noise_dropout,
|
||||
score_corrector=score_corrector,
|
||||
corrector_kwargs=corrector_kwargs,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=unconditional_conditioning,
|
||||
old_eps=old_eps,
|
||||
t_next=ts_next,
|
||||
)
|
||||
img, pred_x0, e_t = outs
|
||||
old_eps.append(e_t)
|
||||
if len(old_eps) >= 4:
|
||||
old_eps.pop(0)
|
||||
if callback:
|
||||
callback(i)
|
||||
if img_callback:
|
||||
img_callback(pred_x0, i)
|
||||
|
||||
if index % log_every_t == 0 or index == total_steps - 1:
|
||||
intermediates['x_inter'].append(img)
|
||||
intermediates['pred_x0'].append(pred_x0)
|
||||
|
||||
return img, intermediates
|
||||
|
||||
@torch.no_grad()
|
||||
def p_sample_plms(
|
||||
self,
|
||||
x,
|
||||
c,
|
||||
t,
|
||||
x, # image, called 'img' elsewhere
|
||||
c, # conditioning, called 'cond' elsewhere
|
||||
t, # timesteps, called 'ts' elsewhere
|
||||
index,
|
||||
repeat_noise=False,
|
||||
use_original_steps=False,
|
||||
@ -299,8 +30,9 @@ class PLMSSampler(object):
|
||||
corrector_kwargs=None,
|
||||
unconditional_guidance_scale=1.0,
|
||||
unconditional_conditioning=None,
|
||||
old_eps=None,
|
||||
old_eps=[],
|
||||
t_next=None,
|
||||
**kwargs,
|
||||
):
|
||||
b, *_, device = *x.shape, x.device
|
||||
|
||||
|
402
ldm/models/diffusion/sampler.py
Normal file
402
ldm/models/diffusion/sampler.py
Normal file
@ -0,0 +1,402 @@
|
||||
'''
|
||||
ldm.models.diffusion.sampler
|
||||
|
||||
Base class for ldm.models.diffusion.ddim, ldm.models.diffusion.ksampler, etc
|
||||
|
||||
'''
|
||||
import torch
|
||||
import numpy as np
|
||||
from tqdm import tqdm
|
||||
from functools import partial
|
||||
from ldm.dream.devices import choose_torch_device
|
||||
|
||||
from ldm.modules.diffusionmodules.util import (
|
||||
make_ddim_sampling_parameters,
|
||||
make_ddim_timesteps,
|
||||
noise_like,
|
||||
extract_into_tensor,
|
||||
)
|
||||
|
||||
class Sampler(object):
|
||||
def __init__(self, model, schedule='linear', steps=None, device=None, **kwargs):
|
||||
self.model = model
|
||||
self.ddpm_num_timesteps = steps
|
||||
self.schedule = schedule
|
||||
self.device = device or choose_torch_device()
|
||||
|
||||
def register_buffer(self, name, attr):
|
||||
if type(attr) == torch.Tensor:
|
||||
if attr.device != torch.device(self.device):
|
||||
attr = attr.to(torch.float32).to(torch.device(self.device))
|
||||
setattr(self, name, attr)
|
||||
|
||||
# This method was copied over from ddim.py and probably does stuff that is
|
||||
# ddim-specific. Disentangle at some point.
|
||||
def make_schedule(
|
||||
self,
|
||||
ddim_num_steps,
|
||||
ddim_discretize='uniform',
|
||||
ddim_eta=0.0,
|
||||
verbose=False,
|
||||
):
|
||||
self.ddim_timesteps = make_ddim_timesteps(
|
||||
ddim_discr_method=ddim_discretize,
|
||||
num_ddim_timesteps=ddim_num_steps,
|
||||
num_ddpm_timesteps=self.ddpm_num_timesteps,
|
||||
verbose=verbose,
|
||||
)
|
||||
alphas_cumprod = self.model.alphas_cumprod
|
||||
assert (
|
||||
alphas_cumprod.shape[0] == self.ddpm_num_timesteps
|
||||
), 'alphas have to be defined for each timestep'
|
||||
to_torch = (
|
||||
lambda x: x.clone()
|
||||
.detach()
|
||||
.to(torch.float32)
|
||||
.to(self.model.device)
|
||||
)
|
||||
|
||||
self.register_buffer('betas', to_torch(self.model.betas))
|
||||
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
||||
self.register_buffer(
|
||||
'alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev)
|
||||
)
|
||||
|
||||
# calculations for diffusion q(x_t | x_{t-1}) and others
|
||||
self.register_buffer(
|
||||
'sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu()))
|
||||
)
|
||||
self.register_buffer(
|
||||
'sqrt_one_minus_alphas_cumprod',
|
||||
to_torch(np.sqrt(1.0 - alphas_cumprod.cpu())),
|
||||
)
|
||||
self.register_buffer(
|
||||
'log_one_minus_alphas_cumprod',
|
||||
to_torch(np.log(1.0 - alphas_cumprod.cpu())),
|
||||
)
|
||||
self.register_buffer(
|
||||
'sqrt_recip_alphas_cumprod',
|
||||
to_torch(np.sqrt(1.0 / alphas_cumprod.cpu())),
|
||||
)
|
||||
self.register_buffer(
|
||||
'sqrt_recipm1_alphas_cumprod',
|
||||
to_torch(np.sqrt(1.0 / alphas_cumprod.cpu() - 1)),
|
||||
)
|
||||
|
||||
# ddim sampling parameters
|
||||
(
|
||||
ddim_sigmas,
|
||||
ddim_alphas,
|
||||
ddim_alphas_prev,
|
||||
) = make_ddim_sampling_parameters(
|
||||
alphacums=alphas_cumprod.cpu(),
|
||||
ddim_timesteps=self.ddim_timesteps,
|
||||
eta=ddim_eta,
|
||||
verbose=verbose,
|
||||
)
|
||||
self.register_buffer('ddim_sigmas', ddim_sigmas)
|
||||
self.register_buffer('ddim_alphas', ddim_alphas)
|
||||
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
|
||||
self.register_buffer(
|
||||
'ddim_sqrt_one_minus_alphas', np.sqrt(1.0 - ddim_alphas)
|
||||
)
|
||||
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
||||
(1 - self.alphas_cumprod_prev)
|
||||
/ (1 - self.alphas_cumprod)
|
||||
* (1 - self.alphas_cumprod / self.alphas_cumprod_prev)
|
||||
)
|
||||
self.register_buffer(
|
||||
'ddim_sigmas_for_original_num_steps',
|
||||
sigmas_for_original_sampling_steps,
|
||||
)
|
||||
|
||||
@torch.no_grad()
|
||||
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
|
||||
# fast, but does not allow for exact reconstruction
|
||||
# t serves as an index to gather the correct alphas
|
||||
if use_original_steps:
|
||||
sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
|
||||
sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
|
||||
else:
|
||||
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
|
||||
sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
|
||||
|
||||
if noise is None:
|
||||
noise = torch.randn_like(x0)
|
||||
return (
|
||||
extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0
|
||||
+ extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape)
|
||||
* noise
|
||||
)
|
||||
|
||||
@torch.no_grad()
|
||||
def sample(
|
||||
self,
|
||||
S, # S is steps
|
||||
batch_size,
|
||||
shape,
|
||||
conditioning=None,
|
||||
callback=None,
|
||||
normals_sequence=None,
|
||||
img_callback=None,
|
||||
quantize_x0=False,
|
||||
eta=0.0,
|
||||
mask=None,
|
||||
x0=None,
|
||||
temperature=1.0,
|
||||
noise_dropout=0.0,
|
||||
score_corrector=None,
|
||||
corrector_kwargs=None,
|
||||
verbose=False,
|
||||
x_T=None,
|
||||
log_every_t=100,
|
||||
unconditional_guidance_scale=1.0,
|
||||
unconditional_conditioning=None,
|
||||
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
||||
**kwargs,
|
||||
):
|
||||
|
||||
ts = self.get_timesteps(S)
|
||||
|
||||
# sampling
|
||||
C, H, W = shape
|
||||
shape = (batch_size, C, H, W)
|
||||
samples, intermediates = self.do_sampling(
|
||||
conditioning,
|
||||
shape,
|
||||
timesteps=ts,
|
||||
callback=callback,
|
||||
img_callback=img_callback,
|
||||
quantize_denoised=quantize_x0,
|
||||
mask=mask,
|
||||
x0=x0,
|
||||
ddim_use_original_steps=False,
|
||||
noise_dropout=noise_dropout,
|
||||
temperature=temperature,
|
||||
score_corrector=score_corrector,
|
||||
corrector_kwargs=corrector_kwargs,
|
||||
x_T=x_T,
|
||||
log_every_t=log_every_t,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=unconditional_conditioning,
|
||||
steps=S,
|
||||
)
|
||||
return samples, intermediates
|
||||
|
||||
#torch.no_grad()
|
||||
def do_sampling(
|
||||
self,
|
||||
cond,
|
||||
shape,
|
||||
timesteps=None,
|
||||
x_T=None,
|
||||
ddim_use_original_steps=False,
|
||||
callback=None,
|
||||
quantize_denoised=False,
|
||||
mask=None,
|
||||
x0=None,
|
||||
img_callback=None,
|
||||
log_every_t=100,
|
||||
temperature=1.0,
|
||||
noise_dropout=0.0,
|
||||
score_corrector=None,
|
||||
corrector_kwargs=None,
|
||||
unconditional_guidance_scale=1.0,
|
||||
unconditional_conditioning=None,
|
||||
steps=None,
|
||||
):
|
||||
b = shape[0]
|
||||
time_range = (
|
||||
list(reversed(range(0, timesteps)))
|
||||
if ddim_use_original_steps
|
||||
else np.flip(timesteps)
|
||||
)
|
||||
total_steps=steps
|
||||
|
||||
iterator = tqdm(
|
||||
time_range,
|
||||
desc=f'{self.__class__.__name__}',
|
||||
total=total_steps,
|
||||
dynamic_ncols=True,
|
||||
)
|
||||
old_eps = []
|
||||
self.prepare_to_sample(t_enc=total_steps)
|
||||
img = self.get_initial_image(x_T,shape,total_steps)
|
||||
|
||||
# probably don't need this at all
|
||||
intermediates = {'x_inter': [img], 'pred_x0': [img]}
|
||||
|
||||
for i, step in enumerate(iterator):
|
||||
index = total_steps - i - 1
|
||||
ts = torch.full(
|
||||
(b,),
|
||||
step,
|
||||
device=self.device,
|
||||
dtype=torch.long
|
||||
)
|
||||
ts_next = torch.full(
|
||||
(b,),
|
||||
time_range[min(i + 1, len(time_range) - 1)],
|
||||
device=self.device,
|
||||
dtype=torch.long,
|
||||
)
|
||||
|
||||
if mask is not None:
|
||||
assert x0 is not None
|
||||
img_orig = self.model.q_sample(
|
||||
x0, ts
|
||||
) # TODO: deterministic forward pass?
|
||||
img = img_orig * mask + (1.0 - mask) * img
|
||||
|
||||
outs = self.p_sample(
|
||||
img,
|
||||
cond,
|
||||
ts,
|
||||
index=index,
|
||||
use_original_steps=ddim_use_original_steps,
|
||||
quantize_denoised=quantize_denoised,
|
||||
temperature=temperature,
|
||||
noise_dropout=noise_dropout,
|
||||
score_corrector=score_corrector,
|
||||
corrector_kwargs=corrector_kwargs,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=unconditional_conditioning,
|
||||
old_eps=old_eps,
|
||||
t_next=ts_next,
|
||||
)
|
||||
img, pred_x0, e_t = outs
|
||||
|
||||
old_eps.append(e_t)
|
||||
if len(old_eps) >= 4:
|
||||
old_eps.pop(0)
|
||||
if callback:
|
||||
callback(i)
|
||||
if img_callback:
|
||||
img_callback(img,i)
|
||||
|
||||
if index % log_every_t == 0 or index == total_steps - 1:
|
||||
intermediates['x_inter'].append(img)
|
||||
intermediates['pred_x0'].append(pred_x0)
|
||||
|
||||
return img, intermediates
|
||||
|
||||
# NOTE that decode() and sample() are almost the same code, and do the same thing.
|
||||
# The variable names are changed in order to be confusing.
|
||||
@torch.no_grad()
|
||||
def decode(
|
||||
self,
|
||||
x_latent,
|
||||
cond,
|
||||
t_start,
|
||||
img_callback=None,
|
||||
unconditional_guidance_scale=1.0,
|
||||
unconditional_conditioning=None,
|
||||
use_original_steps=False,
|
||||
init_latent = None,
|
||||
mask = None,
|
||||
):
|
||||
|
||||
timesteps = (
|
||||
np.arange(self.ddpm_num_timesteps)
|
||||
if use_original_steps
|
||||
else self.ddim_timesteps
|
||||
)
|
||||
timesteps = timesteps[:t_start]
|
||||
|
||||
time_range = np.flip(timesteps)
|
||||
total_steps = timesteps.shape[0]
|
||||
print(f'>> Running {self.__class__.__name__} Sampling with {total_steps} timesteps')
|
||||
|
||||
iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
|
||||
x_dec = x_latent
|
||||
x0 = init_latent
|
||||
self.prepare_to_sample(t_enc=total_steps)
|
||||
|
||||
for i, step in enumerate(iterator):
|
||||
index = total_steps - i - 1
|
||||
ts = torch.full(
|
||||
(x_latent.shape[0],),
|
||||
step,
|
||||
device=x_latent.device,
|
||||
dtype=torch.long,
|
||||
)
|
||||
|
||||
ts_next = torch.full(
|
||||
(x_latent.shape[0],),
|
||||
time_range[min(i + 1, len(time_range) - 1)],
|
||||
device=self.device,
|
||||
dtype=torch.long,
|
||||
)
|
||||
|
||||
if mask is not None:
|
||||
assert x0 is not None
|
||||
xdec_orig = self.q_sample(x0, ts) # TODO: deterministic forward pass?
|
||||
x_dec = xdec_orig * mask + (1.0 - mask) * x_dec
|
||||
|
||||
outs = self.p_sample(
|
||||
x_dec,
|
||||
cond,
|
||||
ts,
|
||||
index=index,
|
||||
use_original_steps=use_original_steps,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=unconditional_conditioning,
|
||||
t_next = ts_next,
|
||||
)
|
||||
|
||||
x_dec, pred_x0, e_t = outs
|
||||
if img_callback:
|
||||
img_callback(x_dec,i)
|
||||
|
||||
return x_dec
|
||||
|
||||
def get_initial_image(self,x_T,shape,timesteps=None):
|
||||
if x_T is None:
|
||||
return torch.randn(shape, device=self.device)
|
||||
else:
|
||||
return x_T
|
||||
|
||||
def p_sample(
|
||||
self,
|
||||
img,
|
||||
cond,
|
||||
ts,
|
||||
index,
|
||||
repeat_noise=False,
|
||||
use_original_steps=False,
|
||||
quantize_denoised=False,
|
||||
temperature=1.0,
|
||||
noise_dropout=0.0,
|
||||
score_corrector=None,
|
||||
corrector_kwargs=None,
|
||||
unconditional_guidance_scale=1.0,
|
||||
unconditional_conditioning=None,
|
||||
old_eps=None,
|
||||
t_next=None,
|
||||
steps=None,
|
||||
):
|
||||
raise NotImplementedError("p_sample() must be implemented in a descendent class")
|
||||
|
||||
def prepare_to_sample(self,t_enc,**kwargs):
|
||||
'''
|
||||
Hook that will be called right before the very first invocation of p_sample()
|
||||
to allow subclass to do additional initialization. t_enc corresponds to the actual
|
||||
number of steps that will be run, and may be less than total steps if img2img is
|
||||
active.
|
||||
'''
|
||||
pass
|
||||
|
||||
def get_timesteps(self,ddim_steps):
|
||||
'''
|
||||
The ddim and plms samplers work on timesteps. This method is called after
|
||||
ddim_timesteps are created in make_schedule(), and selects the portion of
|
||||
timesteps that will be used for sampling, depending on the t_enc in img2img.
|
||||
'''
|
||||
return self.ddim_timesteps[:ddim_steps]
|
||||
|
||||
def q_sample(self,x0,ts):
|
||||
'''
|
||||
Returns self.model.q_sample(x0,ts). Is overridden in the k* samplers to
|
||||
return self.model.inner_model.q_sample(x0,ts)
|
||||
'''
|
||||
return self.model.q_sample(x0,ts)
|
@ -324,6 +324,7 @@ def main_loop(gen, opt, infile):
|
||||
opt.last_operation='generate'
|
||||
gen.prompt2image(
|
||||
image_callback=image_writer,
|
||||
# step_callback=gen.write_intermediate_images(5,'./outputs/img-samples/intermediates'), #DEBUGGING ONLY - DELETE
|
||||
catch_interrupts=catch_ctrl_c,
|
||||
**vars(opt)
|
||||
)
|
||||
|
Loading…
Reference in New Issue
Block a user