chore(ui): lint

This commit is contained in:
psychedelicious 2024-05-08 16:01:34 +10:00 committed by Kent Keirsey
parent a3a6449786
commit e8023c44b0
2 changed files with 0 additions and 139 deletions

View File

@ -214,18 +214,12 @@ export const zControlNetConfigV2 = zControlAdapterBase.extend({
}); });
export type ControlNetConfigV2 = z.infer<typeof zControlNetConfigV2>; export type ControlNetConfigV2 = z.infer<typeof zControlNetConfigV2>;
export const isControlNetConfigV2 = (ca: ControlNetConfigV2 | T2IAdapterConfigV2): ca is ControlNetConfigV2 =>
zControlNetConfigV2.safeParse(ca).success;
export const zT2IAdapterConfigV2 = zControlAdapterBase.extend({ export const zT2IAdapterConfigV2 = zControlAdapterBase.extend({
type: z.literal('t2i_adapter'), type: z.literal('t2i_adapter'),
model: zModelIdentifierField.nullable(), model: zModelIdentifierField.nullable(),
}); });
export type T2IAdapterConfigV2 = z.infer<typeof zT2IAdapterConfigV2>; export type T2IAdapterConfigV2 = z.infer<typeof zT2IAdapterConfigV2>;
export const isT2IAdapterConfigV2 = (ca: ControlNetConfigV2 | T2IAdapterConfigV2): ca is T2IAdapterConfigV2 =>
zT2IAdapterConfigV2.safeParse(ca).success;
const zCLIPVisionModelV2 = z.enum(['ViT-H', 'ViT-G']); const zCLIPVisionModelV2 = z.enum(['ViT-H', 'ViT-G']);
export type CLIPVisionModelV2 = z.infer<typeof zCLIPVisionModelV2>; export type CLIPVisionModelV2 = z.infer<typeof zCLIPVisionModelV2>;
export const isCLIPVisionModelV2 = (v: unknown): v is CLIPVisionModelV2 => zCLIPVisionModelV2.safeParse(v).success; export const isCLIPVisionModelV2 = (v: unknown): v is CLIPVisionModelV2 => zCLIPVisionModelV2.safeParse(v).success;

View File

@ -1,133 +0,0 @@
import type { RootState } from 'app/store/store';
import { isInitialImageLayer } from 'features/controlLayers/store/controlLayersSlice';
import { upsertMetadata } from 'features/nodes/util/graph/metadata';
import type { ImageResizeInvocation, ImageToLatentsInvocation, NonNullableGraph } from 'services/api/types';
import { assert } from 'tsafe';
import { IMAGE_TO_LATENTS, NOISE, RESIZE } from './constants';
/**
* Returns true if an initial image was added, false if not.
*/
export const addInitialImageToLinearGraph = (
state: RootState,
graph: NonNullableGraph,
denoiseNodeId: string
): boolean => {
// Remove Existing UNet Connections
const { vaePrecision, model } = state.generation;
const { refinerModel, refinerStart } = state.sdxl;
const { width, height } = state.controlLayers.present.size;
const initialImageLayer = state.controlLayers.present.layers.find(isInitialImageLayer);
const initialImage = initialImageLayer?.isEnabled ? initialImageLayer?.image : null;
if (!initialImage || !initialImageLayer) {
return false;
}
const isSDXL = model?.base === 'sdxl';
const useRefinerStartEnd = isSDXL && Boolean(refinerModel);
const denoiseNode = graph.nodes[denoiseNodeId];
assert(denoiseNode?.type === 'denoise_latents', `Missing denoise node or incorrect type: ${denoiseNode?.type}`);
const { denoisingStrength } = initialImageLayer;
denoiseNode.denoising_start = useRefinerStartEnd
? Math.min(refinerStart, 1 - denoisingStrength)
: 1 - denoisingStrength;
denoiseNode.denoising_end = useRefinerStartEnd ? refinerStart : 1;
// We conditionally hook the image in depending on if a resize is needed
const i2lNode: ImageToLatentsInvocation = {
type: 'i2l',
id: IMAGE_TO_LATENTS,
is_intermediate: true,
use_cache: true,
fp32: vaePrecision === 'fp32',
};
graph.nodes[i2lNode.id] = i2lNode;
graph.edges.push({
source: {
node_id: IMAGE_TO_LATENTS,
field: 'latents',
},
destination: {
node_id: denoiseNode.id,
field: 'latents',
},
});
if (initialImage.width !== width || initialImage.height !== height) {
// The init image needs to be resized to the specified width and height before being passed to `IMAGE_TO_LATENTS`
// Create a resize node, explicitly setting its image
const resizeNode: ImageResizeInvocation = {
id: RESIZE,
type: 'img_resize',
image: {
image_name: initialImage.name,
},
is_intermediate: true,
width,
height,
};
graph.nodes[RESIZE] = resizeNode;
// The `RESIZE` node then passes its image to `IMAGE_TO_LATENTS`
graph.edges.push({
source: { node_id: RESIZE, field: 'image' },
destination: {
node_id: IMAGE_TO_LATENTS,
field: 'image',
},
});
// The `RESIZE` node also passes its width and height to `NOISE`
graph.edges.push({
source: { node_id: RESIZE, field: 'width' },
destination: {
node_id: NOISE,
field: 'width',
},
});
graph.edges.push({
source: { node_id: RESIZE, field: 'height' },
destination: {
node_id: NOISE,
field: 'height',
},
});
} else {
// We are not resizing, so we need to set the image on the `IMAGE_TO_LATENTS` node explicitly
i2lNode.image = {
image_name: initialImage.name,
};
// Pass the image's dimensions to the `NOISE` node
graph.edges.push({
source: { node_id: IMAGE_TO_LATENTS, field: 'width' },
destination: {
node_id: NOISE,
field: 'width',
},
});
graph.edges.push({
source: { node_id: IMAGE_TO_LATENTS, field: 'height' },
destination: {
node_id: NOISE,
field: 'height',
},
});
}
upsertMetadata(graph, {
generation_mode: isSDXL ? 'sdxl_img2img' : 'img2img',
strength: denoisingStrength,
init_image: initialImage.name,
});
return true;
};