mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Remove scheduler_args from ConditioningData structure.
This commit is contained in:
parent
cad3e5dbd7
commit
e7ec13f209
@ -1,5 +1,6 @@
|
||||
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
|
||||
|
||||
import inspect
|
||||
import math
|
||||
from contextlib import ExitStack
|
||||
from functools import singledispatchmethod
|
||||
@ -375,14 +376,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
guidance_rescale_multiplier=self.cfg_rescale_multiplier,
|
||||
)
|
||||
|
||||
conditioning_data = conditioning_data.add_scheduler_args_if_applicable(
|
||||
scheduler,
|
||||
# for ddim scheduler
|
||||
eta=0.0, # ddim_eta
|
||||
# for ancestral and sde schedulers
|
||||
# flip all bits to have noise different from initial
|
||||
generator=torch.Generator(device=unet.device).manual_seed(seed ^ 0xFFFFFFFF),
|
||||
)
|
||||
return conditioning_data
|
||||
|
||||
def create_pipeline(
|
||||
@ -642,7 +635,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
|
||||
# original idea by https://github.com/AmericanPresidentJimmyCarter
|
||||
# TODO: research more for second order schedulers timesteps
|
||||
def init_scheduler(self, scheduler, device, steps, denoising_start, denoising_end):
|
||||
def init_scheduler(self, scheduler, device, steps, denoising_start, denoising_end, seed: int):
|
||||
if scheduler.config.get("cpu_only", False):
|
||||
scheduler.set_timesteps(steps, device="cpu")
|
||||
timesteps = scheduler.timesteps.to(device=device)
|
||||
@ -669,7 +662,15 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
timesteps = timesteps[t_start_idx : t_start_idx + t_end_idx]
|
||||
num_inference_steps = len(timesteps) // scheduler.order
|
||||
|
||||
return num_inference_steps, timesteps, init_timestep
|
||||
scheduler_step_kwargs = {}
|
||||
scheduler_step_signature = inspect.signature(scheduler.step)
|
||||
if "generator" in scheduler_step_signature.parameters:
|
||||
# At some point, someone decided that schedulers that accept a generator should use the original seed with
|
||||
# all bits flipped. I don't know the original rationale for this, but now we must keep it like this for
|
||||
# reproducibility.
|
||||
scheduler_step_kwargs = {"generator": torch.Generator(device=device).manual_seed(seed ^ 0xFFFFFFFF)}
|
||||
|
||||
return num_inference_steps, timesteps, init_timestep, scheduler_step_kwargs
|
||||
|
||||
def prep_inpaint_mask(self, context, latents):
|
||||
if self.denoise_mask is None:
|
||||
@ -783,12 +784,13 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
exit_stack=exit_stack,
|
||||
)
|
||||
|
||||
num_inference_steps, timesteps, init_timestep = self.init_scheduler(
|
||||
num_inference_steps, timesteps, init_timestep, scheduler_step_kwargs = self.init_scheduler(
|
||||
scheduler,
|
||||
device=unet.device,
|
||||
steps=self.steps,
|
||||
denoising_start=self.denoising_start,
|
||||
denoising_end=self.denoising_end,
|
||||
seed=seed,
|
||||
)
|
||||
|
||||
result_latents = pipeline.latents_from_embeddings(
|
||||
@ -800,6 +802,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
mask=mask,
|
||||
masked_latents=masked_latents,
|
||||
num_inference_steps=num_inference_steps,
|
||||
scheduler_step_kwargs=scheduler_step_kwargs,
|
||||
conditioning_data=conditioning_data,
|
||||
control_data=controlnet_data,
|
||||
ip_adapter_data=ip_adapter_data,
|
||||
|
@ -309,6 +309,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
self,
|
||||
latents: torch.Tensor,
|
||||
num_inference_steps: int,
|
||||
scheduler_step_kwargs: dict[str, Any],
|
||||
conditioning_data: ConditioningData,
|
||||
*,
|
||||
noise: Optional[torch.Tensor],
|
||||
@ -368,6 +369,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
latents,
|
||||
timesteps,
|
||||
conditioning_data,
|
||||
scheduler_step_kwargs=scheduler_step_kwargs,
|
||||
additional_guidance=additional_guidance,
|
||||
control_data=control_data,
|
||||
ip_adapter_data=ip_adapter_data,
|
||||
@ -388,6 +390,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
latents: torch.Tensor,
|
||||
timesteps,
|
||||
conditioning_data: ConditioningData,
|
||||
scheduler_step_kwargs: dict[str, Any],
|
||||
*,
|
||||
additional_guidance: List[Callable] = None,
|
||||
control_data: List[ControlNetData] = None,
|
||||
@ -454,6 +457,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
conditioning_data,
|
||||
step_index=i,
|
||||
total_step_count=len(timesteps),
|
||||
scheduler_step_kwargs=scheduler_step_kwargs,
|
||||
additional_guidance=additional_guidance,
|
||||
control_data=control_data,
|
||||
ip_adapter_data=ip_adapter_data,
|
||||
@ -485,6 +489,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
conditioning_data: ConditioningData,
|
||||
step_index: int,
|
||||
total_step_count: int,
|
||||
scheduler_step_kwargs: dict[str, Any],
|
||||
additional_guidance: List[Callable] = None,
|
||||
control_data: List[ControlNetData] = None,
|
||||
ip_adapter_data: Optional[list[IPAdapterData]] = None,
|
||||
@ -584,7 +589,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
)
|
||||
|
||||
# compute the previous noisy sample x_t -> x_t-1
|
||||
step_output = self.scheduler.step(noise_pred, timestep, latents, **conditioning_data.scheduler_args)
|
||||
step_output = self.scheduler.step(noise_pred, timestep, latents, **scheduler_step_kwargs)
|
||||
|
||||
# TODO: issue to diffusers?
|
||||
# undo internal counter increment done by scheduler.step, so timestep can be resolved as before call
|
||||
|
@ -1,7 +1,5 @@
|
||||
import dataclasses
|
||||
import inspect
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Any, List, Optional, Union
|
||||
from dataclasses import dataclass
|
||||
from typing import List, Optional, Union
|
||||
|
||||
import torch
|
||||
|
||||
@ -73,19 +71,5 @@ class ConditioningData:
|
||||
ref [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf)
|
||||
"""
|
||||
guidance_rescale_multiplier: float = 0
|
||||
scheduler_args: dict[str, Any] = field(default_factory=dict)
|
||||
|
||||
ip_adapter_conditioning: Optional[list[IPAdapterConditioningInfo]] = None
|
||||
|
||||
def add_scheduler_args_if_applicable(self, scheduler, **kwargs):
|
||||
scheduler_args = dict(self.scheduler_args)
|
||||
step_method = inspect.signature(scheduler.step)
|
||||
for name, value in kwargs.items():
|
||||
try:
|
||||
step_method.bind_partial(**{name: value})
|
||||
except TypeError:
|
||||
# FIXME: don't silently discard arguments
|
||||
pass # debug("%s does not accept argument named %r", scheduler, name)
|
||||
else:
|
||||
scheduler_args[name] = value
|
||||
return dataclasses.replace(self, scheduler_args=scheduler_args)
|
||||
|
Loading…
Reference in New Issue
Block a user