mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Modular backend - Seamless (#6651)
## Summary Seamless code from #6577. ## Related Issues / Discussions #6606 https://invokeai.notion.site/Modular-Stable-Diffusion-Backend-Design-Document-e8952daab5d5472faecdc4a72d377b0d ## QA Instructions Run with and without set `USE_MODULAR_DENOISE` environment. ## Merge Plan Nope. If you think that there should be some kind of tests - feel free to add. ## Checklist - [x] _The PR has a short but descriptive title, suitable for a changelog_ - [ ] _Tests added / updated (if applicable)_ - [ ] _Documentation added / updated (if applicable)_
This commit is contained in:
commit
e8e24822ec
@ -39,7 +39,7 @@ from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
|
|||||||
from invokeai.backend.lora import LoRAModelRaw
|
from invokeai.backend.lora import LoRAModelRaw
|
||||||
from invokeai.backend.model_manager import BaseModelType
|
from invokeai.backend.model_manager import BaseModelType
|
||||||
from invokeai.backend.model_patcher import ModelPatcher
|
from invokeai.backend.model_patcher import ModelPatcher
|
||||||
from invokeai.backend.stable_diffusion import PipelineIntermediateState, set_seamless
|
from invokeai.backend.stable_diffusion import PipelineIntermediateState
|
||||||
from invokeai.backend.stable_diffusion.denoise_context import DenoiseContext, DenoiseInputs
|
from invokeai.backend.stable_diffusion.denoise_context import DenoiseContext, DenoiseInputs
|
||||||
from invokeai.backend.stable_diffusion.diffusers_pipeline import (
|
from invokeai.backend.stable_diffusion.diffusers_pipeline import (
|
||||||
ControlNetData,
|
ControlNetData,
|
||||||
@ -62,6 +62,7 @@ from invokeai.backend.stable_diffusion.extensions.controlnet import ControlNetEx
|
|||||||
from invokeai.backend.stable_diffusion.extensions.freeu import FreeUExt
|
from invokeai.backend.stable_diffusion.extensions.freeu import FreeUExt
|
||||||
from invokeai.backend.stable_diffusion.extensions.preview import PreviewExt
|
from invokeai.backend.stable_diffusion.extensions.preview import PreviewExt
|
||||||
from invokeai.backend.stable_diffusion.extensions.rescale_cfg import RescaleCFGExt
|
from invokeai.backend.stable_diffusion.extensions.rescale_cfg import RescaleCFGExt
|
||||||
|
from invokeai.backend.stable_diffusion.extensions.seamless import SeamlessExt
|
||||||
from invokeai.backend.stable_diffusion.extensions_manager import ExtensionsManager
|
from invokeai.backend.stable_diffusion.extensions_manager import ExtensionsManager
|
||||||
from invokeai.backend.stable_diffusion.schedulers import SCHEDULER_MAP
|
from invokeai.backend.stable_diffusion.schedulers import SCHEDULER_MAP
|
||||||
from invokeai.backend.stable_diffusion.schedulers.schedulers import SCHEDULER_NAME_VALUES
|
from invokeai.backend.stable_diffusion.schedulers.schedulers import SCHEDULER_NAME_VALUES
|
||||||
@ -833,6 +834,10 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
|||||||
if self.unet.freeu_config:
|
if self.unet.freeu_config:
|
||||||
ext_manager.add_extension(FreeUExt(self.unet.freeu_config))
|
ext_manager.add_extension(FreeUExt(self.unet.freeu_config))
|
||||||
|
|
||||||
|
### seamless
|
||||||
|
if self.unet.seamless_axes:
|
||||||
|
ext_manager.add_extension(SeamlessExt(self.unet.seamless_axes))
|
||||||
|
|
||||||
# context for loading additional models
|
# context for loading additional models
|
||||||
with ExitStack() as exit_stack:
|
with ExitStack() as exit_stack:
|
||||||
# later should be smth like:
|
# later should be smth like:
|
||||||
@ -915,7 +920,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
|||||||
ExitStack() as exit_stack,
|
ExitStack() as exit_stack,
|
||||||
unet_info.model_on_device() as (model_state_dict, unet),
|
unet_info.model_on_device() as (model_state_dict, unet),
|
||||||
ModelPatcher.apply_freeu(unet, self.unet.freeu_config),
|
ModelPatcher.apply_freeu(unet, self.unet.freeu_config),
|
||||||
set_seamless(unet, self.unet.seamless_axes), # FIXME
|
SeamlessExt.static_patch_model(unet, self.unet.seamless_axes), # FIXME
|
||||||
# Apply the LoRA after unet has been moved to its target device for faster patching.
|
# Apply the LoRA after unet has been moved to its target device for faster patching.
|
||||||
ModelPatcher.apply_lora_unet(
|
ModelPatcher.apply_lora_unet(
|
||||||
unet,
|
unet,
|
||||||
|
@ -24,7 +24,7 @@ from invokeai.app.invocations.fields import (
|
|||||||
from invokeai.app.invocations.model import VAEField
|
from invokeai.app.invocations.model import VAEField
|
||||||
from invokeai.app.invocations.primitives import ImageOutput
|
from invokeai.app.invocations.primitives import ImageOutput
|
||||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||||
from invokeai.backend.stable_diffusion import set_seamless
|
from invokeai.backend.stable_diffusion.extensions.seamless import SeamlessExt
|
||||||
from invokeai.backend.stable_diffusion.vae_tiling import patch_vae_tiling_params
|
from invokeai.backend.stable_diffusion.vae_tiling import patch_vae_tiling_params
|
||||||
from invokeai.backend.util.devices import TorchDevice
|
from invokeai.backend.util.devices import TorchDevice
|
||||||
|
|
||||||
@ -59,7 +59,7 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
|
|||||||
|
|
||||||
vae_info = context.models.load(self.vae.vae)
|
vae_info = context.models.load(self.vae.vae)
|
||||||
assert isinstance(vae_info.model, (AutoencoderKL, AutoencoderTiny))
|
assert isinstance(vae_info.model, (AutoencoderKL, AutoencoderTiny))
|
||||||
with set_seamless(vae_info.model, self.vae.seamless_axes), vae_info as vae:
|
with SeamlessExt.static_patch_model(vae_info.model, self.vae.seamless_axes), vae_info as vae:
|
||||||
assert isinstance(vae, (AutoencoderKL, AutoencoderTiny))
|
assert isinstance(vae, (AutoencoderKL, AutoencoderTiny))
|
||||||
latents = latents.to(vae.device)
|
latents = latents.to(vae.device)
|
||||||
if self.fp32:
|
if self.fp32:
|
||||||
|
@ -7,11 +7,9 @@ from invokeai.backend.stable_diffusion.diffusers_pipeline import ( # noqa: F401
|
|||||||
StableDiffusionGeneratorPipeline,
|
StableDiffusionGeneratorPipeline,
|
||||||
)
|
)
|
||||||
from invokeai.backend.stable_diffusion.diffusion import InvokeAIDiffuserComponent # noqa: F401
|
from invokeai.backend.stable_diffusion.diffusion import InvokeAIDiffuserComponent # noqa: F401
|
||||||
from invokeai.backend.stable_diffusion.seamless import set_seamless # noqa: F401
|
|
||||||
|
|
||||||
__all__ = [
|
__all__ = [
|
||||||
"PipelineIntermediateState",
|
"PipelineIntermediateState",
|
||||||
"StableDiffusionGeneratorPipeline",
|
"StableDiffusionGeneratorPipeline",
|
||||||
"InvokeAIDiffuserComponent",
|
"InvokeAIDiffuserComponent",
|
||||||
"set_seamless",
|
|
||||||
]
|
]
|
||||||
|
71
invokeai/backend/stable_diffusion/extensions/seamless.py
Normal file
71
invokeai/backend/stable_diffusion/extensions/seamless.py
Normal file
@ -0,0 +1,71 @@
|
|||||||
|
from __future__ import annotations
|
||||||
|
|
||||||
|
from contextlib import contextmanager
|
||||||
|
from typing import Callable, Dict, List, Optional, Tuple
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from diffusers import UNet2DConditionModel
|
||||||
|
from diffusers.models.lora import LoRACompatibleConv
|
||||||
|
|
||||||
|
from invokeai.backend.stable_diffusion.extensions.base import ExtensionBase
|
||||||
|
|
||||||
|
|
||||||
|
class SeamlessExt(ExtensionBase):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
seamless_axes: List[str],
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
self._seamless_axes = seamless_axes
|
||||||
|
|
||||||
|
@contextmanager
|
||||||
|
def patch_unet(self, unet: UNet2DConditionModel, cached_weights: Optional[Dict[str, torch.Tensor]] = None):
|
||||||
|
with self.static_patch_model(
|
||||||
|
model=unet,
|
||||||
|
seamless_axes=self._seamless_axes,
|
||||||
|
):
|
||||||
|
yield
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
@contextmanager
|
||||||
|
def static_patch_model(
|
||||||
|
model: torch.nn.Module,
|
||||||
|
seamless_axes: List[str],
|
||||||
|
):
|
||||||
|
if not seamless_axes:
|
||||||
|
yield
|
||||||
|
return
|
||||||
|
|
||||||
|
x_mode = "circular" if "x" in seamless_axes else "constant"
|
||||||
|
y_mode = "circular" if "y" in seamless_axes else "constant"
|
||||||
|
|
||||||
|
# override conv_forward
|
||||||
|
# https://github.com/huggingface/diffusers/issues/556#issuecomment-1993287019
|
||||||
|
def _conv_forward_asymmetric(
|
||||||
|
self, input: torch.Tensor, weight: torch.Tensor, bias: Optional[torch.Tensor] = None
|
||||||
|
):
|
||||||
|
self.paddingX = (self._reversed_padding_repeated_twice[0], self._reversed_padding_repeated_twice[1], 0, 0)
|
||||||
|
self.paddingY = (0, 0, self._reversed_padding_repeated_twice[2], self._reversed_padding_repeated_twice[3])
|
||||||
|
working = torch.nn.functional.pad(input, self.paddingX, mode=x_mode)
|
||||||
|
working = torch.nn.functional.pad(working, self.paddingY, mode=y_mode)
|
||||||
|
return torch.nn.functional.conv2d(
|
||||||
|
working, weight, bias, self.stride, torch.nn.modules.utils._pair(0), self.dilation, self.groups
|
||||||
|
)
|
||||||
|
|
||||||
|
original_layers: List[Tuple[nn.Conv2d, Callable]] = []
|
||||||
|
try:
|
||||||
|
for layer in model.modules():
|
||||||
|
if not isinstance(layer, torch.nn.Conv2d):
|
||||||
|
continue
|
||||||
|
|
||||||
|
if isinstance(layer, LoRACompatibleConv) and layer.lora_layer is None:
|
||||||
|
layer.lora_layer = lambda *x: 0
|
||||||
|
original_layers.append((layer, layer._conv_forward))
|
||||||
|
layer._conv_forward = _conv_forward_asymmetric.__get__(layer, torch.nn.Conv2d)
|
||||||
|
|
||||||
|
yield
|
||||||
|
|
||||||
|
finally:
|
||||||
|
for layer, orig_conv_forward in original_layers:
|
||||||
|
layer._conv_forward = orig_conv_forward
|
@ -1,51 +0,0 @@
|
|||||||
from contextlib import contextmanager
|
|
||||||
from typing import Callable, List, Optional, Tuple, Union
|
|
||||||
|
|
||||||
import torch
|
|
||||||
import torch.nn as nn
|
|
||||||
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
|
|
||||||
from diffusers.models.autoencoders.autoencoder_tiny import AutoencoderTiny
|
|
||||||
from diffusers.models.lora import LoRACompatibleConv
|
|
||||||
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
|
|
||||||
|
|
||||||
|
|
||||||
@contextmanager
|
|
||||||
def set_seamless(model: Union[UNet2DConditionModel, AutoencoderKL, AutoencoderTiny], seamless_axes: List[str]):
|
|
||||||
if not seamless_axes:
|
|
||||||
yield
|
|
||||||
return
|
|
||||||
|
|
||||||
# override conv_forward
|
|
||||||
# https://github.com/huggingface/diffusers/issues/556#issuecomment-1993287019
|
|
||||||
def _conv_forward_asymmetric(self, input: torch.Tensor, weight: torch.Tensor, bias: Optional[torch.Tensor] = None):
|
|
||||||
self.paddingX = (self._reversed_padding_repeated_twice[0], self._reversed_padding_repeated_twice[1], 0, 0)
|
|
||||||
self.paddingY = (0, 0, self._reversed_padding_repeated_twice[2], self._reversed_padding_repeated_twice[3])
|
|
||||||
working = torch.nn.functional.pad(input, self.paddingX, mode=x_mode)
|
|
||||||
working = torch.nn.functional.pad(working, self.paddingY, mode=y_mode)
|
|
||||||
return torch.nn.functional.conv2d(
|
|
||||||
working, weight, bias, self.stride, torch.nn.modules.utils._pair(0), self.dilation, self.groups
|
|
||||||
)
|
|
||||||
|
|
||||||
original_layers: List[Tuple[nn.Conv2d, Callable]] = []
|
|
||||||
|
|
||||||
try:
|
|
||||||
x_mode = "circular" if "x" in seamless_axes else "constant"
|
|
||||||
y_mode = "circular" if "y" in seamless_axes else "constant"
|
|
||||||
|
|
||||||
conv_layers: List[torch.nn.Conv2d] = []
|
|
||||||
|
|
||||||
for module in model.modules():
|
|
||||||
if isinstance(module, torch.nn.Conv2d):
|
|
||||||
conv_layers.append(module)
|
|
||||||
|
|
||||||
for layer in conv_layers:
|
|
||||||
if isinstance(layer, LoRACompatibleConv) and layer.lora_layer is None:
|
|
||||||
layer.lora_layer = lambda *x: 0
|
|
||||||
original_layers.append((layer, layer._conv_forward))
|
|
||||||
layer._conv_forward = _conv_forward_asymmetric.__get__(layer, torch.nn.Conv2d)
|
|
||||||
|
|
||||||
yield
|
|
||||||
|
|
||||||
finally:
|
|
||||||
for layer, orig_conv_forward in original_layers:
|
|
||||||
layer._conv_forward = orig_conv_forward
|
|
Loading…
Reference in New Issue
Block a user