[util] Add generic torch device class (#6174)

* introduce new abstraction layer for GPU devices

* add unit test for device abstraction

* fix ruff

* convert TorchDeviceSelect into a stateless class

* move logic to select context-specific execution device into context API

* add mock hardware environments to pytest

* remove dangling mocker fixture

* fix unit test for running on non-CUDA systems

* remove unimplemented get_execution_device() call

* remove autocast precision

* Multiple changes:

1. Remove TorchDeviceSelect.get_execution_device(), as well as calls to
   context.models.get_execution_device().
2. Rename TorchDeviceSelect to TorchDevice
3. Added back the legacy public API defined in `invocation_api`, including
   choose_precision().
4. Added a config file migration script to accommodate removal of precision=autocast.

* add deprecation warnings to choose_torch_device() and choose_precision()

* fix test crash

* remove app_config argument from choose_torch_device() and choose_torch_dtype()

---------

Co-authored-by: Lincoln Stein <lstein@gmail.com>
This commit is contained in:
Lincoln Stein 2024-04-15 09:12:49 -04:00 committed by GitHub
parent 5a8489bbfc
commit e93f4d632d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
20 changed files with 327 additions and 176 deletions

View File

@ -28,7 +28,7 @@ from invokeai.app.api.no_cache_staticfiles import NoCacheStaticFiles
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.services.config.config_default import get_config
from invokeai.app.services.session_processor.session_processor_common import ProgressImage
from invokeai.backend.util.devices import get_torch_device_name
from invokeai.backend.util.devices import TorchDevice
from ..backend.util.logging import InvokeAILogger
from .api.dependencies import ApiDependencies
@ -63,7 +63,7 @@ logger = InvokeAILogger.get_logger(config=app_config)
mimetypes.add_type("application/javascript", ".js")
mimetypes.add_type("text/css", ".css")
torch_device_name = get_torch_device_name()
torch_device_name = TorchDevice.get_torch_device_name()
logger.info(f"Using torch device: {torch_device_name}")

View File

@ -24,7 +24,7 @@ from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
ConditioningFieldData,
SDXLConditioningInfo,
)
from invokeai.backend.util.devices import torch_dtype
from invokeai.backend.util.devices import TorchDevice
from .baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
from .model import CLIPField
@ -99,7 +99,7 @@ class CompelInvocation(BaseInvocation):
tokenizer=tokenizer,
text_encoder=text_encoder,
textual_inversion_manager=ti_manager,
dtype_for_device_getter=torch_dtype,
dtype_for_device_getter=TorchDevice.choose_torch_dtype,
truncate_long_prompts=False,
)
@ -193,7 +193,7 @@ class SDXLPromptInvocationBase:
tokenizer=tokenizer,
text_encoder=text_encoder,
textual_inversion_manager=ti_manager,
dtype_for_device_getter=torch_dtype,
dtype_for_device_getter=TorchDevice.choose_torch_dtype,
truncate_long_prompts=False, # TODO:
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, # TODO: clip skip
requires_pooled=get_pooled,

View File

@ -72,15 +72,12 @@ from ...backend.stable_diffusion.diffusers_pipeline import (
image_resized_to_grid_as_tensor,
)
from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP
from ...backend.util.devices import choose_precision, choose_torch_device
from ...backend.util.devices import TorchDevice
from .baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
from .controlnet_image_processors import ControlField
from .model import ModelIdentifierField, UNetField, VAEField
if choose_torch_device() == torch.device("mps"):
from torch import mps
DEFAULT_PRECISION = choose_precision(choose_torch_device())
DEFAULT_PRECISION = TorchDevice.choose_torch_dtype()
@invocation_output("scheduler_output")
@ -959,9 +956,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
result_latents = result_latents.to("cpu")
torch.cuda.empty_cache()
if choose_torch_device() == torch.device("mps"):
mps.empty_cache()
TorchDevice.empty_cache()
name = context.tensors.save(tensor=result_latents)
return LatentsOutput.build(latents_name=name, latents=result_latents, seed=None)
@ -1028,9 +1023,7 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
vae.disable_tiling()
# clear memory as vae decode can request a lot
torch.cuda.empty_cache()
if choose_torch_device() == torch.device("mps"):
mps.empty_cache()
TorchDevice.empty_cache()
with torch.inference_mode():
# copied from diffusers pipeline
@ -1042,9 +1035,7 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
image = VaeImageProcessor.numpy_to_pil(np_image)[0]
torch.cuda.empty_cache()
if choose_torch_device() == torch.device("mps"):
mps.empty_cache()
TorchDevice.empty_cache()
image_dto = context.images.save(image=image)
@ -1083,9 +1074,7 @@ class ResizeLatentsInvocation(BaseInvocation):
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = context.tensors.load(self.latents.latents_name)
# TODO:
device = choose_torch_device()
device = TorchDevice.choose_torch_device()
resized_latents = torch.nn.functional.interpolate(
latents.to(device),
@ -1096,9 +1085,8 @@ class ResizeLatentsInvocation(BaseInvocation):
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
resized_latents = resized_latents.to("cpu")
torch.cuda.empty_cache()
if device == torch.device("mps"):
mps.empty_cache()
TorchDevice.empty_cache()
name = context.tensors.save(tensor=resized_latents)
return LatentsOutput.build(latents_name=name, latents=resized_latents, seed=self.latents.seed)
@ -1125,8 +1113,7 @@ class ScaleLatentsInvocation(BaseInvocation):
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = context.tensors.load(self.latents.latents_name)
# TODO:
device = choose_torch_device()
device = TorchDevice.choose_torch_device()
# resizing
resized_latents = torch.nn.functional.interpolate(
@ -1138,9 +1125,7 @@ class ScaleLatentsInvocation(BaseInvocation):
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
resized_latents = resized_latents.to("cpu")
torch.cuda.empty_cache()
if device == torch.device("mps"):
mps.empty_cache()
TorchDevice.empty_cache()
name = context.tensors.save(tensor=resized_latents)
return LatentsOutput.build(latents_name=name, latents=resized_latents, seed=self.latents.seed)
@ -1272,8 +1257,7 @@ class BlendLatentsInvocation(BaseInvocation):
if latents_a.shape != latents_b.shape:
raise Exception("Latents to blend must be the same size.")
# TODO:
device = choose_torch_device()
device = TorchDevice.choose_torch_device()
def slerp(
t: Union[float, npt.NDArray[Any]], # FIXME: maybe use np.float32 here?
@ -1326,9 +1310,8 @@ class BlendLatentsInvocation(BaseInvocation):
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
blended_latents = blended_latents.to("cpu")
torch.cuda.empty_cache()
if device == torch.device("mps"):
mps.empty_cache()
TorchDevice.empty_cache()
name = context.tensors.save(tensor=blended_latents)
return LatentsOutput.build(latents_name=name, latents=blended_latents)

View File

@ -9,7 +9,7 @@ from invokeai.app.invocations.fields import FieldDescriptions, InputField, Laten
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.misc import SEED_MAX
from ...backend.util.devices import choose_torch_device, torch_dtype
from ...backend.util.devices import TorchDevice
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
@ -46,7 +46,7 @@ def get_noise(
height // downsampling_factor,
width // downsampling_factor,
],
dtype=torch_dtype(device),
dtype=TorchDevice.choose_torch_dtype(device=device),
device=noise_device_type,
generator=generator,
).to("cpu")
@ -111,14 +111,14 @@ class NoiseInvocation(BaseInvocation):
@field_validator("seed", mode="before")
def modulo_seed(cls, v):
"""Returns the seed modulo (SEED_MAX + 1) to ensure it is within the valid range."""
"""Return the seed modulo (SEED_MAX + 1) to ensure it is within the valid range."""
return v % (SEED_MAX + 1)
def invoke(self, context: InvocationContext) -> NoiseOutput:
noise = get_noise(
width=self.width,
height=self.height,
device=choose_torch_device(),
device=TorchDevice.choose_torch_device(),
seed=self.seed,
use_cpu=self.use_cpu,
)

View File

@ -4,7 +4,6 @@ from typing import Literal
import cv2
import numpy as np
import torch
from PIL import Image
from pydantic import ConfigDict
@ -14,7 +13,7 @@ from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.download_with_progress import download_with_progress_bar
from invokeai.backend.image_util.basicsr.rrdbnet_arch import RRDBNet
from invokeai.backend.image_util.realesrgan.realesrgan import RealESRGAN
from invokeai.backend.util.devices import choose_torch_device
from invokeai.backend.util.devices import TorchDevice
from .baseinvocation import BaseInvocation, invocation
from .fields import InputField, WithBoard, WithMetadata
@ -35,9 +34,6 @@ ESRGAN_MODEL_URLS: dict[str, str] = {
"RealESRGAN_x2plus.pth": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth",
}
if choose_torch_device() == torch.device("mps"):
from torch import mps
@invocation("esrgan", title="Upscale (RealESRGAN)", tags=["esrgan", "upscale"], category="esrgan", version="1.3.2")
class ESRGANInvocation(BaseInvocation, WithMetadata, WithBoard):
@ -120,9 +116,7 @@ class ESRGANInvocation(BaseInvocation, WithMetadata, WithBoard):
upscaled_image = upscaler.upscale(cv2_image)
pil_image = Image.fromarray(cv2.cvtColor(upscaled_image, cv2.COLOR_BGR2RGB)).convert("RGBA")
torch.cuda.empty_cache()
if choose_torch_device() == torch.device("mps"):
mps.empty_cache()
TorchDevice.empty_cache()
image_dto = context.images.save(image=pil_image)

View File

@ -27,12 +27,12 @@ DEFAULT_RAM_CACHE = 10.0
DEFAULT_VRAM_CACHE = 0.25
DEFAULT_CONVERT_CACHE = 20.0
DEVICE = Literal["auto", "cpu", "cuda", "cuda:1", "mps"]
PRECISION = Literal["auto", "float16", "bfloat16", "float32", "autocast"]
PRECISION = Literal["auto", "float16", "bfloat16", "float32"]
ATTENTION_TYPE = Literal["auto", "normal", "xformers", "sliced", "torch-sdp"]
ATTENTION_SLICE_SIZE = Literal["auto", "balanced", "max", 1, 2, 3, 4, 5, 6, 7, 8]
LOG_FORMAT = Literal["plain", "color", "syslog", "legacy"]
LOG_LEVEL = Literal["debug", "info", "warning", "error", "critical"]
CONFIG_SCHEMA_VERSION = "4.0.0"
CONFIG_SCHEMA_VERSION = "4.0.1"
def get_default_ram_cache_size() -> float:
@ -105,7 +105,7 @@ class InvokeAIAppConfig(BaseSettings):
lazy_offload: Keep models in VRAM until their space is needed.
log_memory_usage: If True, a memory snapshot will be captured before and after every model cache operation, and the result will be logged (at debug level). There is a time cost to capturing the memory snapshots, so it is recommended to only enable this feature if you are actively inspecting the model cache's behaviour.
device: Preferred execution device. `auto` will choose the device depending on the hardware platform and the installed torch capabilities.<br>Valid values: `auto`, `cpu`, `cuda`, `cuda:1`, `mps`
precision: Floating point precision. `float16` will consume half the memory of `float32` but produce slightly lower-quality images. The `auto` setting will guess the proper precision based on your video card and operating system.<br>Valid values: `auto`, `float16`, `bfloat16`, `float32`, `autocast`
precision: Floating point precision. `float16` will consume half the memory of `float32` but produce slightly lower-quality images. The `auto` setting will guess the proper precision based on your video card and operating system.<br>Valid values: `auto`, `float16`, `bfloat16`, `float32`
sequential_guidance: Whether to calculate guidance in serial instead of in parallel, lowering memory requirements.
attention_type: Attention type.<br>Valid values: `auto`, `normal`, `xformers`, `sliced`, `torch-sdp`
attention_slice_size: Slice size, valid when attention_type=="sliced".<br>Valid values: `auto`, `balanced`, `max`, `1`, `2`, `3`, `4`, `5`, `6`, `7`, `8`
@ -370,6 +370,9 @@ def migrate_v3_config_dict(config_dict: dict[str, Any]) -> InvokeAIAppConfig:
# `max_vram_cache_size` was renamed to `vram` some time in v3, but both names were used
if k == "max_vram_cache_size" and "vram" not in category_dict:
parsed_config_dict["vram"] = v
# autocast was removed in v4.0.1
if k == "precision" and v == "autocast":
parsed_config_dict["precision"] = "auto"
if k == "conf_path":
parsed_config_dict["legacy_models_yaml_path"] = v
if k == "legacy_conf_dir":
@ -392,6 +395,28 @@ def migrate_v3_config_dict(config_dict: dict[str, Any]) -> InvokeAIAppConfig:
return config
def migrate_v4_0_0_config_dict(config_dict: dict[str, Any]) -> InvokeAIAppConfig:
"""Migrate v4.0.0 config dictionary to a current config object.
Args:
config_dict: A dictionary of settings from a v4.0.0 config file.
Returns:
An instance of `InvokeAIAppConfig` with the migrated settings.
"""
parsed_config_dict: dict[str, Any] = {}
for k, v in config_dict.items():
# autocast was removed from precision in v4.0.1
if k == "precision" and v == "autocast":
parsed_config_dict["precision"] = "auto"
else:
parsed_config_dict[k] = v
if k == "schema_version":
parsed_config_dict[k] = CONFIG_SCHEMA_VERSION
config = DefaultInvokeAIAppConfig.model_validate(parsed_config_dict)
return config
def load_and_migrate_config(config_path: Path) -> InvokeAIAppConfig:
"""Load and migrate a config file to the latest version.
@ -418,17 +443,21 @@ def load_and_migrate_config(config_path: Path) -> InvokeAIAppConfig:
raise RuntimeError(f"Failed to load and migrate v3 config file {config_path}: {e}") from e
migrated_config.write_file(config_path)
return migrated_config
else:
# Attempt to load as a v4 config file
try:
# Meta is not included in the model fields, so we need to validate it separately
config = InvokeAIAppConfig.model_validate(loaded_config_dict)
assert (
config.schema_version == CONFIG_SCHEMA_VERSION
), f"Invalid schema version, expected {CONFIG_SCHEMA_VERSION}: {config.schema_version}"
return config
except Exception as e:
raise RuntimeError(f"Failed to load config file {config_path}: {e}") from e
if loaded_config_dict["schema_version"] == "4.0.0":
loaded_config_dict = migrate_v4_0_0_config_dict(loaded_config_dict)
loaded_config_dict.write_file(config_path)
# Attempt to load as a v4 config file
try:
# Meta is not included in the model fields, so we need to validate it separately
config = InvokeAIAppConfig.model_validate(loaded_config_dict)
assert (
config.schema_version == CONFIG_SCHEMA_VERSION
), f"Invalid schema version, expected {CONFIG_SCHEMA_VERSION}: {config.schema_version}"
return config
except Exception as e:
raise RuntimeError(f"Failed to load config file {config_path}: {e}") from e
@lru_cache(maxsize=1)

View File

@ -13,6 +13,7 @@ from shutil import copyfile, copytree, move, rmtree
from tempfile import mkdtemp
from typing import Any, Dict, List, Optional, Union
import torch
import yaml
from huggingface_hub import HfFolder
from pydantic.networks import AnyHttpUrl
@ -42,7 +43,7 @@ from invokeai.backend.model_manager.metadata.metadata_base import HuggingFaceMet
from invokeai.backend.model_manager.probe import ModelProbe
from invokeai.backend.model_manager.search import ModelSearch
from invokeai.backend.util import InvokeAILogger
from invokeai.backend.util.devices import choose_precision, choose_torch_device
from invokeai.backend.util.devices import TorchDevice
from .model_install_base import (
MODEL_SOURCE_TO_TYPE_MAP,
@ -634,11 +635,10 @@ class ModelInstallService(ModelInstallServiceBase):
self._next_job_id += 1
return id
@staticmethod
def _guess_variant() -> Optional[ModelRepoVariant]:
def _guess_variant(self) -> Optional[ModelRepoVariant]:
"""Guess the best HuggingFace variant type to download."""
precision = choose_precision(choose_torch_device())
return ModelRepoVariant.FP16 if precision == "float16" else None
precision = TorchDevice.choose_torch_dtype()
return ModelRepoVariant.FP16 if precision == torch.float16 else None
def _import_local_model(self, source: LocalModelSource, config: Optional[Dict[str, Any]]) -> ModelInstallJob:
return ModelInstallJob(

View File

@ -1,12 +1,14 @@
# Copyright (c) 2023 Lincoln D. Stein and the InvokeAI Team
"""Implementation of ModelManagerServiceBase."""
from typing import Optional
import torch
from typing_extensions import Self
from invokeai.app.services.invoker import Invoker
from invokeai.backend.model_manager.load import ModelCache, ModelConvertCache, ModelLoaderRegistry
from invokeai.backend.util.devices import choose_torch_device
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.logging import InvokeAILogger
from ..config import InvokeAIAppConfig
@ -67,7 +69,7 @@ class ModelManagerService(ModelManagerServiceBase):
model_record_service: ModelRecordServiceBase,
download_queue: DownloadQueueServiceBase,
events: EventServiceBase,
execution_device: torch.device = choose_torch_device(),
execution_device: Optional[torch.device] = None,
) -> Self:
"""
Construct the model manager service instance.
@ -82,7 +84,7 @@ class ModelManagerService(ModelManagerServiceBase):
max_vram_cache_size=app_config.vram,
lazy_offloading=app_config.lazy_offload,
logger=logger,
execution_device=execution_device,
execution_device=execution_device or TorchDevice.choose_torch_device(),
)
convert_cache = ModelConvertCache(cache_path=app_config.convert_cache_path, max_size=app_config.convert_cache)
loader = ModelLoadService(

View File

@ -13,7 +13,7 @@ from invokeai.app.services.config.config_default import get_config
from invokeai.app.util.download_with_progress import download_with_progress_bar
from invokeai.backend.image_util.depth_anything.model.dpt import DPT_DINOv2
from invokeai.backend.image_util.depth_anything.utilities.util import NormalizeImage, PrepareForNet, Resize
from invokeai.backend.util.devices import choose_torch_device
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.logging import InvokeAILogger
config = get_config()
@ -56,7 +56,7 @@ class DepthAnythingDetector:
def __init__(self) -> None:
self.model = None
self.model_size: Union[Literal["large", "base", "small"], None] = None
self.device = choose_torch_device()
self.device = TorchDevice.choose_torch_device()
def load_model(self, model_size: Literal["large", "base", "small"] = "small"):
DEPTH_ANYTHING_MODEL_PATH = config.models_path / DEPTH_ANYTHING_MODELS[model_size]["local"]
@ -81,7 +81,7 @@ class DepthAnythingDetector:
self.model.load_state_dict(torch.load(DEPTH_ANYTHING_MODEL_PATH.as_posix(), map_location="cpu"))
self.model.eval()
self.model.to(choose_torch_device())
self.model.to(self.device)
return self.model
def __call__(self, image: Image.Image, resolution: int = 512) -> Image.Image:
@ -94,7 +94,7 @@ class DepthAnythingDetector:
image_height, image_width = np_image.shape[:2]
np_image = transform({"image": np_image})["image"]
tensor_image = torch.from_numpy(np_image).unsqueeze(0).to(choose_torch_device())
tensor_image = torch.from_numpy(np_image).unsqueeze(0).to(self.device)
with torch.no_grad():
depth = self.model(tensor_image)

View File

@ -7,7 +7,7 @@ import onnxruntime as ort
from invokeai.app.services.config.config_default import get_config
from invokeai.app.util.download_with_progress import download_with_progress_bar
from invokeai.backend.util.devices import choose_torch_device
from invokeai.backend.util.devices import TorchDevice
from .onnxdet import inference_detector
from .onnxpose import inference_pose
@ -28,9 +28,9 @@ config = get_config()
class Wholebody:
def __init__(self):
device = choose_torch_device()
device = TorchDevice.choose_torch_device()
providers = ["CUDAExecutionProvider"] if device == "cuda" else ["CPUExecutionProvider"]
providers = ["CUDAExecutionProvider"] if device.type == "cuda" else ["CPUExecutionProvider"]
DET_MODEL_PATH = config.models_path / DWPOSE_MODELS["yolox_l.onnx"]["local"]
download_with_progress_bar("yolox_l.onnx", DWPOSE_MODELS["yolox_l.onnx"]["url"], DET_MODEL_PATH)

View File

@ -8,7 +8,7 @@ from PIL import Image
import invokeai.backend.util.logging as logger
from invokeai.app.services.config.config_default import get_config
from invokeai.app.util.download_with_progress import download_with_progress_bar
from invokeai.backend.util.devices import choose_torch_device
from invokeai.backend.util.devices import TorchDevice
def norm_img(np_img):
@ -29,7 +29,7 @@ def load_jit_model(url_or_path, device):
class LaMA:
def __call__(self, input_image: Image.Image, *args: Any, **kwds: Any) -> Any:
device = choose_torch_device()
device = TorchDevice.choose_torch_device()
model_location = get_config().models_path / "core/misc/lama/lama.pt"
if not model_location.exists():

View File

@ -11,7 +11,7 @@ from cv2.typing import MatLike
from tqdm import tqdm
from invokeai.backend.image_util.basicsr.rrdbnet_arch import RRDBNet
from invokeai.backend.util.devices import choose_torch_device
from invokeai.backend.util.devices import TorchDevice
"""
Adapted from https://github.com/xinntao/Real-ESRGAN/blob/master/realesrgan/utils.py
@ -65,7 +65,7 @@ class RealESRGAN:
self.pre_pad = pre_pad
self.mod_scale: Optional[int] = None
self.half = half
self.device = choose_torch_device()
self.device = TorchDevice.choose_torch_device()
loadnet = torch.load(model_path, map_location=torch.device("cpu"))

View File

@ -13,7 +13,7 @@ from transformers import AutoFeatureExtractor
import invokeai.backend.util.logging as logger
from invokeai.app.services.config.config_default import get_config
from invokeai.backend.util.devices import choose_torch_device
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.silence_warnings import SilenceWarnings
CHECKER_PATH = "core/convert/stable-diffusion-safety-checker"
@ -51,7 +51,7 @@ class SafetyChecker:
cls._load_safety_checker()
if cls.safety_checker is None or cls.feature_extractor is None:
return False
device = choose_torch_device()
device = TorchDevice.choose_torch_device()
features = cls.feature_extractor([image], return_tensors="pt")
features.to(device)
cls.safety_checker.to(device)

View File

@ -18,7 +18,7 @@ from invokeai.backend.model_manager.load.load_base import LoadedModel, ModelLoad
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase, ModelLockerBase
from invokeai.backend.model_manager.load.model_util import calc_model_size_by_data, calc_model_size_by_fs
from invokeai.backend.model_manager.load.optimizations import skip_torch_weight_init
from invokeai.backend.util.devices import choose_torch_device, torch_dtype
from invokeai.backend.util.devices import TorchDevice
# TO DO: The loader is not thread safe!
@ -37,7 +37,7 @@ class ModelLoader(ModelLoaderBase):
self._logger = logger
self._ram_cache = ram_cache
self._convert_cache = convert_cache
self._torch_dtype = torch_dtype(choose_torch_device())
self._torch_dtype = TorchDevice.choose_torch_dtype()
def load_model(self, model_config: AnyModelConfig, submodel_type: Optional[SubModelType] = None) -> LoadedModel:
"""

View File

@ -30,15 +30,12 @@ import torch
from invokeai.backend.model_manager import AnyModel, SubModelType
from invokeai.backend.model_manager.load.memory_snapshot import MemorySnapshot, get_pretty_snapshot_diff
from invokeai.backend.util.devices import choose_torch_device
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.logging import InvokeAILogger
from .model_cache_base import CacheRecord, CacheStats, ModelCacheBase, ModelLockerBase
from .model_locker import ModelLocker
if choose_torch_device() == torch.device("mps"):
from torch import mps
# Maximum size of the cache, in gigs
# Default is roughly enough to hold three fp16 diffusers models in RAM simultaneously
DEFAULT_MAX_CACHE_SIZE = 6.0
@ -244,9 +241,7 @@ class ModelCache(ModelCacheBase[AnyModel]):
f"Removing {cache_entry.key} from VRAM to free {(cache_entry.size/GIG):.2f}GB; vram free = {(torch.cuda.memory_allocated()/GIG):.2f}GB"
)
torch.cuda.empty_cache()
if choose_torch_device() == torch.device("mps"):
mps.empty_cache()
TorchDevice.empty_cache()
def move_model_to_device(self, cache_entry: CacheRecord[AnyModel], target_device: torch.device) -> None:
"""Move model into the indicated device.
@ -416,10 +411,7 @@ class ModelCache(ModelCacheBase[AnyModel]):
self.stats.cleared = models_cleared
gc.collect()
torch.cuda.empty_cache()
if choose_torch_device() == torch.device("mps"):
mps.empty_cache()
TorchDevice.empty_cache()
self.logger.debug(f"After making room: cached_models={len(self._cached_models)}")
def _delete_cache_entry(self, cache_entry: CacheRecord[AnyModel]) -> None:

View File

@ -17,7 +17,7 @@ from diffusers.utils import logging as dlogging
from invokeai.app.services.model_install import ModelInstallServiceBase
from invokeai.app.services.model_records.model_records_base import ModelRecordChanges
from invokeai.backend.util.devices import choose_torch_device, torch_dtype
from invokeai.backend.util.devices import TorchDevice
from . import (
AnyModelConfig,
@ -43,6 +43,7 @@ class ModelMerger(object):
Initialize a ModelMerger object with the model installer.
"""
self._installer = installer
self._dtype = TorchDevice.choose_torch_dtype()
def merge_diffusion_models(
self,
@ -68,7 +69,7 @@ class ModelMerger(object):
warnings.simplefilter("ignore")
verbosity = dlogging.get_verbosity()
dlogging.set_verbosity_error()
dtype = torch.float16 if variant == "fp16" else torch_dtype(choose_torch_device())
dtype = torch.float16 if variant == "fp16" else self._dtype
# Note that checkpoint_merger will not work with downloaded HuggingFace fp16 models
# until upstream https://github.com/huggingface/diffusers/pull/6670 is merged and released.
@ -151,7 +152,7 @@ class ModelMerger(object):
dump_path.mkdir(parents=True, exist_ok=True)
dump_path = dump_path / merged_model_name
dtype = torch.float16 if variant == "fp16" else torch_dtype(choose_torch_device())
dtype = torch.float16 if variant == "fp16" else self._dtype
merged_pipe.save_pretrained(dump_path.as_posix(), safe_serialization=True, torch_dtype=dtype, variant=variant)
# register model and get its unique key

View File

@ -28,7 +28,7 @@ from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
from invokeai.backend.stable_diffusion.diffusion.shared_invokeai_diffusion import InvokeAIDiffuserComponent
from invokeai.backend.stable_diffusion.diffusion.unet_attention_patcher import UNetAttentionPatcher
from invokeai.backend.util.attention import auto_detect_slice_size
from invokeai.backend.util.devices import normalize_device
from invokeai.backend.util.devices import TorchDevice
@dataclass
@ -258,7 +258,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
if self.unet.device.type == "cpu" or self.unet.device.type == "mps":
mem_free = psutil.virtual_memory().free
elif self.unet.device.type == "cuda":
mem_free, _ = torch.cuda.mem_get_info(normalize_device(self.unet.device))
mem_free, _ = torch.cuda.mem_get_info(TorchDevice.normalize(self.unet.device))
else:
raise ValueError(f"unrecognized device {self.unet.device}")
# input tensor of [1, 4, h/8, w/8]

View File

@ -2,7 +2,6 @@
Initialization file for invokeai.backend.util
"""
from .devices import choose_precision, choose_torch_device
from .logging import InvokeAILogger
from .util import GIG, Chdir, directory_size
@ -11,6 +10,4 @@ __all__ = [
"directory_size",
"Chdir",
"InvokeAILogger",
"choose_precision",
"choose_torch_device",
]

View File

@ -1,89 +1,110 @@
from __future__ import annotations
from contextlib import nullcontext
from typing import Literal, Optional, Union
from typing import Dict, Literal, Optional, Union
import torch
from torch import autocast
from deprecated import deprecated
from invokeai.app.services.config.config_default import PRECISION, get_config
from invokeai.app.services.config.config_default import get_config
# legacy APIs
TorchPrecisionNames = Literal["float32", "float16", "bfloat16"]
CPU_DEVICE = torch.device("cpu")
CUDA_DEVICE = torch.device("cuda")
MPS_DEVICE = torch.device("mps")
@deprecated("Use TorchDevice.choose_torch_dtype() instead.") # type: ignore
def choose_precision(device: torch.device) -> TorchPrecisionNames:
"""Return the string representation of the recommended torch device."""
torch_dtype = TorchDevice.choose_torch_dtype(device)
return PRECISION_TO_NAME[torch_dtype]
@deprecated("Use TorchDevice.choose_torch_device() instead.") # type: ignore
def choose_torch_device() -> torch.device:
"""Convenience routine for guessing which GPU device to run model on"""
config = get_config()
if config.device == "auto":
if torch.cuda.is_available():
return torch.device("cuda")
if hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
return torch.device("mps")
"""Return the torch.device to use for accelerated inference."""
return TorchDevice.choose_torch_device()
@deprecated("Use TorchDevice.choose_torch_dtype() instead.") # type: ignore
def torch_dtype(device: torch.device) -> torch.dtype:
"""Return the torch precision for the recommended torch device."""
return TorchDevice.choose_torch_dtype(device)
NAME_TO_PRECISION: Dict[TorchPrecisionNames, torch.dtype] = {
"float32": torch.float32,
"float16": torch.float16,
"bfloat16": torch.bfloat16,
}
PRECISION_TO_NAME: Dict[torch.dtype, TorchPrecisionNames] = {v: k for k, v in NAME_TO_PRECISION.items()}
class TorchDevice:
"""Abstraction layer for torch devices."""
@classmethod
def choose_torch_device(cls) -> torch.device:
"""Return the torch.device to use for accelerated inference."""
app_config = get_config()
if app_config.device != "auto":
device = torch.device(app_config.device)
elif torch.cuda.is_available():
device = CUDA_DEVICE
elif torch.backends.mps.is_available():
device = MPS_DEVICE
else:
return CPU_DEVICE
else:
return torch.device(config.device)
device = CPU_DEVICE
return cls.normalize(device)
@classmethod
def choose_torch_dtype(cls, device: Optional[torch.device] = None) -> torch.dtype:
"""Return the precision to use for accelerated inference."""
device = device or cls.choose_torch_device()
config = get_config()
if device.type == "cuda" and torch.cuda.is_available():
device_name = torch.cuda.get_device_name(device)
if "GeForce GTX 1660" in device_name or "GeForce GTX 1650" in device_name:
# These GPUs have limited support for float16
return cls._to_dtype("float32")
elif config.precision == "auto":
# Default to float16 for CUDA devices
return cls._to_dtype("float16")
else:
# Use the user-defined precision
return cls._to_dtype(config.precision)
def get_torch_device_name() -> str:
device = choose_torch_device()
return torch.cuda.get_device_name(device) if device.type == "cuda" else device.type.upper()
elif device.type == "mps" and torch.backends.mps.is_available():
if config.precision == "auto":
# Default to float16 for MPS devices
return cls._to_dtype("float16")
else:
# Use the user-defined precision
return cls._to_dtype(config.precision)
# CPU / safe fallback
return cls._to_dtype("float32")
@classmethod
def get_torch_device_name(cls) -> str:
"""Return the device name for the current torch device."""
device = cls.choose_torch_device()
return torch.cuda.get_device_name(device) if device.type == "cuda" else device.type.upper()
def choose_precision(device: torch.device) -> Literal["float32", "float16", "bfloat16"]:
"""Return an appropriate precision for the given torch device."""
app_config = get_config()
if device.type == "cuda":
device_name = torch.cuda.get_device_name(device)
if "GeForce GTX 1660" in device_name or "GeForce GTX 1650" in device_name:
# These GPUs have limited support for float16
return "float32"
elif app_config.precision == "auto" or app_config.precision == "autocast":
# Default to float16 for CUDA devices
return "float16"
else:
# Use the user-defined precision
return app_config.precision
elif device.type == "mps":
if app_config.precision == "auto" or app_config.precision == "autocast":
# Default to float16 for MPS devices
return "float16"
else:
# Use the user-defined precision
return app_config.precision
# CPU / safe fallback
return "float32"
def torch_dtype(device: Optional[torch.device] = None) -> torch.dtype:
device = device or choose_torch_device()
precision = choose_precision(device)
if precision == "float16":
return torch.float16
if precision == "bfloat16":
return torch.bfloat16
else:
# "auto", "autocast", "float32"
return torch.float32
def choose_autocast(precision: PRECISION):
"""Returns an autocast context or nullcontext for the given precision string"""
# float16 currently requires autocast to avoid errors like:
# 'expected scalar type Half but found Float'
if precision == "autocast" or precision == "float16":
return autocast
return nullcontext
def normalize_device(device: Union[str, torch.device]) -> torch.device:
"""Ensure device has a device index defined, if appropriate."""
device = torch.device(device)
if device.index is None:
# cuda might be the only torch backend that currently uses the device index?
# I don't see anything like `current_device` for cpu or mps.
if device.type == "cuda":
@classmethod
def normalize(cls, device: Union[str, torch.device]) -> torch.device:
"""Add the device index to CUDA devices."""
device = torch.device(device)
if device.index is None and device.type == "cuda" and torch.cuda.is_available():
device = torch.device(device.type, torch.cuda.current_device())
return device
return device
@classmethod
def empty_cache(cls) -> None:
"""Clear the GPU device cache."""
if torch.backends.mps.is_available():
torch.mps.empty_cache()
if torch.cuda.is_available():
torch.cuda.empty_cache()
@classmethod
def _to_dtype(cls, precision_name: TorchPrecisionNames) -> torch.dtype:
return NAME_TO_PRECISION[precision_name]

View File

@ -0,0 +1,132 @@
"""
Test abstract device class.
"""
from unittest.mock import patch
import pytest
import torch
from invokeai.app.services.config import get_config
from invokeai.backend.util.devices import TorchDevice, choose_precision, choose_torch_device, torch_dtype
devices = ["cpu", "cuda:0", "cuda:1", "mps"]
device_types_cpu = [("cpu", torch.float32), ("cuda:0", torch.float32), ("mps", torch.float32)]
device_types_cuda = [("cpu", torch.float32), ("cuda:0", torch.float16), ("mps", torch.float32)]
device_types_mps = [("cpu", torch.float32), ("cuda:0", torch.float32), ("mps", torch.float16)]
@pytest.mark.parametrize("device_name", devices)
def test_device_choice(device_name):
config = get_config()
config.device = device_name
torch_device = TorchDevice.choose_torch_device()
assert torch_device == torch.device(device_name)
@pytest.mark.parametrize("device_dtype_pair", device_types_cpu)
def test_device_dtype_cpu(device_dtype_pair):
with (
patch("torch.cuda.is_available", return_value=False),
patch("torch.backends.mps.is_available", return_value=False),
):
device_name, dtype = device_dtype_pair
config = get_config()
config.device = device_name
torch_dtype = TorchDevice.choose_torch_dtype()
assert torch_dtype == dtype
@pytest.mark.parametrize("device_dtype_pair", device_types_cuda)
def test_device_dtype_cuda(device_dtype_pair):
with (
patch("torch.cuda.is_available", return_value=True),
patch("torch.cuda.get_device_name", return_value="RTX4070"),
patch("torch.backends.mps.is_available", return_value=False),
):
device_name, dtype = device_dtype_pair
config = get_config()
config.device = device_name
torch_dtype = TorchDevice.choose_torch_dtype()
assert torch_dtype == dtype
@pytest.mark.parametrize("device_dtype_pair", device_types_mps)
def test_device_dtype_mps(device_dtype_pair):
with (
patch("torch.cuda.is_available", return_value=False),
patch("torch.backends.mps.is_available", return_value=True),
):
device_name, dtype = device_dtype_pair
config = get_config()
config.device = device_name
torch_dtype = TorchDevice.choose_torch_dtype()
assert torch_dtype == dtype
@pytest.mark.parametrize("device_dtype_pair", device_types_cuda)
def test_device_dtype_override(device_dtype_pair):
with (
patch("torch.cuda.get_device_name", return_value="RTX4070"),
patch("torch.cuda.is_available", return_value=True),
patch("torch.backends.mps.is_available", return_value=False),
):
device_name, dtype = device_dtype_pair
config = get_config()
config.device = device_name
config.precision = "float32"
torch_dtype = TorchDevice.choose_torch_dtype()
assert torch_dtype == torch.float32
def test_normalize():
assert (
TorchDevice.normalize("cuda") == torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cuda")
)
assert (
TorchDevice.normalize("cuda:0") == torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cuda")
)
assert (
TorchDevice.normalize("cuda:1") == torch.device("cuda:1") if torch.cuda.is_available() else torch.device("cuda")
)
assert TorchDevice.normalize("mps") == torch.device("mps")
assert TorchDevice.normalize("cpu") == torch.device("cpu")
@pytest.mark.parametrize("device_name", devices)
def test_legacy_device_choice(device_name):
config = get_config()
config.device = device_name
with pytest.deprecated_call():
torch_device = choose_torch_device()
assert torch_device == torch.device(device_name)
@pytest.mark.parametrize("device_dtype_pair", device_types_cpu)
def test_legacy_device_dtype_cpu(device_dtype_pair):
with (
patch("torch.cuda.is_available", return_value=False),
patch("torch.backends.mps.is_available", return_value=False),
patch("torch.cuda.get_device_name", return_value="RTX9090"),
):
device_name, dtype = device_dtype_pair
config = get_config()
config.device = device_name
with pytest.deprecated_call():
torch_device = choose_torch_device()
returned_dtype = torch_dtype(torch_device)
assert returned_dtype == dtype
def test_legacy_precision_name():
config = get_config()
config.precision = "auto"
with (
pytest.deprecated_call(),
patch("torch.cuda.is_available", return_value=True),
patch("torch.backends.mps.is_available", return_value=True),
patch("torch.cuda.get_device_name", return_value="RTX9090"),
):
assert "float16" == choose_precision(torch.device("cuda"))
assert "float16" == choose_precision(torch.device("mps"))
assert "float32" == choose_precision(torch.device("cpu"))