mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
model installer frontend done - needs to be hooked to backend
This commit is contained in:
parent
f299f40763
commit
e87a2fe14b
@ -3,79 +3,27 @@
|
|||||||
# Before running stable-diffusion on an internet-isolated machine,
|
# Before running stable-diffusion on an internet-isolated machine,
|
||||||
# run this script from one with internet connectivity. The
|
# run this script from one with internet connectivity. The
|
||||||
# two machines must share a common .cache directory.
|
# two machines must share a common .cache directory.
|
||||||
#
|
|
||||||
# Coauthor: Kevin Turner http://github.com/keturn
|
|
||||||
#
|
|
||||||
import argparse
|
import argparse
|
||||||
import curses
|
import curses
|
||||||
import os
|
import os
|
||||||
import re
|
|
||||||
import shutil
|
|
||||||
import sys
|
import sys
|
||||||
import traceback
|
import traceback
|
||||||
import warnings
|
|
||||||
from argparse import Namespace
|
from argparse import Namespace
|
||||||
from math import ceil
|
from typing import List
|
||||||
from pathlib import Path
|
|
||||||
from tempfile import TemporaryFile
|
|
||||||
|
|
||||||
import npyscreen
|
import npyscreen
|
||||||
import requests
|
import torch
|
||||||
from diffusers import AutoencoderKL
|
|
||||||
from huggingface_hub import hf_hub_url
|
|
||||||
from npyscreen import widget
|
from npyscreen import widget
|
||||||
from omegaconf import OmegaConf
|
from omegaconf import OmegaConf
|
||||||
from omegaconf.dictconfig import DictConfig
|
|
||||||
from tqdm import tqdm
|
|
||||||
|
|
||||||
import invokeai.configs as configs
|
|
||||||
from ldm.invoke.devices import choose_precision, choose_torch_device
|
|
||||||
from ldm.invoke.generator.diffusers_pipeline import StableDiffusionGeneratorPipeline
|
|
||||||
from ldm.invoke.globals import Globals, global_cache_dir, global_config_dir
|
|
||||||
from ldm.invoke.config.widgets import MultiSelectColumns
|
|
||||||
|
|
||||||
warnings.filterwarnings("ignore")
|
|
||||||
import torch
|
|
||||||
|
|
||||||
# --------------------------globals-----------------------
|
|
||||||
Model_dir = "models"
|
|
||||||
Weights_dir = "ldm/stable-diffusion-v1/"
|
|
||||||
|
|
||||||
# the initial "configs" dir is now bundled in the `invokeai.configs` package
|
|
||||||
Dataset_path = Path(configs.__path__[0]) / "INITIAL_MODELS.yaml"
|
|
||||||
|
|
||||||
Default_config_file = Path(global_config_dir()) / "models.yaml"
|
|
||||||
SD_Configs = Path(global_config_dir()) / "stable-diffusion"
|
|
||||||
|
|
||||||
Datasets = OmegaConf.load(Dataset_path)
|
|
||||||
|
|
||||||
Config_preamble = """# This file describes the alternative machine learning models
|
|
||||||
# available to InvokeAI script.
|
|
||||||
#
|
|
||||||
# To add a new model, follow the examples below. Each
|
|
||||||
# model requires a model config file, a weights file,
|
|
||||||
# and the width and height of the images it
|
|
||||||
# was trained on.
|
|
||||||
"""
|
|
||||||
|
|
||||||
# -------------------------------------
|
|
||||||
def yes_or_no(prompt: str, default_yes=True):
|
|
||||||
default = "y" if default_yes else "n"
|
|
||||||
response = input(f"{prompt} [{default}] ") or default
|
|
||||||
if default_yes:
|
|
||||||
return response[0] not in ("n", "N")
|
|
||||||
else:
|
|
||||||
return response[0] in ("y", "Y")
|
|
||||||
|
|
||||||
# -------------------------------------
|
|
||||||
def get_root(root: str = None) -> str:
|
|
||||||
if root:
|
|
||||||
return root
|
|
||||||
elif os.environ.get("INVOKEAI_ROOT"):
|
|
||||||
return os.environ.get("INVOKEAI_ROOT")
|
|
||||||
else:
|
|
||||||
return Globals.root
|
|
||||||
|
|
||||||
|
from ..devices import choose_precision, choose_torch_device
|
||||||
|
from ..globals import Globals
|
||||||
|
from .widgets import MultiSelectColumns, TextBox
|
||||||
|
from .model_install_util import (Dataset_path, Default_config_file,
|
||||||
|
default_dataset, download_weight_datasets,
|
||||||
|
update_config_file, get_root
|
||||||
|
)
|
||||||
|
|
||||||
class addModelsForm(npyscreen.FormMultiPageAction):
|
class addModelsForm(npyscreen.FormMultiPageAction):
|
||||||
def __init__(self, parentApp, name):
|
def __init__(self, parentApp, name):
|
||||||
@ -98,38 +46,53 @@ class addModelsForm(npyscreen.FormMultiPageAction):
|
|||||||
for x in self.starter_model_list
|
for x in self.starter_model_list
|
||||||
if self.initial_models[x].get("recommended", False)
|
if self.initial_models[x].get("recommended", False)
|
||||||
]
|
]
|
||||||
previously_installed_models = sorted(
|
self.installed_models = sorted(
|
||||||
[
|
[
|
||||||
x for x in list(self.initial_models.keys()) if x in self.existing_models
|
x for x in list(self.initial_models.keys()) if x in self.existing_models
|
||||||
]
|
]
|
||||||
)
|
)
|
||||||
|
|
||||||
if len(previously_installed_models) > 0:
|
self.add_widget_intelligent(
|
||||||
title = self.add_widget_intelligent(
|
npyscreen.FixedText,
|
||||||
npyscreen.TitleText,
|
value='Use ctrl-N and ctrl-P to move to the <N>ext and <P>revious fields,',
|
||||||
name="Currently installed starter models. Uncheck to delete:",
|
editable=False,
|
||||||
|
)
|
||||||
|
self.add_widget_intelligent(
|
||||||
|
npyscreen.FixedText,
|
||||||
|
value='cursor arrows to make a selection, and space to toggle checkboxes.',
|
||||||
|
editable=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
if len(self.installed_models) > 0:
|
||||||
|
self.add_widget_intelligent(
|
||||||
|
npyscreen.TitleFixedText,
|
||||||
|
name="== INSTALLED STARTER MODELS ==",
|
||||||
|
value="Currently installed starter models. Uncheck to delete:",
|
||||||
|
begin_entry_at=2,
|
||||||
editable=False,
|
editable=False,
|
||||||
color="CONTROL",
|
color="CONTROL",
|
||||||
)
|
)
|
||||||
self.nextrely -= 1
|
columns = self._get_columns()
|
||||||
columns = 3
|
|
||||||
self.previously_installed_models = self.add_widget_intelligent(
|
self.previously_installed_models = self.add_widget_intelligent(
|
||||||
MultiSelectColumns,
|
MultiSelectColumns,
|
||||||
columns=columns,
|
columns=columns,
|
||||||
values=previously_installed_models,
|
values=self.installed_models,
|
||||||
value=[x for x in range(0,len(previously_installed_models))],
|
value=[x for x in range(0,len(self.installed_models))],
|
||||||
max_height=len(previously_installed_models)+1 // columns,
|
max_height=2+len(self.installed_models) // columns,
|
||||||
|
relx = 4,
|
||||||
slow_scroll=True,
|
slow_scroll=True,
|
||||||
scroll_exit = True,
|
scroll_exit = True,
|
||||||
)
|
)
|
||||||
|
|
||||||
self.add_widget_intelligent(
|
self.add_widget_intelligent(
|
||||||
npyscreen.TitleText,
|
npyscreen.TitleFixedText,
|
||||||
name="Select from a starter set of Stable Diffusion models from HuggingFace:",
|
name="== UNINSTALLED STARTER MODELS ==",
|
||||||
|
value="Select from a starter set of Stable Diffusion models from HuggingFace:",
|
||||||
|
begin_entry_at=2,
|
||||||
editable=False,
|
editable=False,
|
||||||
color="CONTROL",
|
color="CONTROL",
|
||||||
)
|
)
|
||||||
self.nextrely -= 2
|
self.nextrely -= 1
|
||||||
self.add_widget_intelligent(npyscreen.FixedText, value="", editable=False),
|
|
||||||
self.models_selected = self.add_widget_intelligent(
|
self.models_selected = self.add_widget_intelligent(
|
||||||
npyscreen.MultiSelect,
|
npyscreen.MultiSelect,
|
||||||
name="Install Starter Models",
|
name="Install Starter Models",
|
||||||
@ -140,39 +103,39 @@ class addModelsForm(npyscreen.FormMultiPageAction):
|
|||||||
if x in recommended_models
|
if x in recommended_models
|
||||||
],
|
],
|
||||||
max_height=len(starter_model_labels) + 1,
|
max_height=len(starter_model_labels) + 1,
|
||||||
|
relx = 4,
|
||||||
scroll_exit=True,
|
scroll_exit=True,
|
||||||
)
|
)
|
||||||
for line in [
|
self.add_widget_intelligent(
|
||||||
'Import checkpoint/safetensor models from the directory below.',
|
npyscreen.TitleFixedText,
|
||||||
'(Use <tab> to autocomplete)'
|
name='== MODEL IMPORT DIRECTORY ==',
|
||||||
]:
|
value='Import all models found in this directory (<tab> autocompletes):',
|
||||||
self.add_widget_intelligent(
|
begin_entry_at=2,
|
||||||
npyscreen.TitleText,
|
editable=False,
|
||||||
name=line,
|
color="CONTROL",
|
||||||
editable=False,
|
)
|
||||||
color="CONTROL",
|
|
||||||
)
|
|
||||||
self.nextrely -= 1
|
|
||||||
self.autoload_directory = self.add_widget_intelligent(
|
self.autoload_directory = self.add_widget_intelligent(
|
||||||
npyscreen.TitleFilename,
|
npyscreen.TitleFilename,
|
||||||
name='Directory:',
|
name='Directory:',
|
||||||
select_dir=True,
|
select_dir=True,
|
||||||
must_exist=True,
|
must_exist=True,
|
||||||
use_two_lines=False,
|
use_two_lines=False,
|
||||||
value=os.path.expanduser('~'+'/'),
|
relx = 4,
|
||||||
|
labelColor='DANGER',
|
||||||
scroll_exit=True,
|
scroll_exit=True,
|
||||||
)
|
)
|
||||||
self.autoload_onstartup = self.add_widget_intelligent(
|
self.autoscan_on_startup = self.add_widget_intelligent(
|
||||||
npyscreen.Checkbox,
|
npyscreen.Checkbox,
|
||||||
name='Scan this directory each time InvokeAI starts for new models to import.',
|
name='Scan this directory each time InvokeAI starts for new models to import.',
|
||||||
value=False,
|
value=False,
|
||||||
|
relx = 4,
|
||||||
scroll_exit=True,
|
scroll_exit=True,
|
||||||
)
|
)
|
||||||
self.nextrely += 1
|
self.nextrely += 1
|
||||||
for line in [
|
for line in [
|
||||||
'In the space below, you may cut and paste URLs, paths to .ckpt/.safetensor files',
|
'== INDIVIDUAL MODELS TO IMPORT ==',
|
||||||
'or HuggingFace diffusers repository names to import.',
|
'Enter list of URLs, paths models or HuggingFace diffusers repository IDs.',
|
||||||
'(Use control-V or shift-control-V to paste):'
|
'Use control-V or shift-control-V to paste:'
|
||||||
]:
|
]:
|
||||||
self.add_widget_intelligent(
|
self.add_widget_intelligent(
|
||||||
npyscreen.TitleText,
|
npyscreen.TitleText,
|
||||||
@ -181,27 +144,33 @@ class addModelsForm(npyscreen.FormMultiPageAction):
|
|||||||
color="CONTROL",
|
color="CONTROL",
|
||||||
)
|
)
|
||||||
self.nextrely -= 1
|
self.nextrely -= 1
|
||||||
self.model_names = self.add_widget_intelligent(
|
self.import_model_paths = self.add_widget_intelligent(
|
||||||
npyscreen.MultiLineEdit,
|
TextBox,
|
||||||
max_width=75,
|
|
||||||
max_height=8,
|
max_height=8,
|
||||||
scroll_exit=True,
|
scroll_exit=True,
|
||||||
relx=3
|
editable=True,
|
||||||
|
relx=4
|
||||||
)
|
)
|
||||||
self.autoload_onstartup = self.add_widget_intelligent(
|
self.nextrely += 2
|
||||||
|
self.convert_models = self.add_widget_intelligent(
|
||||||
npyscreen.TitleSelectOne,
|
npyscreen.TitleSelectOne,
|
||||||
name='Keep files in original format, or convert .ckpt/.safetensors into fast-loading diffusers models:',
|
name='== CONVERT IMPORTED MODELS INTO DIFFUSERS==',
|
||||||
values=['Original format','Convert to diffusers format'],
|
values=['Keep original format','Convert to diffusers'],
|
||||||
value=0,
|
value=0,
|
||||||
|
begin_entry_at=4,
|
||||||
scroll_exit=True,
|
scroll_exit=True,
|
||||||
)
|
)
|
||||||
self.find_next_editable()
|
|
||||||
# self.set_editing(self.models_selected)
|
def resize(self):
|
||||||
# self.display()
|
super().resize()
|
||||||
# self.models_selected.editing=True
|
self.models_selected.values = self._get_starter_model_labels()
|
||||||
# self.models_selected.edit()
|
# thought this would dynamically resize the widget, but no luck
|
||||||
|
# self.previously_installed_models.columns = self._get_columns()
|
||||||
|
# self.previously_installed_models.max_height = 2+len(self.installed_models) // self._get_columns()
|
||||||
|
# self.previously_installed_models.make_contained_widgets()
|
||||||
|
# self.previously_installed_models.display()
|
||||||
|
|
||||||
def _get_starter_model_labels(self):
|
def _get_starter_model_labels(self)->List[str]:
|
||||||
window_height, window_width = curses.initscr().getmaxyx()
|
window_height, window_width = curses.initscr().getmaxyx()
|
||||||
label_width = 25
|
label_width = 25
|
||||||
checkbox_width = 4
|
checkbox_width = 4
|
||||||
@ -217,17 +186,89 @@ class addModelsForm(npyscreen.FormMultiPageAction):
|
|||||||
f"%-{label_width}s %s" % (names[x], descriptions[x]) for x in range(0,len(im))
|
f"%-{label_width}s %s" % (names[x], descriptions[x]) for x in range(0,len(im))
|
||||||
]
|
]
|
||||||
|
|
||||||
|
def _get_columns(self)->int:
|
||||||
|
window_height, window_width = curses.initscr().getmaxyx()
|
||||||
|
return 4 if window_width > 240 else 3 if window_width>160 else 2 if window_width>80 else 1
|
||||||
|
|
||||||
def on_ok(self):
|
def on_ok(self):
|
||||||
self.parentApp.setNextForm(None)
|
self.parentApp.setNextForm('MONITOR_OUTPUT')
|
||||||
self.editing = False
|
self.editing = False
|
||||||
self.parentApp.selected_models = [
|
self.parentApp.user_cancelled = False
|
||||||
self.starter_model_list[x] for x in self.models_selected.value
|
self.marshall_arguments()
|
||||||
]
|
|
||||||
npyscreen.notify(f"Installing selected {self.parentApp.selected_models}")
|
|
||||||
|
|
||||||
def on_cancel(self):
|
def on_cancel(self):
|
||||||
self.parentApp.setNextForm(None)
|
self.parentApp.setNextForm(None)
|
||||||
self.parentApp.selected_models = None
|
self.ParentApp.user_cancelled = True
|
||||||
|
self.editing = False
|
||||||
|
|
||||||
|
def marshall_arguments(self):
|
||||||
|
'''
|
||||||
|
Assemble arguments and store as attributes of the application:
|
||||||
|
.starter_models: dict of model names to install from INITIAL_CONFIGURE.yaml
|
||||||
|
True => Install
|
||||||
|
False => Remove
|
||||||
|
.scan_directory: Path to a directory of models to scan and import
|
||||||
|
.autoscan_on_startup: True if invokeai should scan and import at startup time
|
||||||
|
.import_model_paths: list of URLs, repo_ids and file paths to import
|
||||||
|
.convert_to_diffusers: if True, convert legacy checkpoints into diffusers
|
||||||
|
'''
|
||||||
|
# starter models to install/remove
|
||||||
|
model_names = list(self.initial_models.keys())
|
||||||
|
starter_models = dict(map(lambda x: (model_names[x], True), self.models_selected.value))
|
||||||
|
if hasattr(self,'previously_installed_models'):
|
||||||
|
unchecked = [
|
||||||
|
self.previously_installed_models.values[x]
|
||||||
|
for x in range(0,len(self.previously_installed_models.values))
|
||||||
|
if x not in self.previously_installed_models.value
|
||||||
|
]
|
||||||
|
starter_models.update(
|
||||||
|
map(lambda x: (x, False), unchecked)
|
||||||
|
)
|
||||||
|
self.parentApp.starter_models=starter_models
|
||||||
|
|
||||||
|
# load directory and whether to scan on startup
|
||||||
|
self.parentApp.scan_directory = self.autoload_directory.value
|
||||||
|
self.parentApp.autoscan_on_startup = self.autoscan_on_startup.value
|
||||||
|
|
||||||
|
# URLs and the like
|
||||||
|
self.parentApp.import_model_paths = self.import_model_paths.value.split()
|
||||||
|
self.parentApp.convert_to_diffusers = self.convert_models.value != 0
|
||||||
|
|
||||||
|
class Log(object):
|
||||||
|
def __init__(self, writable):
|
||||||
|
self.writable = writable
|
||||||
|
|
||||||
|
def __enter__(self):
|
||||||
|
self._stdout = sys.stdout
|
||||||
|
sys.stdout = self.writable
|
||||||
|
return self
|
||||||
|
def __exit__(self, *args):
|
||||||
|
sys.stdout = self._stdout
|
||||||
|
|
||||||
|
class outputForm(npyscreen.ActionForm):
|
||||||
|
def create(self):
|
||||||
|
self.buffer = self.add_widget(
|
||||||
|
npyscreen.BufferPager,
|
||||||
|
editable=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
def write(self,string):
|
||||||
|
if string != '\n':
|
||||||
|
self.buffer.buffer([string])
|
||||||
|
|
||||||
|
def beforeEditing(self):
|
||||||
|
myapplication = self.parentApp
|
||||||
|
with Log(self):
|
||||||
|
print(f'DEBUG: these models will be removed: {[x for x in myapplication.starter_models if not myapplication.starter_models[x]]}')
|
||||||
|
print(f'DEBUG: these models will be installed: {[x for x in myapplication.starter_models if myapplication.starter_models[x]]}')
|
||||||
|
print(f'DEBUG: this directory will be scanned: {myapplication.scan_directory}')
|
||||||
|
print(f'DEBUG: scan at startup time? {myapplication.autoscan_on_startup}')
|
||||||
|
print(f'DEBUG: these things will be downloaded: {myapplication.import_model_paths}')
|
||||||
|
print(f'DEBUG: convert to diffusers? {myapplication.convert_to_diffusers}')
|
||||||
|
|
||||||
|
def on_ok(self):
|
||||||
|
self.buffer.buffer(['goodbye!'])
|
||||||
|
self.parentApp.setNextForm(None)
|
||||||
self.editing = False
|
self.editing = False
|
||||||
|
|
||||||
class AddModelApplication(npyscreen.NPSAppManaged):
|
class AddModelApplication(npyscreen.NPSAppManaged):
|
||||||
@ -242,316 +283,12 @@ class AddModelApplication(npyscreen.NPSAppManaged):
|
|||||||
addModelsForm,
|
addModelsForm,
|
||||||
name="Add/Remove Models",
|
name="Add/Remove Models",
|
||||||
)
|
)
|
||||||
|
self.output = self.addForm(
|
||||||
|
'MONITOR_OUTPUT',
|
||||||
# ---------------------------------------------
|
outputForm,
|
||||||
def recommended_datasets() -> dict:
|
name='Model Install Output'
|
||||||
datasets = dict()
|
|
||||||
for ds in Datasets.keys():
|
|
||||||
if Datasets[ds].get("recommended", False):
|
|
||||||
datasets[ds] = True
|
|
||||||
return datasets
|
|
||||||
|
|
||||||
|
|
||||||
# ---------------------------------------------
|
|
||||||
def default_dataset() -> dict:
|
|
||||||
datasets = dict()
|
|
||||||
for ds in Datasets.keys():
|
|
||||||
if Datasets[ds].get("default", False):
|
|
||||||
datasets[ds] = True
|
|
||||||
return datasets
|
|
||||||
|
|
||||||
|
|
||||||
# ---------------------------------------------
|
|
||||||
def all_datasets() -> dict:
|
|
||||||
datasets = dict()
|
|
||||||
for ds in Datasets.keys():
|
|
||||||
datasets[ds] = True
|
|
||||||
return datasets
|
|
||||||
|
|
||||||
|
|
||||||
# ---------------------------------------------
|
|
||||||
# look for legacy model.ckpt in models directory and offer to
|
|
||||||
# normalize its name
|
|
||||||
def migrate_models_ckpt():
|
|
||||||
model_path = os.path.join(Globals.root, Model_dir, Weights_dir)
|
|
||||||
if not os.path.exists(os.path.join(model_path, "model.ckpt")):
|
|
||||||
return
|
|
||||||
new_name = Datasets["stable-diffusion-1.4"]["file"]
|
|
||||||
print('You seem to have the Stable Diffusion v4.1 "model.ckpt" already installed.')
|
|
||||||
rename = yes_or_no(f'Ok to rename it to "{new_name}" for future reference?')
|
|
||||||
if rename:
|
|
||||||
print(f"model.ckpt => {new_name}")
|
|
||||||
os.replace(
|
|
||||||
os.path.join(model_path, "model.ckpt"), os.path.join(model_path, new_name)
|
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
# ---------------------------------------------
|
|
||||||
def download_weight_datasets(
|
|
||||||
models: dict, access_token: str, precision: str = "float32"
|
|
||||||
):
|
|
||||||
migrate_models_ckpt()
|
|
||||||
successful = dict()
|
|
||||||
for mod in models.keys():
|
|
||||||
print(f"Downloading {mod}:")
|
|
||||||
successful[mod] = _download_repo_or_file(
|
|
||||||
Datasets[mod], access_token, precision=precision
|
|
||||||
)
|
|
||||||
return successful
|
|
||||||
|
|
||||||
|
|
||||||
def _download_repo_or_file(
|
|
||||||
mconfig: DictConfig, access_token: str, precision: str = "float32"
|
|
||||||
) -> Path:
|
|
||||||
path = None
|
|
||||||
if mconfig["format"] == "ckpt":
|
|
||||||
path = _download_ckpt_weights(mconfig, access_token)
|
|
||||||
else:
|
|
||||||
path = _download_diffusion_weights(mconfig, access_token, precision=precision)
|
|
||||||
if "vae" in mconfig and "repo_id" in mconfig["vae"]:
|
|
||||||
_download_diffusion_weights(
|
|
||||||
mconfig["vae"], access_token, precision=precision
|
|
||||||
)
|
|
||||||
return path
|
|
||||||
|
|
||||||
|
|
||||||
def _download_ckpt_weights(mconfig: DictConfig, access_token: str) -> Path:
|
|
||||||
repo_id = mconfig["repo_id"]
|
|
||||||
filename = mconfig["file"]
|
|
||||||
cache_dir = os.path.join(Globals.root, Model_dir, Weights_dir)
|
|
||||||
return hf_download_with_resume(
|
|
||||||
repo_id=repo_id,
|
|
||||||
model_dir=cache_dir,
|
|
||||||
model_name=filename,
|
|
||||||
access_token=access_token,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
# ---------------------------------------------
|
|
||||||
def download_from_hf(
|
|
||||||
model_class: object, model_name: str, cache_subdir: Path = Path("hub"), **kwargs
|
|
||||||
):
|
|
||||||
print("", file=sys.stderr) # to prevent tqdm from overwriting
|
|
||||||
path = global_cache_dir(cache_subdir)
|
|
||||||
model = model_class.from_pretrained(
|
|
||||||
model_name,
|
|
||||||
cache_dir=path,
|
|
||||||
resume_download=True,
|
|
||||||
**kwargs,
|
|
||||||
)
|
|
||||||
model_name = "--".join(("models", *model_name.split("/")))
|
|
||||||
return path / model_name if model else None
|
|
||||||
|
|
||||||
|
|
||||||
def _download_diffusion_weights(
|
|
||||||
mconfig: DictConfig, access_token: str, precision: str = "float32"
|
|
||||||
):
|
|
||||||
repo_id = mconfig["repo_id"]
|
|
||||||
model_class = (
|
|
||||||
StableDiffusionGeneratorPipeline
|
|
||||||
if mconfig.get("format", None) == "diffusers"
|
|
||||||
else AutoencoderKL
|
|
||||||
)
|
|
||||||
extra_arg_list = [{"revision": "fp16"}, {}] if precision == "float16" else [{}]
|
|
||||||
path = None
|
|
||||||
for extra_args in extra_arg_list:
|
|
||||||
try:
|
|
||||||
path = download_from_hf(
|
|
||||||
model_class,
|
|
||||||
repo_id,
|
|
||||||
cache_subdir="diffusers",
|
|
||||||
safety_checker=None,
|
|
||||||
**extra_args,
|
|
||||||
)
|
|
||||||
except OSError as e:
|
|
||||||
if str(e).startswith("fp16 is not a valid"):
|
|
||||||
pass
|
|
||||||
else:
|
|
||||||
print(f"An unexpected error occurred while downloading the model: {e})")
|
|
||||||
if path:
|
|
||||||
break
|
|
||||||
return path
|
|
||||||
|
|
||||||
|
|
||||||
# ---------------------------------------------
|
|
||||||
def hf_download_with_resume(
|
|
||||||
repo_id: str, model_dir: str, model_name: str, access_token: str = None
|
|
||||||
) -> Path:
|
|
||||||
model_dest = Path(os.path.join(model_dir, model_name))
|
|
||||||
os.makedirs(model_dir, exist_ok=True)
|
|
||||||
|
|
||||||
url = hf_hub_url(repo_id, model_name)
|
|
||||||
|
|
||||||
header = {"Authorization": f"Bearer {access_token}"} if access_token else {}
|
|
||||||
open_mode = "wb"
|
|
||||||
exist_size = 0
|
|
||||||
|
|
||||||
if os.path.exists(model_dest):
|
|
||||||
exist_size = os.path.getsize(model_dest)
|
|
||||||
header["Range"] = f"bytes={exist_size}-"
|
|
||||||
open_mode = "ab"
|
|
||||||
|
|
||||||
resp = requests.get(url, headers=header, stream=True)
|
|
||||||
total = int(resp.headers.get("content-length", 0))
|
|
||||||
|
|
||||||
if (
|
|
||||||
resp.status_code == 416
|
|
||||||
): # "range not satisfiable", which means nothing to return
|
|
||||||
print(f"* {model_name}: complete file found. Skipping.")
|
|
||||||
return model_dest
|
|
||||||
elif resp.status_code != 200:
|
|
||||||
print(f"** An error occurred during downloading {model_name}: {resp.reason}")
|
|
||||||
elif exist_size > 0:
|
|
||||||
print(f"* {model_name}: partial file found. Resuming...")
|
|
||||||
else:
|
|
||||||
print(f"* {model_name}: Downloading...")
|
|
||||||
|
|
||||||
try:
|
|
||||||
if total < 2000:
|
|
||||||
print(f"*** ERROR DOWNLOADING {model_name}: {resp.text}")
|
|
||||||
return None
|
|
||||||
|
|
||||||
with open(model_dest, open_mode) as file, tqdm(
|
|
||||||
desc=model_name,
|
|
||||||
initial=exist_size,
|
|
||||||
total=total + exist_size,
|
|
||||||
unit="iB",
|
|
||||||
unit_scale=True,
|
|
||||||
unit_divisor=1000,
|
|
||||||
) as bar:
|
|
||||||
for data in resp.iter_content(chunk_size=1024):
|
|
||||||
size = file.write(data)
|
|
||||||
bar.update(size)
|
|
||||||
except Exception as e:
|
|
||||||
print(f"An error occurred while downloading {model_name}: {str(e)}")
|
|
||||||
return None
|
|
||||||
return model_dest
|
|
||||||
|
|
||||||
|
|
||||||
# ---------------------------------------------
|
|
||||||
def update_config_file(successfully_downloaded: dict, opt: dict):
|
|
||||||
config_file = (
|
|
||||||
Path(opt.config_file) if opt.config_file is not None else Default_config_file
|
|
||||||
)
|
|
||||||
|
|
||||||
# In some cases (incomplete setup, etc), the default configs directory might be missing.
|
|
||||||
# Create it if it doesn't exist.
|
|
||||||
# this check is ignored if opt.config_file is specified - user is assumed to know what they
|
|
||||||
# are doing if they are passing a custom config file from elsewhere.
|
|
||||||
if config_file is Default_config_file and not config_file.parent.exists():
|
|
||||||
configs_src = Dataset_path.parent
|
|
||||||
configs_dest = Default_config_file.parent
|
|
||||||
shutil.copytree(configs_src, configs_dest, dirs_exist_ok=True)
|
|
||||||
|
|
||||||
yaml = new_config_file_contents(successfully_downloaded, config_file, opt)
|
|
||||||
|
|
||||||
try:
|
|
||||||
backup = None
|
|
||||||
if os.path.exists(config_file):
|
|
||||||
print(
|
|
||||||
f"** {config_file.name} exists. Renaming to {config_file.stem}.yaml.orig"
|
|
||||||
)
|
|
||||||
backup = config_file.with_suffix(".yaml.orig")
|
|
||||||
## Ugh. Windows is unable to overwrite an existing backup file, raises a WinError 183
|
|
||||||
if sys.platform == "win32" and backup.is_file():
|
|
||||||
backup.unlink()
|
|
||||||
config_file.rename(backup)
|
|
||||||
|
|
||||||
with TemporaryFile() as tmp:
|
|
||||||
tmp.write(Config_preamble.encode())
|
|
||||||
tmp.write(yaml.encode())
|
|
||||||
|
|
||||||
with open(str(config_file.expanduser().resolve()), "wb") as new_config:
|
|
||||||
tmp.seek(0)
|
|
||||||
new_config.write(tmp.read())
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
print(f"**Error creating config file {config_file}: {str(e)} **")
|
|
||||||
if backup is not None:
|
|
||||||
print("restoring previous config file")
|
|
||||||
## workaround, for WinError 183, see above
|
|
||||||
if sys.platform == "win32" and config_file.is_file():
|
|
||||||
config_file.unlink()
|
|
||||||
backup.rename(config_file)
|
|
||||||
return
|
|
||||||
|
|
||||||
print(f"Successfully created new configuration file {config_file}")
|
|
||||||
|
|
||||||
|
|
||||||
# ---------------------------------------------
|
|
||||||
def new_config_file_contents(
|
|
||||||
successfully_downloaded: dict, config_file: Path, opt: dict
|
|
||||||
) -> str:
|
|
||||||
if config_file.exists():
|
|
||||||
conf = OmegaConf.load(str(config_file.expanduser().resolve()))
|
|
||||||
else:
|
|
||||||
conf = OmegaConf.create()
|
|
||||||
|
|
||||||
default_selected = None
|
|
||||||
for model in successfully_downloaded:
|
|
||||||
# a bit hacky - what we are doing here is seeing whether a checkpoint
|
|
||||||
# version of the model was previously defined, and whether the current
|
|
||||||
# model is a diffusers (indicated with a path)
|
|
||||||
if conf.get(model) and Path(successfully_downloaded[model]).is_dir():
|
|
||||||
offer_to_delete_weights(model, conf[model], opt.yes_to_all)
|
|
||||||
|
|
||||||
stanza = {}
|
|
||||||
mod = Datasets[model]
|
|
||||||
stanza["description"] = mod["description"]
|
|
||||||
stanza["repo_id"] = mod["repo_id"]
|
|
||||||
stanza["format"] = mod["format"]
|
|
||||||
# diffusers don't need width and height (probably .ckpt doesn't either)
|
|
||||||
# so we no longer require these in INITIAL_MODELS.yaml
|
|
||||||
if "width" in mod:
|
|
||||||
stanza["width"] = mod["width"]
|
|
||||||
if "height" in mod:
|
|
||||||
stanza["height"] = mod["height"]
|
|
||||||
if "file" in mod:
|
|
||||||
stanza["weights"] = os.path.relpath(
|
|
||||||
successfully_downloaded[model], start=Globals.root
|
|
||||||
)
|
|
||||||
stanza["config"] = os.path.normpath(os.path.join(SD_Configs, mod["config"]))
|
|
||||||
if "vae" in mod:
|
|
||||||
if "file" in mod["vae"]:
|
|
||||||
stanza["vae"] = os.path.normpath(
|
|
||||||
os.path.join(Model_dir, Weights_dir, mod["vae"]["file"])
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
stanza["vae"] = mod["vae"]
|
|
||||||
if mod.get("default", False):
|
|
||||||
stanza["default"] = True
|
|
||||||
default_selected = True
|
|
||||||
|
|
||||||
conf[model] = stanza
|
|
||||||
|
|
||||||
# if no default model was chosen, then we select the first
|
|
||||||
# one in the list
|
|
||||||
if not default_selected:
|
|
||||||
conf[list(successfully_downloaded.keys())[0]]["default"] = True
|
|
||||||
|
|
||||||
return OmegaConf.to_yaml(conf)
|
|
||||||
|
|
||||||
|
|
||||||
# ---------------------------------------------
|
|
||||||
def offer_to_delete_weights(model_name: str, conf_stanza: dict, yes_to_all: bool):
|
|
||||||
if not (weights := conf_stanza.get("weights")):
|
|
||||||
return
|
|
||||||
if re.match("/VAE/", conf_stanza.get("config")):
|
|
||||||
return
|
|
||||||
if yes_to_all or yes_or_no(
|
|
||||||
f"\n** The checkpoint version of {model_name} is superseded by the diffusers version. Delete the original file {weights}?",
|
|
||||||
default_yes=False,
|
|
||||||
):
|
|
||||||
weights = Path(weights)
|
|
||||||
if not weights.is_absolute():
|
|
||||||
weights = Path(Globals.root) / weights
|
|
||||||
try:
|
|
||||||
weights.unlink()
|
|
||||||
except OSError as e:
|
|
||||||
print(str(e))
|
|
||||||
|
|
||||||
|
|
||||||
# --------------------------------------------------------
|
# --------------------------------------------------------
|
||||||
def select_and_download_models(opt: Namespace):
|
def select_and_download_models(opt: Namespace):
|
||||||
if opt.default_only:
|
if opt.default_only:
|
||||||
@ -559,7 +296,14 @@ def select_and_download_models(opt: Namespace):
|
|||||||
else:
|
else:
|
||||||
myapplication = AddModelApplication()
|
myapplication = AddModelApplication()
|
||||||
myapplication.run()
|
myapplication.run()
|
||||||
models_to_download = dict(map(lambda x: (x, True), myapplication.selected_models)) if myapplication.selected_models else None
|
if not myapplication.user_cancelled:
|
||||||
|
print(f'DEBUG: these models will be removed: {[x for x in myapplication.starter_models if not myapplication.starter_models[x]]}')
|
||||||
|
print(f'DEBUG: these models will be installed: {[x for x in myapplication.starter_models if myapplication.starter_models[x]]}')
|
||||||
|
print(f'DEBUG: this directory will be scanned: {myapplication.scan_directory}')
|
||||||
|
print(f'DEBUG: scan at startup time? {myapplication.autoscan_on_startup}')
|
||||||
|
print(f'DEBUG: these things will be downloaded: {myapplication.import_model_paths}')
|
||||||
|
print(f'DEBUG: convert to diffusers? {myapplication.convert_to_diffusers}')
|
||||||
|
sys.exit(0)
|
||||||
|
|
||||||
if not models_to_download:
|
if not models_to_download:
|
||||||
print(
|
print(
|
||||||
@ -649,6 +393,7 @@ def main():
|
|||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
print(f"** A layout error has occurred: {str(e)}")
|
print(f"** A layout error has occurred: {str(e)}")
|
||||||
|
traceback.print_exc()
|
||||||
sys.exit(-1)
|
sys.exit(-1)
|
||||||
|
|
||||||
# -------------------------------------
|
# -------------------------------------
|
||||||
|
378
ldm/invoke/config/model_install_util.py
Normal file
378
ldm/invoke/config/model_install_util.py
Normal file
@ -0,0 +1,378 @@
|
|||||||
|
'''
|
||||||
|
Utility (backend) functions used by model_install.py
|
||||||
|
'''
|
||||||
|
import argparse
|
||||||
|
import os
|
||||||
|
import re
|
||||||
|
import shutil
|
||||||
|
import sys
|
||||||
|
import traceback
|
||||||
|
import warnings
|
||||||
|
from argparse import Namespace
|
||||||
|
from math import ceil
|
||||||
|
from pathlib import Path
|
||||||
|
from tempfile import TemporaryFile
|
||||||
|
|
||||||
|
import npyscreen
|
||||||
|
import requests
|
||||||
|
from diffusers import AutoencoderKL
|
||||||
|
from huggingface_hub import hf_hub_url
|
||||||
|
from omegaconf import OmegaConf
|
||||||
|
from omegaconf.dictconfig import DictConfig
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
import invokeai.configs as configs
|
||||||
|
from ldm.invoke.devices import choose_precision, choose_torch_device
|
||||||
|
from ldm.invoke.generator.diffusers_pipeline import StableDiffusionGeneratorPipeline
|
||||||
|
from ldm.invoke.globals import Globals, global_cache_dir, global_config_dir
|
||||||
|
from ldm.invoke.config.widgets import MultiSelectColumns
|
||||||
|
|
||||||
|
warnings.filterwarnings("ignore")
|
||||||
|
import torch
|
||||||
|
|
||||||
|
# --------------------------globals-----------------------
|
||||||
|
Model_dir = "models"
|
||||||
|
Weights_dir = "ldm/stable-diffusion-v1/"
|
||||||
|
|
||||||
|
# the initial "configs" dir is now bundled in the `invokeai.configs` package
|
||||||
|
Dataset_path = Path(configs.__path__[0]) / "INITIAL_MODELS.yaml"
|
||||||
|
|
||||||
|
Default_config_file = Path(global_config_dir()) / "models.yaml"
|
||||||
|
SD_Configs = Path(global_config_dir()) / "stable-diffusion"
|
||||||
|
|
||||||
|
Datasets = OmegaConf.load(Dataset_path)
|
||||||
|
|
||||||
|
Config_preamble = """# This file describes the alternative machine learning models
|
||||||
|
# available to InvokeAI script.
|
||||||
|
#
|
||||||
|
# To add a new model, follow the examples below. Each
|
||||||
|
# model requires a model config file, a weights file,
|
||||||
|
# and the width and height of the images it
|
||||||
|
# was trained on.
|
||||||
|
"""
|
||||||
|
|
||||||
|
# -------------------------------------
|
||||||
|
def yes_or_no(prompt: str, default_yes=True):
|
||||||
|
default = "y" if default_yes else "n"
|
||||||
|
response = input(f"{prompt} [{default}] ") or default
|
||||||
|
if default_yes:
|
||||||
|
return response[0] not in ("n", "N")
|
||||||
|
else:
|
||||||
|
return response[0] in ("y", "Y")
|
||||||
|
|
||||||
|
# -------------------------------------
|
||||||
|
def get_root(root: str = None) -> str:
|
||||||
|
if root:
|
||||||
|
return root
|
||||||
|
elif os.environ.get("INVOKEAI_ROOT"):
|
||||||
|
return os.environ.get("INVOKEAI_ROOT")
|
||||||
|
else:
|
||||||
|
return Globals.root
|
||||||
|
|
||||||
|
# ---------------------------------------------
|
||||||
|
def recommended_datasets() -> dict:
|
||||||
|
datasets = dict()
|
||||||
|
for ds in Datasets.keys():
|
||||||
|
if Datasets[ds].get("recommended", False):
|
||||||
|
datasets[ds] = True
|
||||||
|
return datasets
|
||||||
|
|
||||||
|
|
||||||
|
# ---------------------------------------------
|
||||||
|
def default_dataset() -> dict:
|
||||||
|
datasets = dict()
|
||||||
|
for ds in Datasets.keys():
|
||||||
|
if Datasets[ds].get("default", False):
|
||||||
|
datasets[ds] = True
|
||||||
|
return datasets
|
||||||
|
|
||||||
|
|
||||||
|
# ---------------------------------------------
|
||||||
|
def all_datasets() -> dict:
|
||||||
|
datasets = dict()
|
||||||
|
for ds in Datasets.keys():
|
||||||
|
datasets[ds] = True
|
||||||
|
return datasets
|
||||||
|
|
||||||
|
|
||||||
|
# ---------------------------------------------
|
||||||
|
# look for legacy model.ckpt in models directory and offer to
|
||||||
|
# normalize its name
|
||||||
|
def migrate_models_ckpt():
|
||||||
|
model_path = os.path.join(Globals.root, Model_dir, Weights_dir)
|
||||||
|
if not os.path.exists(os.path.join(model_path, "model.ckpt")):
|
||||||
|
return
|
||||||
|
new_name = Datasets["stable-diffusion-1.4"]["file"]
|
||||||
|
print('You seem to have the Stable Diffusion v4.1 "model.ckpt" already installed.')
|
||||||
|
rename = yes_or_no(f'Ok to rename it to "{new_name}" for future reference?')
|
||||||
|
if rename:
|
||||||
|
print(f"model.ckpt => {new_name}")
|
||||||
|
os.replace(
|
||||||
|
os.path.join(model_path, "model.ckpt"), os.path.join(model_path, new_name)
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
# ---------------------------------------------
|
||||||
|
def download_weight_datasets(
|
||||||
|
models: dict, access_token: str, precision: str = "float32"
|
||||||
|
):
|
||||||
|
migrate_models_ckpt()
|
||||||
|
successful = dict()
|
||||||
|
for mod in models.keys():
|
||||||
|
print(f"Downloading {mod}:")
|
||||||
|
successful[mod] = _download_repo_or_file(
|
||||||
|
Datasets[mod], access_token, precision=precision
|
||||||
|
)
|
||||||
|
return successful
|
||||||
|
|
||||||
|
|
||||||
|
def _download_repo_or_file(
|
||||||
|
mconfig: DictConfig, access_token: str, precision: str = "float32"
|
||||||
|
) -> Path:
|
||||||
|
path = None
|
||||||
|
if mconfig["format"] == "ckpt":
|
||||||
|
path = _download_ckpt_weights(mconfig, access_token)
|
||||||
|
else:
|
||||||
|
path = _download_diffusion_weights(mconfig, access_token, precision=precision)
|
||||||
|
if "vae" in mconfig and "repo_id" in mconfig["vae"]:
|
||||||
|
_download_diffusion_weights(
|
||||||
|
mconfig["vae"], access_token, precision=precision
|
||||||
|
)
|
||||||
|
return path
|
||||||
|
|
||||||
|
|
||||||
|
def _download_ckpt_weights(mconfig: DictConfig, access_token: str) -> Path:
|
||||||
|
repo_id = mconfig["repo_id"]
|
||||||
|
filename = mconfig["file"]
|
||||||
|
cache_dir = os.path.join(Globals.root, Model_dir, Weights_dir)
|
||||||
|
return hf_download_with_resume(
|
||||||
|
repo_id=repo_id,
|
||||||
|
model_dir=cache_dir,
|
||||||
|
model_name=filename,
|
||||||
|
access_token=access_token,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
# ---------------------------------------------
|
||||||
|
def download_from_hf(
|
||||||
|
model_class: object, model_name: str, cache_subdir: Path = Path("hub"), **kwargs
|
||||||
|
):
|
||||||
|
print("", file=sys.stderr) # to prevent tqdm from overwriting
|
||||||
|
path = global_cache_dir(cache_subdir)
|
||||||
|
model = model_class.from_pretrained(
|
||||||
|
model_name,
|
||||||
|
cache_dir=path,
|
||||||
|
resume_download=True,
|
||||||
|
**kwargs,
|
||||||
|
)
|
||||||
|
model_name = "--".join(("models", *model_name.split("/")))
|
||||||
|
return path / model_name if model else None
|
||||||
|
|
||||||
|
|
||||||
|
def _download_diffusion_weights(
|
||||||
|
mconfig: DictConfig, access_token: str, precision: str = "float32"
|
||||||
|
):
|
||||||
|
repo_id = mconfig["repo_id"]
|
||||||
|
model_class = (
|
||||||
|
StableDiffusionGeneratorPipeline
|
||||||
|
if mconfig.get("format", None) == "diffusers"
|
||||||
|
else AutoencoderKL
|
||||||
|
)
|
||||||
|
extra_arg_list = [{"revision": "fp16"}, {}] if precision == "float16" else [{}]
|
||||||
|
path = None
|
||||||
|
for extra_args in extra_arg_list:
|
||||||
|
try:
|
||||||
|
path = download_from_hf(
|
||||||
|
model_class,
|
||||||
|
repo_id,
|
||||||
|
cache_subdir="diffusers",
|
||||||
|
safety_checker=None,
|
||||||
|
**extra_args,
|
||||||
|
)
|
||||||
|
except OSError as e:
|
||||||
|
if str(e).startswith("fp16 is not a valid"):
|
||||||
|
pass
|
||||||
|
else:
|
||||||
|
print(f"An unexpected error occurred while downloading the model: {e})")
|
||||||
|
if path:
|
||||||
|
break
|
||||||
|
return path
|
||||||
|
|
||||||
|
|
||||||
|
# ---------------------------------------------
|
||||||
|
def hf_download_with_resume(
|
||||||
|
repo_id: str, model_dir: str, model_name: str, access_token: str = None
|
||||||
|
) -> Path:
|
||||||
|
model_dest = Path(os.path.join(model_dir, model_name))
|
||||||
|
os.makedirs(model_dir, exist_ok=True)
|
||||||
|
|
||||||
|
url = hf_hub_url(repo_id, model_name)
|
||||||
|
|
||||||
|
header = {"Authorization": f"Bearer {access_token}"} if access_token else {}
|
||||||
|
open_mode = "wb"
|
||||||
|
exist_size = 0
|
||||||
|
|
||||||
|
if os.path.exists(model_dest):
|
||||||
|
exist_size = os.path.getsize(model_dest)
|
||||||
|
header["Range"] = f"bytes={exist_size}-"
|
||||||
|
open_mode = "ab"
|
||||||
|
|
||||||
|
resp = requests.get(url, headers=header, stream=True)
|
||||||
|
total = int(resp.headers.get("content-length", 0))
|
||||||
|
|
||||||
|
if (
|
||||||
|
resp.status_code == 416
|
||||||
|
): # "range not satisfiable", which means nothing to return
|
||||||
|
print(f"* {model_name}: complete file found. Skipping.")
|
||||||
|
return model_dest
|
||||||
|
elif resp.status_code != 200:
|
||||||
|
print(f"** An error occurred during downloading {model_name}: {resp.reason}")
|
||||||
|
elif exist_size > 0:
|
||||||
|
print(f"* {model_name}: partial file found. Resuming...")
|
||||||
|
else:
|
||||||
|
print(f"* {model_name}: Downloading...")
|
||||||
|
|
||||||
|
try:
|
||||||
|
if total < 2000:
|
||||||
|
print(f"*** ERROR DOWNLOADING {model_name}: {resp.text}")
|
||||||
|
return None
|
||||||
|
|
||||||
|
with open(model_dest, open_mode) as file, tqdm(
|
||||||
|
desc=model_name,
|
||||||
|
initial=exist_size,
|
||||||
|
total=total + exist_size,
|
||||||
|
unit="iB",
|
||||||
|
unit_scale=True,
|
||||||
|
unit_divisor=1000,
|
||||||
|
) as bar:
|
||||||
|
for data in resp.iter_content(chunk_size=1024):
|
||||||
|
size = file.write(data)
|
||||||
|
bar.update(size)
|
||||||
|
except Exception as e:
|
||||||
|
print(f"An error occurred while downloading {model_name}: {str(e)}")
|
||||||
|
return None
|
||||||
|
return model_dest
|
||||||
|
|
||||||
|
|
||||||
|
# ---------------------------------------------
|
||||||
|
def update_config_file(successfully_downloaded: dict, opt: dict):
|
||||||
|
config_file = (
|
||||||
|
Path(opt.config_file) if opt.config_file is not None else Default_config_file
|
||||||
|
)
|
||||||
|
|
||||||
|
# In some cases (incomplete setup, etc), the default configs directory might be missing.
|
||||||
|
# Create it if it doesn't exist.
|
||||||
|
# this check is ignored if opt.config_file is specified - user is assumed to know what they
|
||||||
|
# are doing if they are passing a custom config file from elsewhere.
|
||||||
|
if config_file is Default_config_file and not config_file.parent.exists():
|
||||||
|
configs_src = Dataset_path.parent
|
||||||
|
configs_dest = Default_config_file.parent
|
||||||
|
shutil.copytree(configs_src, configs_dest, dirs_exist_ok=True)
|
||||||
|
|
||||||
|
yaml = new_config_file_contents(successfully_downloaded, config_file, opt)
|
||||||
|
|
||||||
|
try:
|
||||||
|
backup = None
|
||||||
|
if os.path.exists(config_file):
|
||||||
|
print(
|
||||||
|
f"** {config_file.name} exists. Renaming to {config_file.stem}.yaml.orig"
|
||||||
|
)
|
||||||
|
backup = config_file.with_suffix(".yaml.orig")
|
||||||
|
## Ugh. Windows is unable to overwrite an existing backup file, raises a WinError 183
|
||||||
|
if sys.platform == "win32" and backup.is_file():
|
||||||
|
backup.unlink()
|
||||||
|
config_file.rename(backup)
|
||||||
|
|
||||||
|
with TemporaryFile() as tmp:
|
||||||
|
tmp.write(Config_preamble.encode())
|
||||||
|
tmp.write(yaml.encode())
|
||||||
|
|
||||||
|
with open(str(config_file.expanduser().resolve()), "wb") as new_config:
|
||||||
|
tmp.seek(0)
|
||||||
|
new_config.write(tmp.read())
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f"**Error creating config file {config_file}: {str(e)} **")
|
||||||
|
if backup is not None:
|
||||||
|
print("restoring previous config file")
|
||||||
|
## workaround, for WinError 183, see above
|
||||||
|
if sys.platform == "win32" and config_file.is_file():
|
||||||
|
config_file.unlink()
|
||||||
|
backup.rename(config_file)
|
||||||
|
return
|
||||||
|
|
||||||
|
print(f"Successfully created new configuration file {config_file}")
|
||||||
|
|
||||||
|
|
||||||
|
# ---------------------------------------------
|
||||||
|
def new_config_file_contents(
|
||||||
|
successfully_downloaded: dict, config_file: Path, opt: dict
|
||||||
|
) -> str:
|
||||||
|
if config_file.exists():
|
||||||
|
conf = OmegaConf.load(str(config_file.expanduser().resolve()))
|
||||||
|
else:
|
||||||
|
conf = OmegaConf.create()
|
||||||
|
|
||||||
|
default_selected = None
|
||||||
|
for model in successfully_downloaded:
|
||||||
|
# a bit hacky - what we are doing here is seeing whether a checkpoint
|
||||||
|
# version of the model was previously defined, and whether the current
|
||||||
|
# model is a diffusers (indicated with a path)
|
||||||
|
if conf.get(model) and Path(successfully_downloaded[model]).is_dir():
|
||||||
|
offer_to_delete_weights(model, conf[model], opt.yes_to_all)
|
||||||
|
|
||||||
|
stanza = {}
|
||||||
|
mod = Datasets[model]
|
||||||
|
stanza["description"] = mod["description"]
|
||||||
|
stanza["repo_id"] = mod["repo_id"]
|
||||||
|
stanza["format"] = mod["format"]
|
||||||
|
# diffusers don't need width and height (probably .ckpt doesn't either)
|
||||||
|
# so we no longer require these in INITIAL_MODELS.yaml
|
||||||
|
if "width" in mod:
|
||||||
|
stanza["width"] = mod["width"]
|
||||||
|
if "height" in mod:
|
||||||
|
stanza["height"] = mod["height"]
|
||||||
|
if "file" in mod:
|
||||||
|
stanza["weights"] = os.path.relpath(
|
||||||
|
successfully_downloaded[model], start=Globals.root
|
||||||
|
)
|
||||||
|
stanza["config"] = os.path.normpath(os.path.join(SD_Configs, mod["config"]))
|
||||||
|
if "vae" in mod:
|
||||||
|
if "file" in mod["vae"]:
|
||||||
|
stanza["vae"] = os.path.normpath(
|
||||||
|
os.path.join(Model_dir, Weights_dir, mod["vae"]["file"])
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
stanza["vae"] = mod["vae"]
|
||||||
|
if mod.get("default", False):
|
||||||
|
stanza["default"] = True
|
||||||
|
default_selected = True
|
||||||
|
|
||||||
|
conf[model] = stanza
|
||||||
|
|
||||||
|
# if no default model was chosen, then we select the first
|
||||||
|
# one in the list
|
||||||
|
if not default_selected:
|
||||||
|
conf[list(successfully_downloaded.keys())[0]]["default"] = True
|
||||||
|
|
||||||
|
return OmegaConf.to_yaml(conf)
|
||||||
|
|
||||||
|
|
||||||
|
# ---------------------------------------------
|
||||||
|
def offer_to_delete_weights(model_name: str, conf_stanza: dict, yes_to_all: bool):
|
||||||
|
if not (weights := conf_stanza.get("weights")):
|
||||||
|
return
|
||||||
|
if re.match("/VAE/", conf_stanza.get("config")):
|
||||||
|
return
|
||||||
|
if yes_to_all or yes_or_no(
|
||||||
|
f"\n** The checkpoint version of {model_name} is superseded by the diffusers version. Delete the original file {weights}?",
|
||||||
|
default_yes=False,
|
||||||
|
):
|
||||||
|
weights = Path(weights)
|
||||||
|
if not weights.is_absolute():
|
||||||
|
weights = Path(Globals.root) / weights
|
||||||
|
try:
|
||||||
|
weights.unlink()
|
||||||
|
except OSError as e:
|
||||||
|
print(str(e))
|
||||||
|
|
@ -68,3 +68,30 @@ class MultiSelectColumns(npyscreen.MultiSelect):
|
|||||||
|
|
||||||
def h_cursor_line_right(self,ch):
|
def h_cursor_line_right(self,ch):
|
||||||
super().h_cursor_line_down(ch)
|
super().h_cursor_line_down(ch)
|
||||||
|
|
||||||
|
class TextBox(npyscreen.MultiLineEdit):
|
||||||
|
def update(self, clear=True):
|
||||||
|
if clear: self.clear()
|
||||||
|
|
||||||
|
HEIGHT = self.height
|
||||||
|
WIDTH = self.width
|
||||||
|
# draw box.
|
||||||
|
self.parent.curses_pad.hline(self.rely, self.relx, curses.ACS_HLINE, WIDTH)
|
||||||
|
self.parent.curses_pad.hline(self.rely + HEIGHT, self.relx, curses.ACS_HLINE, WIDTH)
|
||||||
|
self.parent.curses_pad.vline(self.rely, self.relx, curses.ACS_VLINE, self.height)
|
||||||
|
self.parent.curses_pad.vline(self.rely, self.relx+WIDTH, curses.ACS_VLINE, HEIGHT)
|
||||||
|
|
||||||
|
# draw corners
|
||||||
|
self.parent.curses_pad.addch(self.rely, self.relx, curses.ACS_ULCORNER, )
|
||||||
|
self.parent.curses_pad.addch(self.rely, self.relx+WIDTH, curses.ACS_URCORNER, )
|
||||||
|
self.parent.curses_pad.addch(self.rely+HEIGHT, self.relx, curses.ACS_LLCORNER, )
|
||||||
|
self.parent.curses_pad.addch(self.rely+HEIGHT, self.relx+WIDTH, curses.ACS_LRCORNER, )
|
||||||
|
|
||||||
|
# fool our superclass into thinking drawing area is smaller - this is really hacky but it seems to work
|
||||||
|
(relx,rely,height,width) = (self.relx, self.rely, self.height, self.width)
|
||||||
|
self.relx += 1
|
||||||
|
self.rely += 1
|
||||||
|
self.height -= 1
|
||||||
|
self.width -= 1
|
||||||
|
super().update(clear=False)
|
||||||
|
(self.relx,self.rely,self.height,self.width) = (relx, rely, height, width)
|
||||||
|
Loading…
Reference in New Issue
Block a user