[util] Add generic torch device class (#6174)

* introduce new abstraction layer for GPU devices

* add unit test for device abstraction

* fix ruff

* convert TorchDeviceSelect into a stateless class

* move logic to select context-specific execution device into context API

* add mock hardware environments to pytest

* remove dangling mocker fixture

* fix unit test for running on non-CUDA systems

* remove unimplemented get_execution_device() call

* remove autocast precision

* Multiple changes:

1. Remove TorchDeviceSelect.get_execution_device(), as well as calls to
   context.models.get_execution_device().
2. Rename TorchDeviceSelect to TorchDevice
3. Added back the legacy public API defined in `invocation_api`, including
   choose_precision().
4. Added a config file migration script to accommodate removal of precision=autocast.

* add deprecation warnings to choose_torch_device() and choose_precision()

* fix test crash

* remove app_config argument from choose_torch_device() and choose_torch_dtype()

---------

Co-authored-by: Lincoln Stein <lstein@gmail.com>
This commit is contained in:
Lincoln Stein
2024-04-15 09:12:49 -04:00
committed by GitHub
parent 5a8489bbfc
commit e93f4d632d
20 changed files with 327 additions and 176 deletions

View File

@ -17,7 +17,7 @@ from diffusers.utils import logging as dlogging
from invokeai.app.services.model_install import ModelInstallServiceBase
from invokeai.app.services.model_records.model_records_base import ModelRecordChanges
from invokeai.backend.util.devices import choose_torch_device, torch_dtype
from invokeai.backend.util.devices import TorchDevice
from . import (
AnyModelConfig,
@ -43,6 +43,7 @@ class ModelMerger(object):
Initialize a ModelMerger object with the model installer.
"""
self._installer = installer
self._dtype = TorchDevice.choose_torch_dtype()
def merge_diffusion_models(
self,
@ -68,7 +69,7 @@ class ModelMerger(object):
warnings.simplefilter("ignore")
verbosity = dlogging.get_verbosity()
dlogging.set_verbosity_error()
dtype = torch.float16 if variant == "fp16" else torch_dtype(choose_torch_device())
dtype = torch.float16 if variant == "fp16" else self._dtype
# Note that checkpoint_merger will not work with downloaded HuggingFace fp16 models
# until upstream https://github.com/huggingface/diffusers/pull/6670 is merged and released.
@ -151,7 +152,7 @@ class ModelMerger(object):
dump_path.mkdir(parents=True, exist_ok=True)
dump_path = dump_path / merged_model_name
dtype = torch.float16 if variant == "fp16" else torch_dtype(choose_torch_device())
dtype = torch.float16 if variant == "fp16" else self._dtype
merged_pipe.save_pretrained(dump_path.as_posix(), safe_serialization=True, torch_dtype=dtype, variant=variant)
# register model and get its unique key