mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Merge branch 'main' into fix/inpaint_gen
This commit is contained in:
commit
e9a294f733
@ -25,10 +25,10 @@ This method is recommended for experienced users and developers
|
|||||||
#### [Docker Installation](040_INSTALL_DOCKER.md)
|
#### [Docker Installation](040_INSTALL_DOCKER.md)
|
||||||
This method is recommended for those familiar with running Docker containers
|
This method is recommended for those familiar with running Docker containers
|
||||||
### Other Installation Guides
|
### Other Installation Guides
|
||||||
- [PyPatchMatch](installation/060_INSTALL_PATCHMATCH.md)
|
- [PyPatchMatch](060_INSTALL_PATCHMATCH.md)
|
||||||
- [XFormers](installation/070_INSTALL_XFORMERS.md)
|
- [XFormers](070_INSTALL_XFORMERS.md)
|
||||||
- [CUDA and ROCm Drivers](installation/030_INSTALL_CUDA_AND_ROCM.md)
|
- [CUDA and ROCm Drivers](030_INSTALL_CUDA_AND_ROCM.md)
|
||||||
- [Installing New Models](installation/050_INSTALLING_MODELS.md)
|
- [Installing New Models](050_INSTALLING_MODELS.md)
|
||||||
|
|
||||||
## :fontawesome-solid-computer: Hardware Requirements
|
## :fontawesome-solid-computer: Hardware Requirements
|
||||||
|
|
||||||
|
@ -29,6 +29,7 @@ The abstract base class for this class is InvocationStatsServiceBase. An impleme
|
|||||||
writes to the system log is stored in InvocationServices.performance_statistics.
|
writes to the system log is stored in InvocationServices.performance_statistics.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
import psutil
|
||||||
import time
|
import time
|
||||||
from abc import ABC, abstractmethod
|
from abc import ABC, abstractmethod
|
||||||
from contextlib import AbstractContextManager
|
from contextlib import AbstractContextManager
|
||||||
@ -42,6 +43,11 @@ import invokeai.backend.util.logging as logger
|
|||||||
from ..invocations.baseinvocation import BaseInvocation
|
from ..invocations.baseinvocation import BaseInvocation
|
||||||
from .graph import GraphExecutionState
|
from .graph import GraphExecutionState
|
||||||
from .item_storage import ItemStorageABC
|
from .item_storage import ItemStorageABC
|
||||||
|
from .model_manager_service import ModelManagerService
|
||||||
|
from invokeai.backend.model_management.model_cache import CacheStats
|
||||||
|
|
||||||
|
# size of GIG in bytes
|
||||||
|
GIG = 1073741824
|
||||||
|
|
||||||
|
|
||||||
class InvocationStatsServiceBase(ABC):
|
class InvocationStatsServiceBase(ABC):
|
||||||
@ -89,6 +95,8 @@ class InvocationStatsServiceBase(ABC):
|
|||||||
invocation_type: str,
|
invocation_type: str,
|
||||||
time_used: float,
|
time_used: float,
|
||||||
vram_used: float,
|
vram_used: float,
|
||||||
|
ram_used: float,
|
||||||
|
ram_changed: float,
|
||||||
):
|
):
|
||||||
"""
|
"""
|
||||||
Add timing information on execution of a node. Usually
|
Add timing information on execution of a node. Usually
|
||||||
@ -97,6 +105,8 @@ class InvocationStatsServiceBase(ABC):
|
|||||||
:param invocation_type: String literal type of the node
|
:param invocation_type: String literal type of the node
|
||||||
:param time_used: Time used by node's exection (sec)
|
:param time_used: Time used by node's exection (sec)
|
||||||
:param vram_used: Maximum VRAM used during exection (GB)
|
:param vram_used: Maximum VRAM used during exection (GB)
|
||||||
|
:param ram_used: Current RAM available (GB)
|
||||||
|
:param ram_changed: Change in RAM usage over course of the run (GB)
|
||||||
"""
|
"""
|
||||||
pass
|
pass
|
||||||
|
|
||||||
@ -115,6 +125,9 @@ class NodeStats:
|
|||||||
calls: int = 0
|
calls: int = 0
|
||||||
time_used: float = 0.0 # seconds
|
time_used: float = 0.0 # seconds
|
||||||
max_vram: float = 0.0 # GB
|
max_vram: float = 0.0 # GB
|
||||||
|
cache_hits: int = 0
|
||||||
|
cache_misses: int = 0
|
||||||
|
cache_high_watermark: int = 0
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
@ -133,31 +146,62 @@ class InvocationStatsService(InvocationStatsServiceBase):
|
|||||||
self.graph_execution_manager = graph_execution_manager
|
self.graph_execution_manager = graph_execution_manager
|
||||||
# {graph_id => NodeLog}
|
# {graph_id => NodeLog}
|
||||||
self._stats: Dict[str, NodeLog] = {}
|
self._stats: Dict[str, NodeLog] = {}
|
||||||
|
self._cache_stats: Dict[str, CacheStats] = {}
|
||||||
|
self.ram_used: float = 0.0
|
||||||
|
self.ram_changed: float = 0.0
|
||||||
|
|
||||||
class StatsContext:
|
class StatsContext:
|
||||||
def __init__(self, invocation: BaseInvocation, graph_id: str, collector: "InvocationStatsServiceBase"):
|
"""Context manager for collecting statistics."""
|
||||||
|
|
||||||
|
invocation: BaseInvocation = None
|
||||||
|
collector: "InvocationStatsServiceBase" = None
|
||||||
|
graph_id: str = None
|
||||||
|
start_time: int = 0
|
||||||
|
ram_used: int = 0
|
||||||
|
model_manager: ModelManagerService = None
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
invocation: BaseInvocation,
|
||||||
|
graph_id: str,
|
||||||
|
model_manager: ModelManagerService,
|
||||||
|
collector: "InvocationStatsServiceBase",
|
||||||
|
):
|
||||||
|
"""Initialize statistics for this run."""
|
||||||
self.invocation = invocation
|
self.invocation = invocation
|
||||||
self.collector = collector
|
self.collector = collector
|
||||||
self.graph_id = graph_id
|
self.graph_id = graph_id
|
||||||
self.start_time = 0
|
self.start_time = 0
|
||||||
|
self.ram_used = 0
|
||||||
|
self.model_manager = model_manager
|
||||||
|
|
||||||
def __enter__(self):
|
def __enter__(self):
|
||||||
self.start_time = time.time()
|
self.start_time = time.time()
|
||||||
if torch.cuda.is_available():
|
if torch.cuda.is_available():
|
||||||
torch.cuda.reset_peak_memory_stats()
|
torch.cuda.reset_peak_memory_stats()
|
||||||
|
self.ram_used = psutil.Process().memory_info().rss
|
||||||
|
if self.model_manager:
|
||||||
|
self.model_manager.collect_cache_stats(self.collector._cache_stats[self.graph_id])
|
||||||
|
|
||||||
def __exit__(self, *args):
|
def __exit__(self, *args):
|
||||||
|
"""Called on exit from the context."""
|
||||||
|
ram_used = psutil.Process().memory_info().rss
|
||||||
|
self.collector.update_mem_stats(
|
||||||
|
ram_used=ram_used / GIG,
|
||||||
|
ram_changed=(ram_used - self.ram_used) / GIG,
|
||||||
|
)
|
||||||
self.collector.update_invocation_stats(
|
self.collector.update_invocation_stats(
|
||||||
self.graph_id,
|
graph_id=self.graph_id,
|
||||||
self.invocation.type,
|
invocation_type=self.invocation.type,
|
||||||
time.time() - self.start_time,
|
time_used=time.time() - self.start_time,
|
||||||
torch.cuda.max_memory_allocated() / 1e9 if torch.cuda.is_available() else 0.0,
|
vram_used=torch.cuda.max_memory_allocated() / GIG if torch.cuda.is_available() else 0.0,
|
||||||
)
|
)
|
||||||
|
|
||||||
def collect_stats(
|
def collect_stats(
|
||||||
self,
|
self,
|
||||||
invocation: BaseInvocation,
|
invocation: BaseInvocation,
|
||||||
graph_execution_state_id: str,
|
graph_execution_state_id: str,
|
||||||
|
model_manager: ModelManagerService,
|
||||||
) -> StatsContext:
|
) -> StatsContext:
|
||||||
"""
|
"""
|
||||||
Return a context object that will capture the statistics.
|
Return a context object that will capture the statistics.
|
||||||
@ -166,7 +210,8 @@ class InvocationStatsService(InvocationStatsServiceBase):
|
|||||||
"""
|
"""
|
||||||
if not self._stats.get(graph_execution_state_id): # first time we're seeing this
|
if not self._stats.get(graph_execution_state_id): # first time we're seeing this
|
||||||
self._stats[graph_execution_state_id] = NodeLog()
|
self._stats[graph_execution_state_id] = NodeLog()
|
||||||
return self.StatsContext(invocation, graph_execution_state_id, self)
|
self._cache_stats[graph_execution_state_id] = CacheStats()
|
||||||
|
return self.StatsContext(invocation, graph_execution_state_id, model_manager, self)
|
||||||
|
|
||||||
def reset_all_stats(self):
|
def reset_all_stats(self):
|
||||||
"""Zero all statistics"""
|
"""Zero all statistics"""
|
||||||
@ -179,13 +224,36 @@ class InvocationStatsService(InvocationStatsServiceBase):
|
|||||||
except KeyError:
|
except KeyError:
|
||||||
logger.warning(f"Attempted to clear statistics for unknown graph {graph_execution_id}")
|
logger.warning(f"Attempted to clear statistics for unknown graph {graph_execution_id}")
|
||||||
|
|
||||||
def update_invocation_stats(self, graph_id: str, invocation_type: str, time_used: float, vram_used: float):
|
def update_mem_stats(
|
||||||
|
self,
|
||||||
|
ram_used: float,
|
||||||
|
ram_changed: float,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Update the collector with RAM memory usage info.
|
||||||
|
|
||||||
|
:param ram_used: How much RAM is currently in use.
|
||||||
|
:param ram_changed: How much RAM changed since last generation.
|
||||||
|
"""
|
||||||
|
self.ram_used = ram_used
|
||||||
|
self.ram_changed = ram_changed
|
||||||
|
|
||||||
|
def update_invocation_stats(
|
||||||
|
self,
|
||||||
|
graph_id: str,
|
||||||
|
invocation_type: str,
|
||||||
|
time_used: float,
|
||||||
|
vram_used: float,
|
||||||
|
):
|
||||||
"""
|
"""
|
||||||
Add timing information on execution of a node. Usually
|
Add timing information on execution of a node. Usually
|
||||||
used internally.
|
used internally.
|
||||||
:param graph_id: ID of the graph that is currently executing
|
:param graph_id: ID of the graph that is currently executing
|
||||||
:param invocation_type: String literal type of the node
|
:param invocation_type: String literal type of the node
|
||||||
:param time_used: Floating point seconds used by node's exection
|
:param time_used: Time used by node's exection (sec)
|
||||||
|
:param vram_used: Maximum VRAM used during exection (GB)
|
||||||
|
:param ram_used: Current RAM available (GB)
|
||||||
|
:param ram_changed: Change in RAM usage over course of the run (GB)
|
||||||
"""
|
"""
|
||||||
if not self._stats[graph_id].nodes.get(invocation_type):
|
if not self._stats[graph_id].nodes.get(invocation_type):
|
||||||
self._stats[graph_id].nodes[invocation_type] = NodeStats()
|
self._stats[graph_id].nodes[invocation_type] = NodeStats()
|
||||||
@ -197,7 +265,7 @@ class InvocationStatsService(InvocationStatsServiceBase):
|
|||||||
def log_stats(self):
|
def log_stats(self):
|
||||||
"""
|
"""
|
||||||
Send the statistics to the system logger at the info level.
|
Send the statistics to the system logger at the info level.
|
||||||
Stats will only be printed if when the execution of the graph
|
Stats will only be printed when the execution of the graph
|
||||||
is complete.
|
is complete.
|
||||||
"""
|
"""
|
||||||
completed = set()
|
completed = set()
|
||||||
@ -208,16 +276,30 @@ class InvocationStatsService(InvocationStatsServiceBase):
|
|||||||
|
|
||||||
total_time = 0
|
total_time = 0
|
||||||
logger.info(f"Graph stats: {graph_id}")
|
logger.info(f"Graph stats: {graph_id}")
|
||||||
logger.info("Node Calls Seconds VRAM Used")
|
logger.info(f"{'Node':>30} {'Calls':>7}{'Seconds':>9} {'VRAM Used':>10}")
|
||||||
for node_type, stats in self._stats[graph_id].nodes.items():
|
for node_type, stats in self._stats[graph_id].nodes.items():
|
||||||
logger.info(f"{node_type:<20} {stats.calls:>5} {stats.time_used:7.3f}s {stats.max_vram:4.2f}G")
|
logger.info(f"{node_type:>30} {stats.calls:>4} {stats.time_used:7.3f}s {stats.max_vram:4.3f}G")
|
||||||
total_time += stats.time_used
|
total_time += stats.time_used
|
||||||
|
|
||||||
|
cache_stats = self._cache_stats[graph_id]
|
||||||
|
hwm = cache_stats.high_watermark / GIG
|
||||||
|
tot = cache_stats.cache_size / GIG
|
||||||
|
loaded = sum([v for v in cache_stats.loaded_model_sizes.values()]) / GIG
|
||||||
|
|
||||||
logger.info(f"TOTAL GRAPH EXECUTION TIME: {total_time:7.3f}s")
|
logger.info(f"TOTAL GRAPH EXECUTION TIME: {total_time:7.3f}s")
|
||||||
|
logger.info("RAM used by InvokeAI process: " + "%4.2fG" % self.ram_used + f" ({self.ram_changed:+5.3f}G)")
|
||||||
|
logger.info(f"RAM used to load models: {loaded:4.2f}G")
|
||||||
if torch.cuda.is_available():
|
if torch.cuda.is_available():
|
||||||
logger.info("Current VRAM utilization " + "%4.2fG" % (torch.cuda.memory_allocated() / 1e9))
|
logger.info("VRAM in use: " + "%4.3fG" % (torch.cuda.memory_allocated() / GIG))
|
||||||
|
logger.info("RAM cache statistics:")
|
||||||
|
logger.info(f" Model cache hits: {cache_stats.hits}")
|
||||||
|
logger.info(f" Model cache misses: {cache_stats.misses}")
|
||||||
|
logger.info(f" Models cached: {cache_stats.in_cache}")
|
||||||
|
logger.info(f" Models cleared from cache: {cache_stats.cleared}")
|
||||||
|
logger.info(f" Cache high water mark: {hwm:4.2f}/{tot:4.2f}G")
|
||||||
|
|
||||||
completed.add(graph_id)
|
completed.add(graph_id)
|
||||||
|
|
||||||
for graph_id in completed:
|
for graph_id in completed:
|
||||||
del self._stats[graph_id]
|
del self._stats[graph_id]
|
||||||
|
del self._cache_stats[graph_id]
|
||||||
|
@ -22,6 +22,7 @@ from invokeai.backend.model_management import (
|
|||||||
ModelNotFoundException,
|
ModelNotFoundException,
|
||||||
)
|
)
|
||||||
from invokeai.backend.model_management.model_search import FindModels
|
from invokeai.backend.model_management.model_search import FindModels
|
||||||
|
from invokeai.backend.model_management.model_cache import CacheStats
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
from invokeai.app.models.exceptions import CanceledException
|
from invokeai.app.models.exceptions import CanceledException
|
||||||
@ -276,6 +277,13 @@ class ModelManagerServiceBase(ABC):
|
|||||||
"""
|
"""
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def collect_cache_stats(self, cache_stats: CacheStats):
|
||||||
|
"""
|
||||||
|
Reset model cache statistics for graph with graph_id.
|
||||||
|
"""
|
||||||
|
pass
|
||||||
|
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
def commit(self, conf_file: Optional[Path] = None) -> None:
|
def commit(self, conf_file: Optional[Path] = None) -> None:
|
||||||
"""
|
"""
|
||||||
@ -500,6 +508,12 @@ class ModelManagerService(ModelManagerServiceBase):
|
|||||||
self.logger.debug(f"convert model {model_name}")
|
self.logger.debug(f"convert model {model_name}")
|
||||||
return self.mgr.convert_model(model_name, base_model, model_type, convert_dest_directory)
|
return self.mgr.convert_model(model_name, base_model, model_type, convert_dest_directory)
|
||||||
|
|
||||||
|
def collect_cache_stats(self, cache_stats: CacheStats):
|
||||||
|
"""
|
||||||
|
Reset model cache statistics for graph with graph_id.
|
||||||
|
"""
|
||||||
|
self.mgr.cache.stats = cache_stats
|
||||||
|
|
||||||
def commit(self, conf_file: Optional[Path] = None):
|
def commit(self, conf_file: Optional[Path] = None):
|
||||||
"""
|
"""
|
||||||
Write current configuration out to the indicated file.
|
Write current configuration out to the indicated file.
|
||||||
|
@ -86,7 +86,9 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
|
|||||||
|
|
||||||
# Invoke
|
# Invoke
|
||||||
try:
|
try:
|
||||||
with statistics.collect_stats(invocation, graph_execution_state.id):
|
graph_id = graph_execution_state.id
|
||||||
|
model_manager = self.__invoker.services.model_manager
|
||||||
|
with statistics.collect_stats(invocation, graph_id, model_manager):
|
||||||
# use the internal invoke_internal(), which wraps the node's invoke() method in
|
# use the internal invoke_internal(), which wraps the node's invoke() method in
|
||||||
# this accomodates nodes which require a value, but get it only from a
|
# this accomodates nodes which require a value, but get it only from a
|
||||||
# connection
|
# connection
|
||||||
|
@ -21,12 +21,12 @@ import os
|
|||||||
import sys
|
import sys
|
||||||
import hashlib
|
import hashlib
|
||||||
from contextlib import suppress
|
from contextlib import suppress
|
||||||
|
from dataclasses import dataclass, field
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Dict, Union, types, Optional, Type, Any
|
from typing import Dict, Union, types, Optional, Type, Any
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
import logging
|
|
||||||
import invokeai.backend.util.logging as logger
|
import invokeai.backend.util.logging as logger
|
||||||
from .models import BaseModelType, ModelType, SubModelType, ModelBase
|
from .models import BaseModelType, ModelType, SubModelType, ModelBase
|
||||||
|
|
||||||
@ -41,6 +41,18 @@ DEFAULT_MAX_VRAM_CACHE_SIZE = 2.75
|
|||||||
GIG = 1073741824
|
GIG = 1073741824
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class CacheStats(object):
|
||||||
|
hits: int = 0 # cache hits
|
||||||
|
misses: int = 0 # cache misses
|
||||||
|
high_watermark: int = 0 # amount of cache used
|
||||||
|
in_cache: int = 0 # number of models in cache
|
||||||
|
cleared: int = 0 # number of models cleared to make space
|
||||||
|
cache_size: int = 0 # total size of cache
|
||||||
|
# {submodel_key => size}
|
||||||
|
loaded_model_sizes: Dict[str, int] = field(default_factory=dict)
|
||||||
|
|
||||||
|
|
||||||
class ModelLocker(object):
|
class ModelLocker(object):
|
||||||
"Forward declaration"
|
"Forward declaration"
|
||||||
pass
|
pass
|
||||||
@ -115,6 +127,9 @@ class ModelCache(object):
|
|||||||
self.sha_chunksize = sha_chunksize
|
self.sha_chunksize = sha_chunksize
|
||||||
self.logger = logger
|
self.logger = logger
|
||||||
|
|
||||||
|
# used for stats collection
|
||||||
|
self.stats = None
|
||||||
|
|
||||||
self._cached_models = dict()
|
self._cached_models = dict()
|
||||||
self._cache_stack = list()
|
self._cache_stack = list()
|
||||||
|
|
||||||
@ -181,13 +196,14 @@ class ModelCache(object):
|
|||||||
model_type=model_type,
|
model_type=model_type,
|
||||||
submodel_type=submodel,
|
submodel_type=submodel,
|
||||||
)
|
)
|
||||||
|
|
||||||
# TODO: lock for no copies on simultaneous calls?
|
# TODO: lock for no copies on simultaneous calls?
|
||||||
cache_entry = self._cached_models.get(key, None)
|
cache_entry = self._cached_models.get(key, None)
|
||||||
if cache_entry is None:
|
if cache_entry is None:
|
||||||
self.logger.info(
|
self.logger.info(
|
||||||
f"Loading model {model_path}, type {base_model.value}:{model_type.value}{':'+submodel.value if submodel else ''}"
|
f"Loading model {model_path}, type {base_model.value}:{model_type.value}{':'+submodel.value if submodel else ''}"
|
||||||
)
|
)
|
||||||
|
if self.stats:
|
||||||
|
self.stats.misses += 1
|
||||||
|
|
||||||
# this will remove older cached models until
|
# this will remove older cached models until
|
||||||
# there is sufficient room to load the requested model
|
# there is sufficient room to load the requested model
|
||||||
@ -201,6 +217,17 @@ class ModelCache(object):
|
|||||||
|
|
||||||
cache_entry = _CacheRecord(self, model, mem_used)
|
cache_entry = _CacheRecord(self, model, mem_used)
|
||||||
self._cached_models[key] = cache_entry
|
self._cached_models[key] = cache_entry
|
||||||
|
else:
|
||||||
|
if self.stats:
|
||||||
|
self.stats.hits += 1
|
||||||
|
|
||||||
|
if self.stats:
|
||||||
|
self.stats.cache_size = self.max_cache_size * GIG
|
||||||
|
self.stats.high_watermark = max(self.stats.high_watermark, self._cache_size())
|
||||||
|
self.stats.in_cache = len(self._cached_models)
|
||||||
|
self.stats.loaded_model_sizes[key] = max(
|
||||||
|
self.stats.loaded_model_sizes.get(key, 0), model_info.get_size(submodel)
|
||||||
|
)
|
||||||
|
|
||||||
with suppress(Exception):
|
with suppress(Exception):
|
||||||
self._cache_stack.remove(key)
|
self._cache_stack.remove(key)
|
||||||
@ -280,14 +307,14 @@ class ModelCache(object):
|
|||||||
"""
|
"""
|
||||||
Given the HF repo id or path to a model on disk, returns a unique
|
Given the HF repo id or path to a model on disk, returns a unique
|
||||||
hash. Works for legacy checkpoint files, HF models on disk, and HF repo IDs
|
hash. Works for legacy checkpoint files, HF models on disk, and HF repo IDs
|
||||||
|
|
||||||
:param model_path: Path to model file/directory on disk.
|
:param model_path: Path to model file/directory on disk.
|
||||||
"""
|
"""
|
||||||
return self._local_model_hash(model_path)
|
return self._local_model_hash(model_path)
|
||||||
|
|
||||||
def cache_size(self) -> float:
|
def cache_size(self) -> float:
|
||||||
"Return the current size of the cache, in GB"
|
"""Return the current size of the cache, in GB."""
|
||||||
current_cache_size = sum([m.size for m in self._cached_models.values()])
|
return self._cache_size() / GIG
|
||||||
return current_cache_size / GIG
|
|
||||||
|
|
||||||
def _has_cuda(self) -> bool:
|
def _has_cuda(self) -> bool:
|
||||||
return self.execution_device.type == "cuda"
|
return self.execution_device.type == "cuda"
|
||||||
@ -310,12 +337,15 @@ class ModelCache(object):
|
|||||||
f"Current VRAM/RAM usage: {vram}/{ram}; cached_models/loaded_models/locked_models/ = {cached_models}/{loaded_models}/{locked_models}"
|
f"Current VRAM/RAM usage: {vram}/{ram}; cached_models/loaded_models/locked_models/ = {cached_models}/{loaded_models}/{locked_models}"
|
||||||
)
|
)
|
||||||
|
|
||||||
|
def _cache_size(self) -> int:
|
||||||
|
return sum([m.size for m in self._cached_models.values()])
|
||||||
|
|
||||||
def _make_cache_room(self, model_size):
|
def _make_cache_room(self, model_size):
|
||||||
# calculate how much memory this model will require
|
# calculate how much memory this model will require
|
||||||
# multiplier = 2 if self.precision==torch.float32 else 1
|
# multiplier = 2 if self.precision==torch.float32 else 1
|
||||||
bytes_needed = model_size
|
bytes_needed = model_size
|
||||||
maximum_size = self.max_cache_size * GIG # stored in GB, convert to bytes
|
maximum_size = self.max_cache_size * GIG # stored in GB, convert to bytes
|
||||||
current_size = sum([m.size for m in self._cached_models.values()])
|
current_size = self._cache_size()
|
||||||
|
|
||||||
if current_size + bytes_needed > maximum_size:
|
if current_size + bytes_needed > maximum_size:
|
||||||
self.logger.debug(
|
self.logger.debug(
|
||||||
@ -364,6 +394,8 @@ class ModelCache(object):
|
|||||||
f"Unloading model {model_key} to free {(model_size/GIG):.2f} GB (-{(cache_entry.size/GIG):.2f} GB)"
|
f"Unloading model {model_key} to free {(model_size/GIG):.2f} GB (-{(cache_entry.size/GIG):.2f} GB)"
|
||||||
)
|
)
|
||||||
current_size -= cache_entry.size
|
current_size -= cache_entry.size
|
||||||
|
if self.stats:
|
||||||
|
self.stats.cleared += 1
|
||||||
del self._cache_stack[pos]
|
del self._cache_stack[pos]
|
||||||
del self._cached_models[model_key]
|
del self._cached_models[model_key]
|
||||||
del cache_entry
|
del cache_entry
|
||||||
|
@ -240,6 +240,7 @@ class InvokeAIDiffuserComponent:
|
|||||||
controlnet_cond=control_datum.image_tensor,
|
controlnet_cond=control_datum.image_tensor,
|
||||||
conditioning_scale=controlnet_weight, # controlnet specific, NOT the guidance scale
|
conditioning_scale=controlnet_weight, # controlnet specific, NOT the guidance scale
|
||||||
encoder_attention_mask=encoder_attention_mask,
|
encoder_attention_mask=encoder_attention_mask,
|
||||||
|
added_cond_kwargs=added_cond_kwargs,
|
||||||
guess_mode=soft_injection, # this is still called guess_mode in diffusers ControlNetModel
|
guess_mode=soft_injection, # this is still called guess_mode in diffusers ControlNetModel
|
||||||
return_dict=False,
|
return_dict=False,
|
||||||
)
|
)
|
||||||
|
@ -4,8 +4,15 @@ import torch
|
|||||||
from torch import nn
|
from torch import nn
|
||||||
|
|
||||||
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
||||||
|
from diffusers.loaders import FromOriginalControlnetMixin
|
||||||
from diffusers.models.attention_processor import AttentionProcessor, AttnProcessor
|
from diffusers.models.attention_processor import AttentionProcessor, AttnProcessor
|
||||||
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
|
from diffusers.models.embeddings import (
|
||||||
|
TextImageProjection,
|
||||||
|
TextImageTimeEmbedding,
|
||||||
|
TextTimeEmbedding,
|
||||||
|
TimestepEmbedding,
|
||||||
|
Timesteps,
|
||||||
|
)
|
||||||
from diffusers.models.modeling_utils import ModelMixin
|
from diffusers.models.modeling_utils import ModelMixin
|
||||||
from diffusers.models.unet_2d_blocks import (
|
from diffusers.models.unet_2d_blocks import (
|
||||||
CrossAttnDownBlock2D,
|
CrossAttnDownBlock2D,
|
||||||
@ -18,10 +25,11 @@ from diffusers.models.unet_2d_condition import UNet2DConditionModel
|
|||||||
import diffusers
|
import diffusers
|
||||||
from diffusers.models.controlnet import ControlNetConditioningEmbedding, ControlNetOutput, zero_module
|
from diffusers.models.controlnet import ControlNetConditioningEmbedding, ControlNetOutput, zero_module
|
||||||
|
|
||||||
|
# TODO: create PR to diffusers
|
||||||
# Modified ControlNetModel with encoder_attention_mask argument added
|
# Modified ControlNetModel with encoder_attention_mask argument added
|
||||||
|
|
||||||
|
|
||||||
class ControlNetModel(ModelMixin, ConfigMixin):
|
class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlnetMixin):
|
||||||
"""
|
"""
|
||||||
A ControlNet model.
|
A ControlNet model.
|
||||||
|
|
||||||
@ -52,12 +60,25 @@ class ControlNetModel(ModelMixin, ConfigMixin):
|
|||||||
The epsilon to use for the normalization.
|
The epsilon to use for the normalization.
|
||||||
cross_attention_dim (`int`, defaults to 1280):
|
cross_attention_dim (`int`, defaults to 1280):
|
||||||
The dimension of the cross attention features.
|
The dimension of the cross attention features.
|
||||||
|
transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
|
||||||
|
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
||||||
|
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
||||||
|
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
||||||
|
encoder_hid_dim (`int`, *optional*, defaults to None):
|
||||||
|
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
||||||
|
dimension to `cross_attention_dim`.
|
||||||
|
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
||||||
|
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
||||||
|
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
||||||
attention_head_dim (`Union[int, Tuple[int]]`, defaults to 8):
|
attention_head_dim (`Union[int, Tuple[int]]`, defaults to 8):
|
||||||
The dimension of the attention heads.
|
The dimension of the attention heads.
|
||||||
use_linear_projection (`bool`, defaults to `False`):
|
use_linear_projection (`bool`, defaults to `False`):
|
||||||
class_embed_type (`str`, *optional*, defaults to `None`):
|
class_embed_type (`str`, *optional*, defaults to `None`):
|
||||||
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from None,
|
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from None,
|
||||||
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
||||||
|
addition_embed_type (`str`, *optional*, defaults to `None`):
|
||||||
|
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
||||||
|
"text". "text" will use the `TextTimeEmbedding` layer.
|
||||||
num_class_embeds (`int`, *optional*, defaults to 0):
|
num_class_embeds (`int`, *optional*, defaults to 0):
|
||||||
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
||||||
class conditioning with `class_embed_type` equal to `None`.
|
class conditioning with `class_embed_type` equal to `None`.
|
||||||
@ -98,10 +119,15 @@ class ControlNetModel(ModelMixin, ConfigMixin):
|
|||||||
norm_num_groups: Optional[int] = 32,
|
norm_num_groups: Optional[int] = 32,
|
||||||
norm_eps: float = 1e-5,
|
norm_eps: float = 1e-5,
|
||||||
cross_attention_dim: int = 1280,
|
cross_attention_dim: int = 1280,
|
||||||
|
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
||||||
|
encoder_hid_dim: Optional[int] = None,
|
||||||
|
encoder_hid_dim_type: Optional[str] = None,
|
||||||
attention_head_dim: Union[int, Tuple[int]] = 8,
|
attention_head_dim: Union[int, Tuple[int]] = 8,
|
||||||
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
||||||
use_linear_projection: bool = False,
|
use_linear_projection: bool = False,
|
||||||
class_embed_type: Optional[str] = None,
|
class_embed_type: Optional[str] = None,
|
||||||
|
addition_embed_type: Optional[str] = None,
|
||||||
|
addition_time_embed_dim: Optional[int] = None,
|
||||||
num_class_embeds: Optional[int] = None,
|
num_class_embeds: Optional[int] = None,
|
||||||
upcast_attention: bool = False,
|
upcast_attention: bool = False,
|
||||||
resnet_time_scale_shift: str = "default",
|
resnet_time_scale_shift: str = "default",
|
||||||
@ -109,6 +135,7 @@ class ControlNetModel(ModelMixin, ConfigMixin):
|
|||||||
controlnet_conditioning_channel_order: str = "rgb",
|
controlnet_conditioning_channel_order: str = "rgb",
|
||||||
conditioning_embedding_out_channels: Optional[Tuple[int]] = (16, 32, 96, 256),
|
conditioning_embedding_out_channels: Optional[Tuple[int]] = (16, 32, 96, 256),
|
||||||
global_pool_conditions: bool = False,
|
global_pool_conditions: bool = False,
|
||||||
|
addition_embed_type_num_heads=64,
|
||||||
):
|
):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
|
||||||
@ -136,6 +163,9 @@ class ControlNetModel(ModelMixin, ConfigMixin):
|
|||||||
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
||||||
)
|
)
|
||||||
|
|
||||||
|
if isinstance(transformer_layers_per_block, int):
|
||||||
|
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
||||||
|
|
||||||
# input
|
# input
|
||||||
conv_in_kernel = 3
|
conv_in_kernel = 3
|
||||||
conv_in_padding = (conv_in_kernel - 1) // 2
|
conv_in_padding = (conv_in_kernel - 1) // 2
|
||||||
@ -145,16 +175,43 @@ class ControlNetModel(ModelMixin, ConfigMixin):
|
|||||||
|
|
||||||
# time
|
# time
|
||||||
time_embed_dim = block_out_channels[0] * 4
|
time_embed_dim = block_out_channels[0] * 4
|
||||||
|
|
||||||
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
||||||
timestep_input_dim = block_out_channels[0]
|
timestep_input_dim = block_out_channels[0]
|
||||||
|
|
||||||
self.time_embedding = TimestepEmbedding(
|
self.time_embedding = TimestepEmbedding(
|
||||||
timestep_input_dim,
|
timestep_input_dim,
|
||||||
time_embed_dim,
|
time_embed_dim,
|
||||||
act_fn=act_fn,
|
act_fn=act_fn,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
||||||
|
encoder_hid_dim_type = "text_proj"
|
||||||
|
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
||||||
|
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
|
||||||
|
|
||||||
|
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
||||||
|
raise ValueError(
|
||||||
|
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
||||||
|
)
|
||||||
|
|
||||||
|
if encoder_hid_dim_type == "text_proj":
|
||||||
|
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
||||||
|
elif encoder_hid_dim_type == "text_image_proj":
|
||||||
|
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
||||||
|
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
||||||
|
# case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
|
||||||
|
self.encoder_hid_proj = TextImageProjection(
|
||||||
|
text_embed_dim=encoder_hid_dim,
|
||||||
|
image_embed_dim=cross_attention_dim,
|
||||||
|
cross_attention_dim=cross_attention_dim,
|
||||||
|
)
|
||||||
|
|
||||||
|
elif encoder_hid_dim_type is not None:
|
||||||
|
raise ValueError(
|
||||||
|
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
self.encoder_hid_proj = None
|
||||||
|
|
||||||
# class embedding
|
# class embedding
|
||||||
if class_embed_type is None and num_class_embeds is not None:
|
if class_embed_type is None and num_class_embeds is not None:
|
||||||
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
||||||
@ -178,6 +235,29 @@ class ControlNetModel(ModelMixin, ConfigMixin):
|
|||||||
else:
|
else:
|
||||||
self.class_embedding = None
|
self.class_embedding = None
|
||||||
|
|
||||||
|
if addition_embed_type == "text":
|
||||||
|
if encoder_hid_dim is not None:
|
||||||
|
text_time_embedding_from_dim = encoder_hid_dim
|
||||||
|
else:
|
||||||
|
text_time_embedding_from_dim = cross_attention_dim
|
||||||
|
|
||||||
|
self.add_embedding = TextTimeEmbedding(
|
||||||
|
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
|
||||||
|
)
|
||||||
|
elif addition_embed_type == "text_image":
|
||||||
|
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
||||||
|
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
||||||
|
# case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
|
||||||
|
self.add_embedding = TextImageTimeEmbedding(
|
||||||
|
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
|
||||||
|
)
|
||||||
|
elif addition_embed_type == "text_time":
|
||||||
|
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
|
||||||
|
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
||||||
|
|
||||||
|
elif addition_embed_type is not None:
|
||||||
|
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
|
||||||
|
|
||||||
# control net conditioning embedding
|
# control net conditioning embedding
|
||||||
self.controlnet_cond_embedding = ControlNetConditioningEmbedding(
|
self.controlnet_cond_embedding = ControlNetConditioningEmbedding(
|
||||||
conditioning_embedding_channels=block_out_channels[0],
|
conditioning_embedding_channels=block_out_channels[0],
|
||||||
@ -212,6 +292,7 @@ class ControlNetModel(ModelMixin, ConfigMixin):
|
|||||||
down_block = get_down_block(
|
down_block = get_down_block(
|
||||||
down_block_type,
|
down_block_type,
|
||||||
num_layers=layers_per_block,
|
num_layers=layers_per_block,
|
||||||
|
transformer_layers_per_block=transformer_layers_per_block[i],
|
||||||
in_channels=input_channel,
|
in_channels=input_channel,
|
||||||
out_channels=output_channel,
|
out_channels=output_channel,
|
||||||
temb_channels=time_embed_dim,
|
temb_channels=time_embed_dim,
|
||||||
@ -248,6 +329,7 @@ class ControlNetModel(ModelMixin, ConfigMixin):
|
|||||||
self.controlnet_mid_block = controlnet_block
|
self.controlnet_mid_block = controlnet_block
|
||||||
|
|
||||||
self.mid_block = UNetMidBlock2DCrossAttn(
|
self.mid_block = UNetMidBlock2DCrossAttn(
|
||||||
|
transformer_layers_per_block=transformer_layers_per_block[-1],
|
||||||
in_channels=mid_block_channel,
|
in_channels=mid_block_channel,
|
||||||
temb_channels=time_embed_dim,
|
temb_channels=time_embed_dim,
|
||||||
resnet_eps=norm_eps,
|
resnet_eps=norm_eps,
|
||||||
@ -277,7 +359,22 @@ class ControlNetModel(ModelMixin, ConfigMixin):
|
|||||||
The UNet model weights to copy to the [`ControlNetModel`]. All configuration options are also copied
|
The UNet model weights to copy to the [`ControlNetModel`]. All configuration options are also copied
|
||||||
where applicable.
|
where applicable.
|
||||||
"""
|
"""
|
||||||
|
transformer_layers_per_block = (
|
||||||
|
unet.config.transformer_layers_per_block if "transformer_layers_per_block" in unet.config else 1
|
||||||
|
)
|
||||||
|
encoder_hid_dim = unet.config.encoder_hid_dim if "encoder_hid_dim" in unet.config else None
|
||||||
|
encoder_hid_dim_type = unet.config.encoder_hid_dim_type if "encoder_hid_dim_type" in unet.config else None
|
||||||
|
addition_embed_type = unet.config.addition_embed_type if "addition_embed_type" in unet.config else None
|
||||||
|
addition_time_embed_dim = (
|
||||||
|
unet.config.addition_time_embed_dim if "addition_time_embed_dim" in unet.config else None
|
||||||
|
)
|
||||||
|
|
||||||
controlnet = cls(
|
controlnet = cls(
|
||||||
|
encoder_hid_dim=encoder_hid_dim,
|
||||||
|
encoder_hid_dim_type=encoder_hid_dim_type,
|
||||||
|
addition_embed_type=addition_embed_type,
|
||||||
|
addition_time_embed_dim=addition_time_embed_dim,
|
||||||
|
transformer_layers_per_block=transformer_layers_per_block,
|
||||||
in_channels=unet.config.in_channels,
|
in_channels=unet.config.in_channels,
|
||||||
flip_sin_to_cos=unet.config.flip_sin_to_cos,
|
flip_sin_to_cos=unet.config.flip_sin_to_cos,
|
||||||
freq_shift=unet.config.freq_shift,
|
freq_shift=unet.config.freq_shift,
|
||||||
@ -463,6 +560,7 @@ class ControlNetModel(ModelMixin, ConfigMixin):
|
|||||||
class_labels: Optional[torch.Tensor] = None,
|
class_labels: Optional[torch.Tensor] = None,
|
||||||
timestep_cond: Optional[torch.Tensor] = None,
|
timestep_cond: Optional[torch.Tensor] = None,
|
||||||
attention_mask: Optional[torch.Tensor] = None,
|
attention_mask: Optional[torch.Tensor] = None,
|
||||||
|
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
||||||
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||||
encoder_attention_mask: Optional[torch.Tensor] = None,
|
encoder_attention_mask: Optional[torch.Tensor] = None,
|
||||||
guess_mode: bool = False,
|
guess_mode: bool = False,
|
||||||
@ -486,6 +584,8 @@ class ControlNetModel(ModelMixin, ConfigMixin):
|
|||||||
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
||||||
timestep_cond (`torch.Tensor`, *optional*, defaults to `None`):
|
timestep_cond (`torch.Tensor`, *optional*, defaults to `None`):
|
||||||
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
|
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
|
||||||
|
added_cond_kwargs (`dict`):
|
||||||
|
Additional conditions for the Stable Diffusion XL UNet.
|
||||||
cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`):
|
cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`):
|
||||||
A kwargs dictionary that if specified is passed along to the `AttnProcessor`.
|
A kwargs dictionary that if specified is passed along to the `AttnProcessor`.
|
||||||
encoder_attention_mask (`torch.Tensor`):
|
encoder_attention_mask (`torch.Tensor`):
|
||||||
@ -549,6 +649,7 @@ class ControlNetModel(ModelMixin, ConfigMixin):
|
|||||||
t_emb = t_emb.to(dtype=sample.dtype)
|
t_emb = t_emb.to(dtype=sample.dtype)
|
||||||
|
|
||||||
emb = self.time_embedding(t_emb, timestep_cond)
|
emb = self.time_embedding(t_emb, timestep_cond)
|
||||||
|
aug_emb = None
|
||||||
|
|
||||||
if self.class_embedding is not None:
|
if self.class_embedding is not None:
|
||||||
if class_labels is None:
|
if class_labels is None:
|
||||||
@ -560,11 +661,34 @@ class ControlNetModel(ModelMixin, ConfigMixin):
|
|||||||
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
|
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
|
||||||
emb = emb + class_emb
|
emb = emb + class_emb
|
||||||
|
|
||||||
|
if "addition_embed_type" in self.config:
|
||||||
|
if self.config.addition_embed_type == "text":
|
||||||
|
aug_emb = self.add_embedding(encoder_hidden_states)
|
||||||
|
|
||||||
|
elif self.config.addition_embed_type == "text_time":
|
||||||
|
if "text_embeds" not in added_cond_kwargs:
|
||||||
|
raise ValueError(
|
||||||
|
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
||||||
|
)
|
||||||
|
text_embeds = added_cond_kwargs.get("text_embeds")
|
||||||
|
if "time_ids" not in added_cond_kwargs:
|
||||||
|
raise ValueError(
|
||||||
|
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
||||||
|
)
|
||||||
|
time_ids = added_cond_kwargs.get("time_ids")
|
||||||
|
time_embeds = self.add_time_proj(time_ids.flatten())
|
||||||
|
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
||||||
|
|
||||||
|
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
||||||
|
add_embeds = add_embeds.to(emb.dtype)
|
||||||
|
aug_emb = self.add_embedding(add_embeds)
|
||||||
|
|
||||||
|
emb = emb + aug_emb if aug_emb is not None else emb
|
||||||
|
|
||||||
# 2. pre-process
|
# 2. pre-process
|
||||||
sample = self.conv_in(sample)
|
sample = self.conv_in(sample)
|
||||||
|
|
||||||
controlnet_cond = self.controlnet_cond_embedding(controlnet_cond)
|
controlnet_cond = self.controlnet_cond_embedding(controlnet_cond)
|
||||||
|
|
||||||
sample = sample + controlnet_cond
|
sample = sample + controlnet_cond
|
||||||
|
|
||||||
# 3. down
|
# 3. down
|
||||||
|
@ -506,10 +506,14 @@
|
|||||||
"maskAdjustmentsHeader": "Mask Adjustments",
|
"maskAdjustmentsHeader": "Mask Adjustments",
|
||||||
"maskBlur": "Mask Blur",
|
"maskBlur": "Mask Blur",
|
||||||
"maskBlurMethod": "Mask Blur Method",
|
"maskBlurMethod": "Mask Blur Method",
|
||||||
|
"seamPaintingHeader": "Seam Painting",
|
||||||
"seamSize": "Seam Size",
|
"seamSize": "Seam Size",
|
||||||
"seamBlur": "Seam Blur",
|
"seamBlur": "Seam Blur",
|
||||||
"seamStrength": "Seam Strength",
|
|
||||||
"seamSteps": "Seam Steps",
|
"seamSteps": "Seam Steps",
|
||||||
|
"seamStrength": "Seam Strength",
|
||||||
|
"seamThreshold": "Seam Threshold",
|
||||||
|
"seamLowThreshold": "Low",
|
||||||
|
"seamHighThreshold": "High",
|
||||||
"scaleBeforeProcessing": "Scale Before Processing",
|
"scaleBeforeProcessing": "Scale Before Processing",
|
||||||
"scaledWidth": "Scaled W",
|
"scaledWidth": "Scaled W",
|
||||||
"scaledHeight": "Scaled H",
|
"scaledHeight": "Scaled H",
|
||||||
|
@ -121,7 +121,7 @@ export const addRequestedMultipleImageDeletionListener = () => {
|
|||||||
effect: async (action, { dispatch, getState }) => {
|
effect: async (action, { dispatch, getState }) => {
|
||||||
const { imageDTOs, imagesUsage } = action.payload;
|
const { imageDTOs, imagesUsage } = action.payload;
|
||||||
|
|
||||||
if (imageDTOs.length < 1 || imagesUsage.length < 1) {
|
if (imageDTOs.length <= 1 || imagesUsage.length <= 1) {
|
||||||
// handle singles in separate listener
|
// handle singles in separate listener
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
@ -32,6 +32,7 @@ import {
|
|||||||
MAIN_MODEL_LOADER,
|
MAIN_MODEL_LOADER,
|
||||||
MASK_BLUR,
|
MASK_BLUR,
|
||||||
MASK_COMBINE,
|
MASK_COMBINE,
|
||||||
|
MASK_EDGE,
|
||||||
MASK_FROM_ALPHA,
|
MASK_FROM_ALPHA,
|
||||||
MASK_RESIZE_DOWN,
|
MASK_RESIZE_DOWN,
|
||||||
MASK_RESIZE_UP,
|
MASK_RESIZE_UP,
|
||||||
@ -40,6 +41,10 @@ import {
|
|||||||
POSITIVE_CONDITIONING,
|
POSITIVE_CONDITIONING,
|
||||||
RANDOM_INT,
|
RANDOM_INT,
|
||||||
RANGE_OF_SIZE,
|
RANGE_OF_SIZE,
|
||||||
|
SEAM_FIX_DENOISE_LATENTS,
|
||||||
|
SEAM_MASK_COMBINE,
|
||||||
|
SEAM_MASK_RESIZE_DOWN,
|
||||||
|
SEAM_MASK_RESIZE_UP,
|
||||||
} from './constants';
|
} from './constants';
|
||||||
|
|
||||||
/**
|
/**
|
||||||
@ -67,6 +72,12 @@ export const buildCanvasOutpaintGraph = (
|
|||||||
shouldUseCpuNoise,
|
shouldUseCpuNoise,
|
||||||
maskBlur,
|
maskBlur,
|
||||||
maskBlurMethod,
|
maskBlurMethod,
|
||||||
|
seamSize,
|
||||||
|
seamBlur,
|
||||||
|
seamSteps,
|
||||||
|
seamStrength,
|
||||||
|
seamLowThreshold,
|
||||||
|
seamHighThreshold,
|
||||||
tileSize,
|
tileSize,
|
||||||
infillMethod,
|
infillMethod,
|
||||||
clipSkip,
|
clipSkip,
|
||||||
@ -130,6 +141,11 @@ export const buildCanvasOutpaintGraph = (
|
|||||||
is_intermediate: true,
|
is_intermediate: true,
|
||||||
mask2: canvasMaskImage,
|
mask2: canvasMaskImage,
|
||||||
},
|
},
|
||||||
|
[SEAM_MASK_COMBINE]: {
|
||||||
|
type: 'mask_combine',
|
||||||
|
id: MASK_COMBINE,
|
||||||
|
is_intermediate: true,
|
||||||
|
},
|
||||||
[MASK_BLUR]: {
|
[MASK_BLUR]: {
|
||||||
type: 'img_blur',
|
type: 'img_blur',
|
||||||
id: MASK_BLUR,
|
id: MASK_BLUR,
|
||||||
@ -165,6 +181,25 @@ export const buildCanvasOutpaintGraph = (
|
|||||||
denoising_start: 1 - strength,
|
denoising_start: 1 - strength,
|
||||||
denoising_end: 1,
|
denoising_end: 1,
|
||||||
},
|
},
|
||||||
|
[MASK_EDGE]: {
|
||||||
|
type: 'mask_edge',
|
||||||
|
id: MASK_EDGE,
|
||||||
|
is_intermediate: true,
|
||||||
|
edge_size: seamSize,
|
||||||
|
edge_blur: seamBlur,
|
||||||
|
low_threshold: seamLowThreshold,
|
||||||
|
high_threshold: seamHighThreshold,
|
||||||
|
},
|
||||||
|
[SEAM_FIX_DENOISE_LATENTS]: {
|
||||||
|
type: 'denoise_latents',
|
||||||
|
id: SEAM_FIX_DENOISE_LATENTS,
|
||||||
|
is_intermediate: true,
|
||||||
|
steps: seamSteps,
|
||||||
|
cfg_scale: cfg_scale,
|
||||||
|
scheduler: scheduler,
|
||||||
|
denoising_start: 1 - seamStrength,
|
||||||
|
denoising_end: 1,
|
||||||
|
},
|
||||||
[LATENTS_TO_IMAGE]: {
|
[LATENTS_TO_IMAGE]: {
|
||||||
type: 'l2i',
|
type: 'l2i',
|
||||||
id: LATENTS_TO_IMAGE,
|
id: LATENTS_TO_IMAGE,
|
||||||
@ -333,12 +368,63 @@ export const buildCanvasOutpaintGraph = (
|
|||||||
field: 'seed',
|
field: 'seed',
|
||||||
},
|
},
|
||||||
},
|
},
|
||||||
// Decode the result from Inpaint
|
// Seam Paint
|
||||||
|
{
|
||||||
|
source: {
|
||||||
|
node_id: MAIN_MODEL_LOADER,
|
||||||
|
field: 'unet',
|
||||||
|
},
|
||||||
|
destination: {
|
||||||
|
node_id: SEAM_FIX_DENOISE_LATENTS,
|
||||||
|
field: 'unet',
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
source: {
|
||||||
|
node_id: POSITIVE_CONDITIONING,
|
||||||
|
field: 'conditioning',
|
||||||
|
},
|
||||||
|
destination: {
|
||||||
|
node_id: SEAM_FIX_DENOISE_LATENTS,
|
||||||
|
field: 'positive_conditioning',
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
source: {
|
||||||
|
node_id: NEGATIVE_CONDITIONING,
|
||||||
|
field: 'conditioning',
|
||||||
|
},
|
||||||
|
destination: {
|
||||||
|
node_id: SEAM_FIX_DENOISE_LATENTS,
|
||||||
|
field: 'negative_conditioning',
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
source: {
|
||||||
|
node_id: NOISE,
|
||||||
|
field: 'noise',
|
||||||
|
},
|
||||||
|
destination: {
|
||||||
|
node_id: SEAM_FIX_DENOISE_LATENTS,
|
||||||
|
field: 'noise',
|
||||||
|
},
|
||||||
|
},
|
||||||
{
|
{
|
||||||
source: {
|
source: {
|
||||||
node_id: DENOISE_LATENTS,
|
node_id: DENOISE_LATENTS,
|
||||||
field: 'latents',
|
field: 'latents',
|
||||||
},
|
},
|
||||||
|
destination: {
|
||||||
|
node_id: SEAM_FIX_DENOISE_LATENTS,
|
||||||
|
field: 'latents',
|
||||||
|
},
|
||||||
|
},
|
||||||
|
// Decode the result from Inpaint
|
||||||
|
{
|
||||||
|
source: {
|
||||||
|
node_id: SEAM_FIX_DENOISE_LATENTS,
|
||||||
|
field: 'latents',
|
||||||
|
},
|
||||||
destination: {
|
destination: {
|
||||||
node_id: LATENTS_TO_IMAGE,
|
node_id: LATENTS_TO_IMAGE,
|
||||||
field: 'latents',
|
field: 'latents',
|
||||||
@ -348,7 +434,6 @@ export const buildCanvasOutpaintGraph = (
|
|||||||
};
|
};
|
||||||
|
|
||||||
// Add Infill Nodes
|
// Add Infill Nodes
|
||||||
|
|
||||||
if (infillMethod === 'patchmatch') {
|
if (infillMethod === 'patchmatch') {
|
||||||
graph.nodes[INPAINT_INFILL] = {
|
graph.nodes[INPAINT_INFILL] = {
|
||||||
type: 'infill_patchmatch',
|
type: 'infill_patchmatch',
|
||||||
@ -378,6 +463,13 @@ export const buildCanvasOutpaintGraph = (
|
|||||||
width: scaledWidth,
|
width: scaledWidth,
|
||||||
height: scaledHeight,
|
height: scaledHeight,
|
||||||
};
|
};
|
||||||
|
graph.nodes[SEAM_MASK_RESIZE_UP] = {
|
||||||
|
type: 'img_resize',
|
||||||
|
id: SEAM_MASK_RESIZE_UP,
|
||||||
|
is_intermediate: true,
|
||||||
|
width: scaledWidth,
|
||||||
|
height: scaledHeight,
|
||||||
|
};
|
||||||
graph.nodes[INPAINT_IMAGE_RESIZE_DOWN] = {
|
graph.nodes[INPAINT_IMAGE_RESIZE_DOWN] = {
|
||||||
type: 'img_resize',
|
type: 'img_resize',
|
||||||
id: INPAINT_IMAGE_RESIZE_DOWN,
|
id: INPAINT_IMAGE_RESIZE_DOWN,
|
||||||
@ -399,6 +491,13 @@ export const buildCanvasOutpaintGraph = (
|
|||||||
width: width,
|
width: width,
|
||||||
height: height,
|
height: height,
|
||||||
};
|
};
|
||||||
|
graph.nodes[SEAM_MASK_RESIZE_DOWN] = {
|
||||||
|
type: 'img_resize',
|
||||||
|
id: SEAM_MASK_RESIZE_DOWN,
|
||||||
|
is_intermediate: true,
|
||||||
|
width: width,
|
||||||
|
height: height,
|
||||||
|
};
|
||||||
|
|
||||||
graph.nodes[NOISE] = {
|
graph.nodes[NOISE] = {
|
||||||
...(graph.nodes[NOISE] as NoiseInvocation),
|
...(graph.nodes[NOISE] as NoiseInvocation),
|
||||||
@ -440,6 +539,57 @@ export const buildCanvasOutpaintGraph = (
|
|||||||
field: 'image',
|
field: 'image',
|
||||||
},
|
},
|
||||||
},
|
},
|
||||||
|
// Seam Paint Mask
|
||||||
|
{
|
||||||
|
source: {
|
||||||
|
node_id: MASK_FROM_ALPHA,
|
||||||
|
field: 'image',
|
||||||
|
},
|
||||||
|
destination: {
|
||||||
|
node_id: MASK_EDGE,
|
||||||
|
field: 'image',
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
source: {
|
||||||
|
node_id: MASK_EDGE,
|
||||||
|
field: 'image',
|
||||||
|
},
|
||||||
|
destination: {
|
||||||
|
node_id: SEAM_MASK_RESIZE_UP,
|
||||||
|
field: 'image',
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
source: {
|
||||||
|
node_id: SEAM_MASK_RESIZE_UP,
|
||||||
|
field: 'image',
|
||||||
|
},
|
||||||
|
destination: {
|
||||||
|
node_id: SEAM_FIX_DENOISE_LATENTS,
|
||||||
|
field: 'mask',
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
source: {
|
||||||
|
node_id: MASK_BLUR,
|
||||||
|
field: 'image',
|
||||||
|
},
|
||||||
|
destination: {
|
||||||
|
node_id: SEAM_MASK_COMBINE,
|
||||||
|
field: 'mask1',
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
source: {
|
||||||
|
node_id: SEAM_MASK_RESIZE_UP,
|
||||||
|
field: 'image',
|
||||||
|
},
|
||||||
|
destination: {
|
||||||
|
node_id: SEAM_MASK_COMBINE,
|
||||||
|
field: 'mask2',
|
||||||
|
},
|
||||||
|
},
|
||||||
// Resize Results Down
|
// Resize Results Down
|
||||||
{
|
{
|
||||||
source: {
|
source: {
|
||||||
@ -453,7 +603,7 @@ export const buildCanvasOutpaintGraph = (
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
source: {
|
source: {
|
||||||
node_id: MASK_BLUR,
|
node_id: MASK_RESIZE_UP,
|
||||||
field: 'image',
|
field: 'image',
|
||||||
},
|
},
|
||||||
destination: {
|
destination: {
|
||||||
@ -461,6 +611,16 @@ export const buildCanvasOutpaintGraph = (
|
|||||||
field: 'image',
|
field: 'image',
|
||||||
},
|
},
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
source: {
|
||||||
|
node_id: SEAM_MASK_COMBINE,
|
||||||
|
field: 'image',
|
||||||
|
},
|
||||||
|
destination: {
|
||||||
|
node_id: SEAM_MASK_RESIZE_DOWN,
|
||||||
|
field: 'image',
|
||||||
|
},
|
||||||
|
},
|
||||||
{
|
{
|
||||||
source: {
|
source: {
|
||||||
node_id: INPAINT_INFILL,
|
node_id: INPAINT_INFILL,
|
||||||
@ -494,7 +654,7 @@ export const buildCanvasOutpaintGraph = (
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
source: {
|
source: {
|
||||||
node_id: MASK_RESIZE_DOWN,
|
node_id: SEAM_MASK_RESIZE_DOWN,
|
||||||
field: 'image',
|
field: 'image',
|
||||||
},
|
},
|
||||||
destination: {
|
destination: {
|
||||||
@ -525,7 +685,7 @@ export const buildCanvasOutpaintGraph = (
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
source: {
|
source: {
|
||||||
node_id: MASK_RESIZE_DOWN,
|
node_id: SEAM_MASK_RESIZE_DOWN,
|
||||||
field: 'image',
|
field: 'image',
|
||||||
},
|
},
|
||||||
destination: {
|
destination: {
|
||||||
@ -553,7 +713,6 @@ export const buildCanvasOutpaintGraph = (
|
|||||||
};
|
};
|
||||||
graph.nodes[MASK_BLUR] = {
|
graph.nodes[MASK_BLUR] = {
|
||||||
...(graph.nodes[MASK_BLUR] as ImageBlurInvocation),
|
...(graph.nodes[MASK_BLUR] as ImageBlurInvocation),
|
||||||
image: canvasMaskImage,
|
|
||||||
};
|
};
|
||||||
|
|
||||||
graph.edges.push(
|
graph.edges.push(
|
||||||
@ -568,6 +727,47 @@ export const buildCanvasOutpaintGraph = (
|
|||||||
field: 'image',
|
field: 'image',
|
||||||
},
|
},
|
||||||
},
|
},
|
||||||
|
// Seam Paint Mask
|
||||||
|
{
|
||||||
|
source: {
|
||||||
|
node_id: MASK_FROM_ALPHA,
|
||||||
|
field: 'image',
|
||||||
|
},
|
||||||
|
destination: {
|
||||||
|
node_id: MASK_EDGE,
|
||||||
|
field: 'image',
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
source: {
|
||||||
|
node_id: MASK_EDGE,
|
||||||
|
field: 'image',
|
||||||
|
},
|
||||||
|
destination: {
|
||||||
|
node_id: SEAM_FIX_DENOISE_LATENTS,
|
||||||
|
field: 'mask',
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
source: {
|
||||||
|
node_id: MASK_FROM_ALPHA,
|
||||||
|
field: 'image',
|
||||||
|
},
|
||||||
|
destination: {
|
||||||
|
node_id: SEAM_MASK_COMBINE,
|
||||||
|
field: 'mask1',
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
source: {
|
||||||
|
node_id: MASK_EDGE,
|
||||||
|
field: 'image',
|
||||||
|
},
|
||||||
|
destination: {
|
||||||
|
node_id: SEAM_MASK_COMBINE,
|
||||||
|
field: 'mask2',
|
||||||
|
},
|
||||||
|
},
|
||||||
// Color Correct The Inpainted Result
|
// Color Correct The Inpainted Result
|
||||||
{
|
{
|
||||||
source: {
|
source: {
|
||||||
@ -591,7 +791,7 @@ export const buildCanvasOutpaintGraph = (
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
source: {
|
source: {
|
||||||
node_id: MASK_BLUR,
|
node_id: SEAM_MASK_COMBINE,
|
||||||
field: 'image',
|
field: 'image',
|
||||||
},
|
},
|
||||||
destination: {
|
destination: {
|
||||||
@ -622,7 +822,7 @@ export const buildCanvasOutpaintGraph = (
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
source: {
|
source: {
|
||||||
node_id: MASK_BLUR,
|
node_id: SEAM_MASK_COMBINE,
|
||||||
field: 'image',
|
field: 'image',
|
||||||
},
|
},
|
||||||
destination: {
|
destination: {
|
||||||
|
@ -29,6 +29,7 @@ import {
|
|||||||
LATENTS_TO_IMAGE,
|
LATENTS_TO_IMAGE,
|
||||||
MASK_BLUR,
|
MASK_BLUR,
|
||||||
MASK_COMBINE,
|
MASK_COMBINE,
|
||||||
|
MASK_EDGE,
|
||||||
MASK_FROM_ALPHA,
|
MASK_FROM_ALPHA,
|
||||||
MASK_RESIZE_DOWN,
|
MASK_RESIZE_DOWN,
|
||||||
MASK_RESIZE_UP,
|
MASK_RESIZE_UP,
|
||||||
@ -40,6 +41,10 @@ import {
|
|||||||
SDXL_CANVAS_OUTPAINT_GRAPH,
|
SDXL_CANVAS_OUTPAINT_GRAPH,
|
||||||
SDXL_DENOISE_LATENTS,
|
SDXL_DENOISE_LATENTS,
|
||||||
SDXL_MODEL_LOADER,
|
SDXL_MODEL_LOADER,
|
||||||
|
SEAM_FIX_DENOISE_LATENTS,
|
||||||
|
SEAM_MASK_COMBINE,
|
||||||
|
SEAM_MASK_RESIZE_DOWN,
|
||||||
|
SEAM_MASK_RESIZE_UP,
|
||||||
} from './constants';
|
} from './constants';
|
||||||
import { craftSDXLStylePrompt } from './helpers/craftSDXLStylePrompt';
|
import { craftSDXLStylePrompt } from './helpers/craftSDXLStylePrompt';
|
||||||
|
|
||||||
@ -67,6 +72,12 @@ export const buildCanvasSDXLOutpaintGraph = (
|
|||||||
shouldUseCpuNoise,
|
shouldUseCpuNoise,
|
||||||
maskBlur,
|
maskBlur,
|
||||||
maskBlurMethod,
|
maskBlurMethod,
|
||||||
|
seamSize,
|
||||||
|
seamBlur,
|
||||||
|
seamSteps,
|
||||||
|
seamStrength,
|
||||||
|
seamLowThreshold,
|
||||||
|
seamHighThreshold,
|
||||||
tileSize,
|
tileSize,
|
||||||
infillMethod,
|
infillMethod,
|
||||||
} = state.generation;
|
} = state.generation;
|
||||||
@ -133,6 +144,11 @@ export const buildCanvasSDXLOutpaintGraph = (
|
|||||||
is_intermediate: true,
|
is_intermediate: true,
|
||||||
mask2: canvasMaskImage,
|
mask2: canvasMaskImage,
|
||||||
},
|
},
|
||||||
|
[SEAM_MASK_COMBINE]: {
|
||||||
|
type: 'mask_combine',
|
||||||
|
id: MASK_COMBINE,
|
||||||
|
is_intermediate: true,
|
||||||
|
},
|
||||||
[MASK_BLUR]: {
|
[MASK_BLUR]: {
|
||||||
type: 'img_blur',
|
type: 'img_blur',
|
||||||
id: MASK_BLUR,
|
id: MASK_BLUR,
|
||||||
@ -170,6 +186,25 @@ export const buildCanvasSDXLOutpaintGraph = (
|
|||||||
: 1 - strength,
|
: 1 - strength,
|
||||||
denoising_end: shouldUseSDXLRefiner ? refinerStart : 1,
|
denoising_end: shouldUseSDXLRefiner ? refinerStart : 1,
|
||||||
},
|
},
|
||||||
|
[MASK_EDGE]: {
|
||||||
|
type: 'mask_edge',
|
||||||
|
id: MASK_EDGE,
|
||||||
|
is_intermediate: true,
|
||||||
|
edge_size: seamSize,
|
||||||
|
edge_blur: seamBlur,
|
||||||
|
low_threshold: seamLowThreshold,
|
||||||
|
high_threshold: seamHighThreshold,
|
||||||
|
},
|
||||||
|
[SEAM_FIX_DENOISE_LATENTS]: {
|
||||||
|
type: 'denoise_latents',
|
||||||
|
id: SEAM_FIX_DENOISE_LATENTS,
|
||||||
|
is_intermediate: true,
|
||||||
|
steps: seamSteps,
|
||||||
|
cfg_scale: cfg_scale,
|
||||||
|
scheduler: scheduler,
|
||||||
|
denoising_start: 1 - seamStrength,
|
||||||
|
denoising_end: 1,
|
||||||
|
},
|
||||||
[LATENTS_TO_IMAGE]: {
|
[LATENTS_TO_IMAGE]: {
|
||||||
type: 'l2i',
|
type: 'l2i',
|
||||||
id: LATENTS_TO_IMAGE,
|
id: LATENTS_TO_IMAGE,
|
||||||
@ -347,12 +382,63 @@ export const buildCanvasSDXLOutpaintGraph = (
|
|||||||
field: 'seed',
|
field: 'seed',
|
||||||
},
|
},
|
||||||
},
|
},
|
||||||
// Decode inpainted latents to image
|
// Seam Paint
|
||||||
|
{
|
||||||
|
source: {
|
||||||
|
node_id: SDXL_MODEL_LOADER,
|
||||||
|
field: 'unet',
|
||||||
|
},
|
||||||
|
destination: {
|
||||||
|
node_id: SEAM_FIX_DENOISE_LATENTS,
|
||||||
|
field: 'unet',
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
source: {
|
||||||
|
node_id: POSITIVE_CONDITIONING,
|
||||||
|
field: 'conditioning',
|
||||||
|
},
|
||||||
|
destination: {
|
||||||
|
node_id: SEAM_FIX_DENOISE_LATENTS,
|
||||||
|
field: 'positive_conditioning',
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
source: {
|
||||||
|
node_id: NEGATIVE_CONDITIONING,
|
||||||
|
field: 'conditioning',
|
||||||
|
},
|
||||||
|
destination: {
|
||||||
|
node_id: SEAM_FIX_DENOISE_LATENTS,
|
||||||
|
field: 'negative_conditioning',
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
source: {
|
||||||
|
node_id: NOISE,
|
||||||
|
field: 'noise',
|
||||||
|
},
|
||||||
|
destination: {
|
||||||
|
node_id: SEAM_FIX_DENOISE_LATENTS,
|
||||||
|
field: 'noise',
|
||||||
|
},
|
||||||
|
},
|
||||||
{
|
{
|
||||||
source: {
|
source: {
|
||||||
node_id: SDXL_DENOISE_LATENTS,
|
node_id: SDXL_DENOISE_LATENTS,
|
||||||
field: 'latents',
|
field: 'latents',
|
||||||
},
|
},
|
||||||
|
destination: {
|
||||||
|
node_id: SEAM_FIX_DENOISE_LATENTS,
|
||||||
|
field: 'latents',
|
||||||
|
},
|
||||||
|
},
|
||||||
|
// Decode inpainted latents to image
|
||||||
|
{
|
||||||
|
source: {
|
||||||
|
node_id: SEAM_FIX_DENOISE_LATENTS,
|
||||||
|
field: 'latents',
|
||||||
|
},
|
||||||
destination: {
|
destination: {
|
||||||
node_id: LATENTS_TO_IMAGE,
|
node_id: LATENTS_TO_IMAGE,
|
||||||
field: 'latents',
|
field: 'latents',
|
||||||
@ -392,6 +478,13 @@ export const buildCanvasSDXLOutpaintGraph = (
|
|||||||
width: scaledWidth,
|
width: scaledWidth,
|
||||||
height: scaledHeight,
|
height: scaledHeight,
|
||||||
};
|
};
|
||||||
|
graph.nodes[SEAM_MASK_RESIZE_UP] = {
|
||||||
|
type: 'img_resize',
|
||||||
|
id: SEAM_MASK_RESIZE_UP,
|
||||||
|
is_intermediate: true,
|
||||||
|
width: scaledWidth,
|
||||||
|
height: scaledHeight,
|
||||||
|
};
|
||||||
graph.nodes[INPAINT_IMAGE_RESIZE_DOWN] = {
|
graph.nodes[INPAINT_IMAGE_RESIZE_DOWN] = {
|
||||||
type: 'img_resize',
|
type: 'img_resize',
|
||||||
id: INPAINT_IMAGE_RESIZE_DOWN,
|
id: INPAINT_IMAGE_RESIZE_DOWN,
|
||||||
@ -413,6 +506,13 @@ export const buildCanvasSDXLOutpaintGraph = (
|
|||||||
width: width,
|
width: width,
|
||||||
height: height,
|
height: height,
|
||||||
};
|
};
|
||||||
|
graph.nodes[SEAM_MASK_RESIZE_DOWN] = {
|
||||||
|
type: 'img_resize',
|
||||||
|
id: SEAM_MASK_RESIZE_DOWN,
|
||||||
|
is_intermediate: true,
|
||||||
|
width: width,
|
||||||
|
height: height,
|
||||||
|
};
|
||||||
|
|
||||||
graph.nodes[NOISE] = {
|
graph.nodes[NOISE] = {
|
||||||
...(graph.nodes[NOISE] as NoiseInvocation),
|
...(graph.nodes[NOISE] as NoiseInvocation),
|
||||||
@ -454,6 +554,57 @@ export const buildCanvasSDXLOutpaintGraph = (
|
|||||||
field: 'image',
|
field: 'image',
|
||||||
},
|
},
|
||||||
},
|
},
|
||||||
|
// Seam Paint Mask
|
||||||
|
{
|
||||||
|
source: {
|
||||||
|
node_id: MASK_FROM_ALPHA,
|
||||||
|
field: 'image',
|
||||||
|
},
|
||||||
|
destination: {
|
||||||
|
node_id: MASK_EDGE,
|
||||||
|
field: 'image',
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
source: {
|
||||||
|
node_id: MASK_EDGE,
|
||||||
|
field: 'image',
|
||||||
|
},
|
||||||
|
destination: {
|
||||||
|
node_id: SEAM_MASK_RESIZE_UP,
|
||||||
|
field: 'image',
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
source: {
|
||||||
|
node_id: SEAM_MASK_RESIZE_UP,
|
||||||
|
field: 'image',
|
||||||
|
},
|
||||||
|
destination: {
|
||||||
|
node_id: SEAM_FIX_DENOISE_LATENTS,
|
||||||
|
field: 'mask',
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
source: {
|
||||||
|
node_id: MASK_BLUR,
|
||||||
|
field: 'image',
|
||||||
|
},
|
||||||
|
destination: {
|
||||||
|
node_id: SEAM_MASK_COMBINE,
|
||||||
|
field: 'mask1',
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
source: {
|
||||||
|
node_id: SEAM_MASK_RESIZE_UP,
|
||||||
|
field: 'image',
|
||||||
|
},
|
||||||
|
destination: {
|
||||||
|
node_id: SEAM_MASK_COMBINE,
|
||||||
|
field: 'mask2',
|
||||||
|
},
|
||||||
|
},
|
||||||
// Resize Results Down
|
// Resize Results Down
|
||||||
{
|
{
|
||||||
source: {
|
source: {
|
||||||
@ -467,7 +618,7 @@ export const buildCanvasSDXLOutpaintGraph = (
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
source: {
|
source: {
|
||||||
node_id: MASK_BLUR,
|
node_id: MASK_RESIZE_UP,
|
||||||
field: 'image',
|
field: 'image',
|
||||||
},
|
},
|
||||||
destination: {
|
destination: {
|
||||||
@ -475,6 +626,16 @@ export const buildCanvasSDXLOutpaintGraph = (
|
|||||||
field: 'image',
|
field: 'image',
|
||||||
},
|
},
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
source: {
|
||||||
|
node_id: SEAM_MASK_COMBINE,
|
||||||
|
field: 'image',
|
||||||
|
},
|
||||||
|
destination: {
|
||||||
|
node_id: SEAM_MASK_RESIZE_DOWN,
|
||||||
|
field: 'image',
|
||||||
|
},
|
||||||
|
},
|
||||||
{
|
{
|
||||||
source: {
|
source: {
|
||||||
node_id: INPAINT_INFILL,
|
node_id: INPAINT_INFILL,
|
||||||
@ -508,7 +669,7 @@ export const buildCanvasSDXLOutpaintGraph = (
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
source: {
|
source: {
|
||||||
node_id: MASK_RESIZE_DOWN,
|
node_id: SEAM_MASK_RESIZE_DOWN,
|
||||||
field: 'image',
|
field: 'image',
|
||||||
},
|
},
|
||||||
destination: {
|
destination: {
|
||||||
@ -539,7 +700,7 @@ export const buildCanvasSDXLOutpaintGraph = (
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
source: {
|
source: {
|
||||||
node_id: MASK_RESIZE_DOWN,
|
node_id: SEAM_MASK_RESIZE_DOWN,
|
||||||
field: 'image',
|
field: 'image',
|
||||||
},
|
},
|
||||||
destination: {
|
destination: {
|
||||||
@ -567,7 +728,6 @@ export const buildCanvasSDXLOutpaintGraph = (
|
|||||||
};
|
};
|
||||||
graph.nodes[MASK_BLUR] = {
|
graph.nodes[MASK_BLUR] = {
|
||||||
...(graph.nodes[MASK_BLUR] as ImageBlurInvocation),
|
...(graph.nodes[MASK_BLUR] as ImageBlurInvocation),
|
||||||
image: canvasMaskImage,
|
|
||||||
};
|
};
|
||||||
|
|
||||||
graph.edges.push(
|
graph.edges.push(
|
||||||
@ -582,6 +742,47 @@ export const buildCanvasSDXLOutpaintGraph = (
|
|||||||
field: 'image',
|
field: 'image',
|
||||||
},
|
},
|
||||||
},
|
},
|
||||||
|
// Seam Paint Mask
|
||||||
|
{
|
||||||
|
source: {
|
||||||
|
node_id: MASK_FROM_ALPHA,
|
||||||
|
field: 'image',
|
||||||
|
},
|
||||||
|
destination: {
|
||||||
|
node_id: MASK_EDGE,
|
||||||
|
field: 'image',
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
source: {
|
||||||
|
node_id: MASK_EDGE,
|
||||||
|
field: 'image',
|
||||||
|
},
|
||||||
|
destination: {
|
||||||
|
node_id: SEAM_FIX_DENOISE_LATENTS,
|
||||||
|
field: 'mask',
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
source: {
|
||||||
|
node_id: MASK_FROM_ALPHA,
|
||||||
|
field: 'image',
|
||||||
|
},
|
||||||
|
destination: {
|
||||||
|
node_id: SEAM_MASK_COMBINE,
|
||||||
|
field: 'mask1',
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
source: {
|
||||||
|
node_id: MASK_EDGE,
|
||||||
|
field: 'image',
|
||||||
|
},
|
||||||
|
destination: {
|
||||||
|
node_id: SEAM_MASK_COMBINE,
|
||||||
|
field: 'mask2',
|
||||||
|
},
|
||||||
|
},
|
||||||
// Color Correct The Inpainted Result
|
// Color Correct The Inpainted Result
|
||||||
{
|
{
|
||||||
source: {
|
source: {
|
||||||
@ -605,7 +806,7 @@ export const buildCanvasSDXLOutpaintGraph = (
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
source: {
|
source: {
|
||||||
node_id: MASK_BLUR,
|
node_id: SEAM_MASK_COMBINE,
|
||||||
field: 'image',
|
field: 'image',
|
||||||
},
|
},
|
||||||
destination: {
|
destination: {
|
||||||
@ -636,7 +837,7 @@ export const buildCanvasSDXLOutpaintGraph = (
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
source: {
|
source: {
|
||||||
node_id: MASK_BLUR,
|
node_id: SEAM_MASK_COMBINE,
|
||||||
field: 'image',
|
field: 'image',
|
||||||
},
|
},
|
||||||
destination: {
|
destination: {
|
||||||
@ -669,7 +870,7 @@ export const buildCanvasSDXLOutpaintGraph = (
|
|||||||
|
|
||||||
// Add Refiner if enabled
|
// Add Refiner if enabled
|
||||||
if (shouldUseSDXLRefiner) {
|
if (shouldUseSDXLRefiner) {
|
||||||
addSDXLRefinerToGraph(state, graph, SDXL_DENOISE_LATENTS);
|
addSDXLRefinerToGraph(state, graph, SEAM_FIX_DENOISE_LATENTS);
|
||||||
}
|
}
|
||||||
|
|
||||||
// optionally add custom VAE
|
// optionally add custom VAE
|
||||||
|
@ -18,8 +18,6 @@ export const IMAGE_TO_LATENTS = 'image_to_latents';
|
|||||||
export const LATENTS_TO_LATENTS = 'latents_to_latents';
|
export const LATENTS_TO_LATENTS = 'latents_to_latents';
|
||||||
export const RESIZE = 'resize_image';
|
export const RESIZE = 'resize_image';
|
||||||
export const CANVAS_OUTPUT = 'canvas_output';
|
export const CANVAS_OUTPUT = 'canvas_output';
|
||||||
export const INPAINT = 'inpaint';
|
|
||||||
export const INPAINT_SEAM_FIX = 'inpaint_seam_fix';
|
|
||||||
export const INPAINT_IMAGE = 'inpaint_image';
|
export const INPAINT_IMAGE = 'inpaint_image';
|
||||||
export const SCALED_INPAINT_IMAGE = 'scaled_inpaint_image';
|
export const SCALED_INPAINT_IMAGE = 'scaled_inpaint_image';
|
||||||
export const INPAINT_IMAGE_RESIZE_UP = 'inpaint_image_resize_up';
|
export const INPAINT_IMAGE_RESIZE_UP = 'inpaint_image_resize_up';
|
||||||
@ -27,10 +25,14 @@ export const INPAINT_IMAGE_RESIZE_DOWN = 'inpaint_image_resize_down';
|
|||||||
export const INPAINT_INFILL = 'inpaint_infill';
|
export const INPAINT_INFILL = 'inpaint_infill';
|
||||||
export const INPAINT_INFILL_RESIZE_DOWN = 'inpaint_infill_resize_down';
|
export const INPAINT_INFILL_RESIZE_DOWN = 'inpaint_infill_resize_down';
|
||||||
export const INPAINT_FINAL_IMAGE = 'inpaint_final_image';
|
export const INPAINT_FINAL_IMAGE = 'inpaint_final_image';
|
||||||
|
export const SEAM_FIX_DENOISE_LATENTS = 'seam_fix_denoise_latents';
|
||||||
export const MASK_FROM_ALPHA = 'tomask';
|
export const MASK_FROM_ALPHA = 'tomask';
|
||||||
export const MASK_EDGE = 'mask_edge';
|
export const MASK_EDGE = 'mask_edge';
|
||||||
export const MASK_BLUR = 'mask_blur';
|
export const MASK_BLUR = 'mask_blur';
|
||||||
export const MASK_COMBINE = 'mask_combine';
|
export const MASK_COMBINE = 'mask_combine';
|
||||||
|
export const SEAM_MASK_COMBINE = 'seam_mask_combine';
|
||||||
|
export const SEAM_MASK_RESIZE_UP = 'seam_mask_resize_up';
|
||||||
|
export const SEAM_MASK_RESIZE_DOWN = 'seam_mask_resize_down';
|
||||||
export const MASK_RESIZE_UP = 'mask_resize_up';
|
export const MASK_RESIZE_UP = 'mask_resize_up';
|
||||||
export const MASK_RESIZE_DOWN = 'mask_resize_down';
|
export const MASK_RESIZE_DOWN = 'mask_resize_down';
|
||||||
export const COLOR_CORRECT = 'color_correct';
|
export const COLOR_CORRECT = 'color_correct';
|
||||||
|
@ -0,0 +1,36 @@
|
|||||||
|
import type { RootState } from 'app/store/store';
|
||||||
|
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||||
|
import IAISlider from 'common/components/IAISlider';
|
||||||
|
import { setSeamBlur } from 'features/parameters/store/generationSlice';
|
||||||
|
import { memo } from 'react';
|
||||||
|
import { useTranslation } from 'react-i18next';
|
||||||
|
|
||||||
|
const ParamSeamBlur = () => {
|
||||||
|
const dispatch = useAppDispatch();
|
||||||
|
const seamBlur = useAppSelector(
|
||||||
|
(state: RootState) => state.generation.seamBlur
|
||||||
|
);
|
||||||
|
const { t } = useTranslation();
|
||||||
|
|
||||||
|
return (
|
||||||
|
<IAISlider
|
||||||
|
label={t('parameters.seamBlur')}
|
||||||
|
min={0}
|
||||||
|
max={64}
|
||||||
|
step={8}
|
||||||
|
sliderNumberInputProps={{ max: 512 }}
|
||||||
|
value={seamBlur}
|
||||||
|
onChange={(v) => {
|
||||||
|
dispatch(setSeamBlur(v));
|
||||||
|
}}
|
||||||
|
withInput
|
||||||
|
withSliderMarks
|
||||||
|
withReset
|
||||||
|
handleReset={() => {
|
||||||
|
dispatch(setSeamBlur(8));
|
||||||
|
}}
|
||||||
|
/>
|
||||||
|
);
|
||||||
|
};
|
||||||
|
|
||||||
|
export default memo(ParamSeamBlur);
|
@ -0,0 +1,27 @@
|
|||||||
|
import { Flex } from '@chakra-ui/react';
|
||||||
|
import IAICollapse from 'common/components/IAICollapse';
|
||||||
|
import { memo } from 'react';
|
||||||
|
import { useTranslation } from 'react-i18next';
|
||||||
|
import ParamSeamBlur from './ParamSeamBlur';
|
||||||
|
import ParamSeamSize from './ParamSeamSize';
|
||||||
|
import ParamSeamSteps from './ParamSeamSteps';
|
||||||
|
import ParamSeamStrength from './ParamSeamStrength';
|
||||||
|
import ParamSeamThreshold from './ParamSeamThreshold';
|
||||||
|
|
||||||
|
const ParamSeamPaintingCollapse = () => {
|
||||||
|
const { t } = useTranslation();
|
||||||
|
|
||||||
|
return (
|
||||||
|
<IAICollapse label={t('parameters.seamPaintingHeader')}>
|
||||||
|
<Flex sx={{ flexDirection: 'column', gap: 2, paddingBottom: 2 }}>
|
||||||
|
<ParamSeamSize />
|
||||||
|
<ParamSeamBlur />
|
||||||
|
<ParamSeamSteps />
|
||||||
|
<ParamSeamStrength />
|
||||||
|
<ParamSeamThreshold />
|
||||||
|
</Flex>
|
||||||
|
</IAICollapse>
|
||||||
|
);
|
||||||
|
};
|
||||||
|
|
||||||
|
export default memo(ParamSeamPaintingCollapse);
|
@ -0,0 +1,36 @@
|
|||||||
|
import type { RootState } from 'app/store/store';
|
||||||
|
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||||
|
import IAISlider from 'common/components/IAISlider';
|
||||||
|
import { setSeamSize } from 'features/parameters/store/generationSlice';
|
||||||
|
import { memo } from 'react';
|
||||||
|
import { useTranslation } from 'react-i18next';
|
||||||
|
|
||||||
|
const ParamSeamSize = () => {
|
||||||
|
const dispatch = useAppDispatch();
|
||||||
|
const seamSize = useAppSelector(
|
||||||
|
(state: RootState) => state.generation.seamSize
|
||||||
|
);
|
||||||
|
const { t } = useTranslation();
|
||||||
|
|
||||||
|
return (
|
||||||
|
<IAISlider
|
||||||
|
label={t('parameters.seamSize')}
|
||||||
|
min={0}
|
||||||
|
max={128}
|
||||||
|
step={8}
|
||||||
|
sliderNumberInputProps={{ max: 512 }}
|
||||||
|
value={seamSize}
|
||||||
|
onChange={(v) => {
|
||||||
|
dispatch(setSeamSize(v));
|
||||||
|
}}
|
||||||
|
withInput
|
||||||
|
withSliderMarks
|
||||||
|
withReset
|
||||||
|
handleReset={() => {
|
||||||
|
dispatch(setSeamSize(16));
|
||||||
|
}}
|
||||||
|
/>
|
||||||
|
);
|
||||||
|
};
|
||||||
|
|
||||||
|
export default memo(ParamSeamSize);
|
@ -0,0 +1,36 @@
|
|||||||
|
import type { RootState } from 'app/store/store';
|
||||||
|
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||||
|
import IAISlider from 'common/components/IAISlider';
|
||||||
|
import { setSeamSteps } from 'features/parameters/store/generationSlice';
|
||||||
|
import { memo } from 'react';
|
||||||
|
import { useTranslation } from 'react-i18next';
|
||||||
|
|
||||||
|
const ParamSeamSteps = () => {
|
||||||
|
const dispatch = useAppDispatch();
|
||||||
|
const seamSteps = useAppSelector(
|
||||||
|
(state: RootState) => state.generation.seamSteps
|
||||||
|
);
|
||||||
|
const { t } = useTranslation();
|
||||||
|
|
||||||
|
return (
|
||||||
|
<IAISlider
|
||||||
|
label={t('parameters.seamSteps')}
|
||||||
|
min={0}
|
||||||
|
max={100}
|
||||||
|
step={1}
|
||||||
|
sliderNumberInputProps={{ max: 999 }}
|
||||||
|
value={seamSteps}
|
||||||
|
onChange={(v) => {
|
||||||
|
dispatch(setSeamSteps(v));
|
||||||
|
}}
|
||||||
|
withInput
|
||||||
|
withSliderMarks
|
||||||
|
withReset
|
||||||
|
handleReset={() => {
|
||||||
|
dispatch(setSeamSteps(20));
|
||||||
|
}}
|
||||||
|
/>
|
||||||
|
);
|
||||||
|
};
|
||||||
|
|
||||||
|
export default memo(ParamSeamSteps);
|
@ -0,0 +1,36 @@
|
|||||||
|
import type { RootState } from 'app/store/store';
|
||||||
|
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||||
|
import IAISlider from 'common/components/IAISlider';
|
||||||
|
import { setSeamStrength } from 'features/parameters/store/generationSlice';
|
||||||
|
import { memo } from 'react';
|
||||||
|
import { useTranslation } from 'react-i18next';
|
||||||
|
|
||||||
|
const ParamSeamStrength = () => {
|
||||||
|
const dispatch = useAppDispatch();
|
||||||
|
const seamStrength = useAppSelector(
|
||||||
|
(state: RootState) => state.generation.seamStrength
|
||||||
|
);
|
||||||
|
const { t } = useTranslation();
|
||||||
|
|
||||||
|
return (
|
||||||
|
<IAISlider
|
||||||
|
label={t('parameters.seamStrength')}
|
||||||
|
min={0}
|
||||||
|
max={1}
|
||||||
|
step={0.01}
|
||||||
|
sliderNumberInputProps={{ max: 999 }}
|
||||||
|
value={seamStrength}
|
||||||
|
onChange={(v) => {
|
||||||
|
dispatch(setSeamStrength(v));
|
||||||
|
}}
|
||||||
|
withInput
|
||||||
|
withSliderMarks
|
||||||
|
withReset
|
||||||
|
handleReset={() => {
|
||||||
|
dispatch(setSeamStrength(0.7));
|
||||||
|
}}
|
||||||
|
/>
|
||||||
|
);
|
||||||
|
};
|
||||||
|
|
||||||
|
export default memo(ParamSeamStrength);
|
@ -0,0 +1,121 @@
|
|||||||
|
import {
|
||||||
|
FormControl,
|
||||||
|
FormLabel,
|
||||||
|
HStack,
|
||||||
|
RangeSlider,
|
||||||
|
RangeSliderFilledTrack,
|
||||||
|
RangeSliderMark,
|
||||||
|
RangeSliderThumb,
|
||||||
|
RangeSliderTrack,
|
||||||
|
Tooltip,
|
||||||
|
} from '@chakra-ui/react';
|
||||||
|
import type { RootState } from 'app/store/store';
|
||||||
|
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||||
|
import IAIIconButton from 'common/components/IAIIconButton';
|
||||||
|
import {
|
||||||
|
setSeamHighThreshold,
|
||||||
|
setSeamLowThreshold,
|
||||||
|
} from 'features/parameters/store/generationSlice';
|
||||||
|
import { memo, useCallback } from 'react';
|
||||||
|
import { useTranslation } from 'react-i18next';
|
||||||
|
import { BiReset } from 'react-icons/bi';
|
||||||
|
|
||||||
|
const ParamSeamThreshold = () => {
|
||||||
|
const dispatch = useAppDispatch();
|
||||||
|
const seamLowThreshold = useAppSelector(
|
||||||
|
(state: RootState) => state.generation.seamLowThreshold
|
||||||
|
);
|
||||||
|
|
||||||
|
const seamHighThreshold = useAppSelector(
|
||||||
|
(state: RootState) => state.generation.seamHighThreshold
|
||||||
|
);
|
||||||
|
const { t } = useTranslation();
|
||||||
|
|
||||||
|
const handleSeamThresholdChange = useCallback(
|
||||||
|
(v: number[]) => {
|
||||||
|
dispatch(setSeamLowThreshold(v[0] as number));
|
||||||
|
dispatch(setSeamHighThreshold(v[1] as number));
|
||||||
|
},
|
||||||
|
[dispatch]
|
||||||
|
);
|
||||||
|
|
||||||
|
const handleSeamThresholdReset = () => {
|
||||||
|
dispatch(setSeamLowThreshold(100));
|
||||||
|
dispatch(setSeamHighThreshold(200));
|
||||||
|
};
|
||||||
|
|
||||||
|
return (
|
||||||
|
<FormControl>
|
||||||
|
<FormLabel>{t('parameters.seamThreshold')}</FormLabel>
|
||||||
|
<HStack w="100%" gap={4} mt={-2}>
|
||||||
|
<RangeSlider
|
||||||
|
aria-label={[
|
||||||
|
t('parameters.seamLowThreshold'),
|
||||||
|
t('parameters.seamHighThreshold'),
|
||||||
|
]}
|
||||||
|
value={[seamLowThreshold, seamHighThreshold]}
|
||||||
|
min={0}
|
||||||
|
max={255}
|
||||||
|
step={1}
|
||||||
|
minStepsBetweenThumbs={1}
|
||||||
|
onChange={handleSeamThresholdChange}
|
||||||
|
>
|
||||||
|
<RangeSliderTrack>
|
||||||
|
<RangeSliderFilledTrack />
|
||||||
|
</RangeSliderTrack>
|
||||||
|
<Tooltip label={seamLowThreshold} placement="top" hasArrow>
|
||||||
|
<RangeSliderThumb index={0} />
|
||||||
|
</Tooltip>
|
||||||
|
<Tooltip label={seamHighThreshold} placement="top" hasArrow>
|
||||||
|
<RangeSliderThumb index={1} />
|
||||||
|
</Tooltip>
|
||||||
|
<RangeSliderMark
|
||||||
|
value={0}
|
||||||
|
sx={{
|
||||||
|
insetInlineStart: '0 !important',
|
||||||
|
insetInlineEnd: 'unset !important',
|
||||||
|
}}
|
||||||
|
>
|
||||||
|
0
|
||||||
|
</RangeSliderMark>
|
||||||
|
<RangeSliderMark
|
||||||
|
value={0.392}
|
||||||
|
sx={{
|
||||||
|
insetInlineStart: '38.4% !important',
|
||||||
|
transform: 'translateX(-38.4%)',
|
||||||
|
}}
|
||||||
|
>
|
||||||
|
100
|
||||||
|
</RangeSliderMark>
|
||||||
|
<RangeSliderMark
|
||||||
|
value={0.784}
|
||||||
|
sx={{
|
||||||
|
insetInlineStart: '79.8% !important',
|
||||||
|
transform: 'translateX(-79.8%)',
|
||||||
|
}}
|
||||||
|
>
|
||||||
|
200
|
||||||
|
</RangeSliderMark>
|
||||||
|
<RangeSliderMark
|
||||||
|
value={1}
|
||||||
|
sx={{
|
||||||
|
insetInlineStart: 'unset !important',
|
||||||
|
insetInlineEnd: '0 !important',
|
||||||
|
}}
|
||||||
|
>
|
||||||
|
255
|
||||||
|
</RangeSliderMark>
|
||||||
|
</RangeSlider>
|
||||||
|
<IAIIconButton
|
||||||
|
size="sm"
|
||||||
|
aria-label={t('accessibility.reset')}
|
||||||
|
tooltip={t('accessibility.reset')}
|
||||||
|
icon={<BiReset />}
|
||||||
|
onClick={handleSeamThresholdReset}
|
||||||
|
/>
|
||||||
|
</HStack>
|
||||||
|
</FormControl>
|
||||||
|
);
|
||||||
|
};
|
||||||
|
|
||||||
|
export default memo(ParamSeamThreshold);
|
@ -37,6 +37,12 @@ export interface GenerationState {
|
|||||||
scheduler: SchedulerParam;
|
scheduler: SchedulerParam;
|
||||||
maskBlur: number;
|
maskBlur: number;
|
||||||
maskBlurMethod: MaskBlurMethodParam;
|
maskBlurMethod: MaskBlurMethodParam;
|
||||||
|
seamSize: number;
|
||||||
|
seamBlur: number;
|
||||||
|
seamSteps: number;
|
||||||
|
seamStrength: StrengthParam;
|
||||||
|
seamLowThreshold: number;
|
||||||
|
seamHighThreshold: number;
|
||||||
seed: SeedParam;
|
seed: SeedParam;
|
||||||
seedWeights: string;
|
seedWeights: string;
|
||||||
shouldFitToWidthHeight: boolean;
|
shouldFitToWidthHeight: boolean;
|
||||||
@ -74,6 +80,12 @@ export const initialGenerationState: GenerationState = {
|
|||||||
scheduler: 'euler',
|
scheduler: 'euler',
|
||||||
maskBlur: 16,
|
maskBlur: 16,
|
||||||
maskBlurMethod: 'box',
|
maskBlurMethod: 'box',
|
||||||
|
seamSize: 16,
|
||||||
|
seamBlur: 8,
|
||||||
|
seamSteps: 20,
|
||||||
|
seamStrength: 0.7,
|
||||||
|
seamLowThreshold: 100,
|
||||||
|
seamHighThreshold: 200,
|
||||||
seed: 0,
|
seed: 0,
|
||||||
seedWeights: '',
|
seedWeights: '',
|
||||||
shouldFitToWidthHeight: true,
|
shouldFitToWidthHeight: true,
|
||||||
@ -200,6 +212,24 @@ export const generationSlice = createSlice({
|
|||||||
setMaskBlurMethod: (state, action: PayloadAction<MaskBlurMethodParam>) => {
|
setMaskBlurMethod: (state, action: PayloadAction<MaskBlurMethodParam>) => {
|
||||||
state.maskBlurMethod = action.payload;
|
state.maskBlurMethod = action.payload;
|
||||||
},
|
},
|
||||||
|
setSeamSize: (state, action: PayloadAction<number>) => {
|
||||||
|
state.seamSize = action.payload;
|
||||||
|
},
|
||||||
|
setSeamBlur: (state, action: PayloadAction<number>) => {
|
||||||
|
state.seamBlur = action.payload;
|
||||||
|
},
|
||||||
|
setSeamSteps: (state, action: PayloadAction<number>) => {
|
||||||
|
state.seamSteps = action.payload;
|
||||||
|
},
|
||||||
|
setSeamStrength: (state, action: PayloadAction<number>) => {
|
||||||
|
state.seamStrength = action.payload;
|
||||||
|
},
|
||||||
|
setSeamLowThreshold: (state, action: PayloadAction<number>) => {
|
||||||
|
state.seamLowThreshold = action.payload;
|
||||||
|
},
|
||||||
|
setSeamHighThreshold: (state, action: PayloadAction<number>) => {
|
||||||
|
state.seamHighThreshold = action.payload;
|
||||||
|
},
|
||||||
setTileSize: (state, action: PayloadAction<number>) => {
|
setTileSize: (state, action: PayloadAction<number>) => {
|
||||||
state.tileSize = action.payload;
|
state.tileSize = action.payload;
|
||||||
},
|
},
|
||||||
@ -306,6 +336,12 @@ export const {
|
|||||||
setScheduler,
|
setScheduler,
|
||||||
setMaskBlur,
|
setMaskBlur,
|
||||||
setMaskBlurMethod,
|
setMaskBlurMethod,
|
||||||
|
setSeamSize,
|
||||||
|
setSeamBlur,
|
||||||
|
setSeamSteps,
|
||||||
|
setSeamStrength,
|
||||||
|
setSeamLowThreshold,
|
||||||
|
setSeamHighThreshold,
|
||||||
setSeed,
|
setSeed,
|
||||||
setSeedWeights,
|
setSeedWeights,
|
||||||
setShouldFitToWidthHeight,
|
setShouldFitToWidthHeight,
|
||||||
|
@ -2,6 +2,7 @@ import ParamDynamicPromptsCollapse from 'features/dynamicPrompts/components/Para
|
|||||||
import ParamLoraCollapse from 'features/lora/components/ParamLoraCollapse';
|
import ParamLoraCollapse from 'features/lora/components/ParamLoraCollapse';
|
||||||
import ParamInfillAndScalingCollapse from 'features/parameters/components/Parameters/Canvas/InfillAndScaling/ParamInfillAndScalingCollapse';
|
import ParamInfillAndScalingCollapse from 'features/parameters/components/Parameters/Canvas/InfillAndScaling/ParamInfillAndScalingCollapse';
|
||||||
import ParamMaskAdjustmentCollapse from 'features/parameters/components/Parameters/Canvas/MaskAdjustment/ParamMaskAdjustmentCollapse';
|
import ParamMaskAdjustmentCollapse from 'features/parameters/components/Parameters/Canvas/MaskAdjustment/ParamMaskAdjustmentCollapse';
|
||||||
|
import ParamSeamPaintingCollapse from 'features/parameters/components/Parameters/Canvas/SeamPainting/ParamSeamPaintingCollapse';
|
||||||
import ParamControlNetCollapse from 'features/parameters/components/Parameters/ControlNet/ParamControlNetCollapse';
|
import ParamControlNetCollapse from 'features/parameters/components/Parameters/ControlNet/ParamControlNetCollapse';
|
||||||
import ParamNoiseCollapse from 'features/parameters/components/Parameters/Noise/ParamNoiseCollapse';
|
import ParamNoiseCollapse from 'features/parameters/components/Parameters/Noise/ParamNoiseCollapse';
|
||||||
import ProcessButtons from 'features/parameters/components/ProcessButtons/ProcessButtons';
|
import ProcessButtons from 'features/parameters/components/ProcessButtons/ProcessButtons';
|
||||||
@ -22,6 +23,7 @@ export default function SDXLUnifiedCanvasTabParameters() {
|
|||||||
<ParamNoiseCollapse />
|
<ParamNoiseCollapse />
|
||||||
<ParamMaskAdjustmentCollapse />
|
<ParamMaskAdjustmentCollapse />
|
||||||
<ParamInfillAndScalingCollapse />
|
<ParamInfillAndScalingCollapse />
|
||||||
|
<ParamSeamPaintingCollapse />
|
||||||
</>
|
</>
|
||||||
);
|
);
|
||||||
}
|
}
|
||||||
|
@ -6,6 +6,7 @@ import ParamControlNetCollapse from 'features/parameters/components/Parameters/C
|
|||||||
import ParamSymmetryCollapse from 'features/parameters/components/Parameters/Symmetry/ParamSymmetryCollapse';
|
import ParamSymmetryCollapse from 'features/parameters/components/Parameters/Symmetry/ParamSymmetryCollapse';
|
||||||
// import ParamVariationCollapse from 'features/parameters/components/Parameters/Variations/ParamVariationCollapse';
|
// import ParamVariationCollapse from 'features/parameters/components/Parameters/Variations/ParamVariationCollapse';
|
||||||
import ParamMaskAdjustmentCollapse from 'features/parameters/components/Parameters/Canvas/MaskAdjustment/ParamMaskAdjustmentCollapse';
|
import ParamMaskAdjustmentCollapse from 'features/parameters/components/Parameters/Canvas/MaskAdjustment/ParamMaskAdjustmentCollapse';
|
||||||
|
import ParamSeamPaintingCollapse from 'features/parameters/components/Parameters/Canvas/SeamPainting/ParamSeamPaintingCollapse';
|
||||||
import ParamPromptArea from 'features/parameters/components/Parameters/Prompt/ParamPromptArea';
|
import ParamPromptArea from 'features/parameters/components/Parameters/Prompt/ParamPromptArea';
|
||||||
import ProcessButtons from 'features/parameters/components/ProcessButtons/ProcessButtons';
|
import ProcessButtons from 'features/parameters/components/ProcessButtons/ProcessButtons';
|
||||||
import UnifiedCanvasCoreParameters from './UnifiedCanvasCoreParameters';
|
import UnifiedCanvasCoreParameters from './UnifiedCanvasCoreParameters';
|
||||||
@ -23,6 +24,7 @@ const UnifiedCanvasParameters = () => {
|
|||||||
<ParamSymmetryCollapse />
|
<ParamSymmetryCollapse />
|
||||||
<ParamMaskAdjustmentCollapse />
|
<ParamMaskAdjustmentCollapse />
|
||||||
<ParamInfillAndScalingCollapse />
|
<ParamInfillAndScalingCollapse />
|
||||||
|
<ParamSeamPaintingCollapse />
|
||||||
<ParamAdvancedCollapse />
|
<ParamAdvancedCollapse />
|
||||||
</>
|
</>
|
||||||
);
|
);
|
||||||
|
Loading…
Reference in New Issue
Block a user